/usr/share/gap/lib/mgmcong.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 | #############################################################################
##
#W mgmcong.gi GAP library Robert F. Morse
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains generic methods for magma congruences
##
## Maintenance and further development by:
## Robert F. Morse
## Andrew Solomon
##
##
#############################################################################
##
#M PrintObj( <S> )
## print a [left, right, two-sided] Magma Congruence
##
## left magma congruence
InstallMethod( PrintObj,
"for a left magma congruence",
true,
[ IsLeftMagmaCongruence ], 0,
function( S )
Print( "LeftMagmaCongruence( ... )" );
end );
InstallMethod( PrintObj,
"for a left magma congruence with known generating pairs",
true,
[ IsLeftMagmaCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
function( S )
Print( "LeftMagmaCongruence( ",
GeneratingPairsOfMagmaCongruence( S ), " )" );
end );
## right magma congruence
InstallMethod( PrintObj,
"for a right magma congruence",
true,
[ IsRightMagmaCongruence ], 0,
function( S )
Print( "RightMagmaCongruence( ... )" );
end );
InstallMethod( PrintObj,
"for a right magma congruence with known generating pairs",
true,
[ IsRightMagmaCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
function( S )
Print( "RightMagmaCongruence( ",
GeneratingPairsOfMagmaCongruence( S ), " )" );
end );
## two sided magma congruence
InstallMethod( PrintObj,
"for a magma congruence",
true,
[ IsMagmaCongruence ], 0,
function( S )
Print( "MagmaCongruence( ... )" );
end );
InstallMethod( PrintObj,
"for a magma Congruence with known generating pairs",
true,
[ IsMagmaCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
function( S )
Print( "MagmaCongruence( ",
GeneratingPairsOfMagmaCongruence( S ), " )" );
end );
#############################################################################
##
#M ViewObj( <S> )
## view a [left,right,two-sided] magma congruence
##
## left magma congruence
InstallMethod( ViewObj,
"for a LeftMagmaCongruence",
true,
[ IsLeftMagmaCongruence ], 0,
function( S )
Print( "<LeftMagmaCongruence>" );
end );
InstallMethod( ViewObj,
"for a LeftMagmaCongruence with known generating pairs",
true,
[ IsLeftMagmaCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
function( S )
Print( "<LeftMagmaCongruence with ",
Length( GeneratingPairsOfMagmaCongruence( S ) ),
" generating pairs>" );
end );
## right magma congruence
InstallMethod( ViewObj,
"for a RightMagmaCongruence",
true,
[ IsRightMagmaCongruence ], 0,
function( S )
Print( "<RightMagmaCongruence>" );
end );
InstallMethod( ViewObj,
"for a RightMagmaCongruence with generators",
true,
[ IsRightMagmaCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
function( S )
Print( "<RightMagmaCongruence with ",
Length( GeneratingPairsOfMagmaCongruence( S ) ),
" generating pairs>" );
end );
## two sided magma congruence
InstallMethod( ViewObj,
"for a magma congruence",
true,
[ IsMagmaCongruence ], 0,
function( S )
Print( "<MagmaCongruence>" );
end );
InstallMethod( ViewObj,
"for a magma congruence with generating pairs",
true,
[ IsMagmaCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
function( S )
Print( "<MagmaCongruence with ",
Length( GeneratingPairsOfMagmaCongruence( S ) ),
" generating pairs>" );
end );
#############################################################################
##
#M LR2MagmaCongruenceByGeneratingPairsCAT(<F>,<rels>,<category>)
##
## create the magma congruence with generating pairs <rels> as
## a <category> where <category> is IsLeftMagmaCongruence,
## IsRightMagmaCongruence or IsMagmaCongruence.
##
InstallGlobalFunction( LR2MagmaCongruenceByGeneratingPairsCAT,
function(F, gens, category )
local r, cong, fam;
# Check that the relations are all lists of length 2
for r in gens do
if Length(r) <> 2 then
Error("A relation should be a list of length 2");
fi;
od;
# Create the equivalence relation
fam := GeneralMappingsFamily( ElementsFamily(FamilyObj(F)),
ElementsFamily(FamilyObj(F)) );
# Create the default type for the elements.
cong := Objectify(NewType(fam,
category and IsEquivalenceRelationDefaultRep), rec());
SetSource(cong, F);
SetRange(cong, F);
# Add the generators in the appropriate attribute
# They are all set in a common place with special names
# as needed
if (category = IsMagmaCongruence) then
SetGeneratingPairsOfMagmaCongruence(cong, Immutable(gens));
elif (category = IsLeftMagmaCongruence) then
SetGeneratingPairsOfLeftMagmaCongruence(cong, Immutable(gens));
SetGeneratingPairsOfMagmaCongruence(cong, Immutable(gens));
elif (category = IsRightMagmaCongruence) then
SetGeneratingPairsOfMagmaCongruence(cong, Immutable(gens));
SetGeneratingPairsOfRightMagmaCongruence(cong, Immutable(gens));
else
Error("Invalid category ",category," of Magma congruence");
fi;
return cong;
end);
#############################################################################
##
#M LR2MagmaCongruenceByPartitionNCCAT(<F>,<part>,<category>)
##
## create the magma congruence with partition <part> as
## a <category> where <category> is IsLeftMagmaCongruence,
## IsRightMagmaCongruence or IsMagmaCongruence.
##
## <part> is a list of lists containing (at least) all of the non singleton
## blocks of the partition. It is not checked that <part> is actually
## a congruence in the category specified.
##
InstallGlobalFunction( LR2MagmaCongruenceByPartitionNCCAT,
function(F, part, cat)
local cong, fam;
# The only cheap check we can do:
if not IsElmsColls(FamilyObj(F), FamilyObj(part)) then
Error("<part> should be a list of lists of elements of the magma");
fi;
# Create the equivalence relation
fam := GeneralMappingsFamily( ElementsFamily(FamilyObj(F)),
ElementsFamily(FamilyObj(F)) );
# Create the default type for the elements.
cong := Objectify(NewType(fam,
cat and IsEquivalenceRelationDefaultRep), rec());
SetSource(cong, F);
SetRange(cong, F);
SetEquivalenceRelationPartition(cong, part);
return cong;
end);
#############################################################################
##
#M LeftMagmaCongruenceByGeneratingPairs( <D>, <gens> )
#M RightMagmaCongruenceByGeneratingPairs( <D>, <gens> )
#M MagmaCongruenceByGeneratingPairs( <D>, <gens> )
##
InstallMethod( LeftMagmaCongruenceByGeneratingPairs,
"for a magma and a list of pairs of its elements",
IsElmsColls,
[ IsMagma, IsList ], 0,
function( M, gens )
return LR2MagmaCongruenceByGeneratingPairsCAT(M, gens,
IsLeftMagmaCongruence);
end );
InstallMethod( LeftMagmaCongruenceByGeneratingPairs,
"for a magma and an empty list",
true,
[ IsMagma, IsList and IsEmpty ], 0,
function( M, gens )
return LR2MagmaCongruenceByGeneratingPairsCAT(M, gens,
IsLeftMagmaCongruence);
end );
InstallMethod( RightMagmaCongruenceByGeneratingPairs,
"for a magma and a list of pairs of its elements",
IsElmsColls,
[ IsMagma, IsList ], 0,
function( M, gens )
return LR2MagmaCongruenceByGeneratingPairsCAT(M, gens,
IsRightMagmaCongruence);
end );
InstallMethod( RightMagmaCongruenceByGeneratingPairs,
"for a magma and an empty list",
true,
[ IsMagma, IsList and IsEmpty ], 0,
function( M, gens )
return LR2MagmaCongruenceByGeneratingPairsCAT(M, gens,
IsRightMagmaCongruence);
end );
InstallMethod( MagmaCongruenceByGeneratingPairs,
"for a magma and a list of pairs of its elements",
IsElmsColls,
[ IsMagma, IsList ], 0,
function( M, gens )
local c;
c := LR2MagmaCongruenceByGeneratingPairsCAT(M, gens,
IsMagmaCongruence);
if HasIsSemigroup(M) and IsSemigroup(M) then
SetIsSemigroupCongruence(c,true);
fi;
return c;
end );
InstallMethod( MagmaCongruenceByGeneratingPairs,
"for a magma and an empty list",
true,
[ IsMagma, IsList and IsEmpty ], 0,
function( M, gens )
local c;
c := LR2MagmaCongruenceByGeneratingPairsCAT(M, gens,
IsMagmaCongruence);
if HasIsSemigroup(M) and IsSemigroup(M) then
SetIsSemigroupCongruence(c,true);
fi;
return c;
end );
#############################################################################
##
#M EquivalenceClasses( <E> )
##
## For a MagmaCongruence
##
InstallMethod(EquivalenceClasses,
"for magma congruences", true, [IsMagmaCongruence], 0,
function(e)
local part, # the partition of the equivalence relation
distinctreps; # the reprentatives of distinct non-trivial
# congruence classes
part := EquivalenceRelationPartition(e);
distinctreps := List(part,x->x[1]);
return List(distinctreps, x->EquivalenceClassOfElementNC(e, x));
end);
#############################################################################
##
#M \*( <x1>, <x2> )
##
## Product of congruence classes. As in fp-semigroups we just
## multiply without worrying about getting the representative right.
## Then we check equality when doing < or =.
##
InstallMethod( \*,
"for two magma congruence classes",
IsIdenticalObj,
[ IsCongruenceClass, IsCongruenceClass ],
0,
function( x1, x2 )
if EquivalenceClassRelation(x1) <> EquivalenceClassRelation(x2) then
Error("Can only multiply classes of the same congruence");
fi;
return EquivalenceClassOfElementNC(EquivalenceClassRelation(x1),
Representative(x1)*Representative(x2));
end );
############################################################################
##
#M One(<congruence class>)
##
## It is installed as
## OtherMethod to appease GAP since the selection filters
## IsCongruenceClass and IsMultiplicativeElementWithOne
## match two declarations of One - the first filter for domains,
## the second filter for IsMultiplicativeElementWithOne.
##
InstallOtherMethod(One,
"One(<congruence class>)", true,
[IsCongruenceClass and IsMultiplicativeElementWithOne], 0,
function(x)
return EquivalenceClassOfElement(EquivalenceClassRelation(x),
One(Representative(x)));
end);
######################################################################
##
#F MagmaCongruencePartition(<cong>,<partialcond>)
##
## This function sets one of the two attributes
##
## EquivalenceRelationPartition
## PartialClosureOfCongruence
##
## depending on whether full closure is found or partial closure is
## found. Both of these attributes are partitions of the magma's
## elements. If a previously computed PartialClosureOfCongruence satisfies
## the <partialcond> no computations are performed.
##
## A left magma congruence, right magma congruence, and magma congruence
## is the smallest equivalence relation containing the generating pairs
## closed under the operations of left multiplication, right
## multiplication or both respectively.
##
## If the magma is infinite (or very large) it may not be possible to compute
## the entire partition. <partialcond> allows for a stop condition (possibly)
## short of full closure. The function <partialcond> takes two parameters
## (congruence, forest). Other variables that might be needed by <partialcond>
## should be assigned to globals variables before MagmaCongruencePartition is
## called.
##
## A PartialClosureOfCongruence reflects a partial computation that can be used
## in subsequent computations. Hence it is a mutable attribute.
##
## A partial closure is also provided if either one block or the number of
## blocks exceeds 64,000 in length. The partial closure attribute is stored for
## the user to inspect.
##
## This algorithm is based on Atkinson et. al. (Group Theory on a
## Microcomputer, in Computational Group Theory, 1984).
##
## Non-trivial blocks are considered trees and the block system a forest
##
## Data representation:
## o Forest is a list of non-empty lists with no holes.
## o Each list in the forest represents a non-empty tree of depth 1
## with root the first element (hence it has at least 2 elements).
##
## If follows from the data representations that full path compression
## is used.
##
## The merging of blocks can only be done via list Append.
## This insures that the root of the left tree being merged does not change
## and hence is an invariant.
##
######################################################################
BindGlobal("MagmaCongruencePartition",
function(cong,partialcond)
local C, #Initial branches (given pairs)
forest, #Forest in which each tree is a block
i,p,g,j, #index variables
r1,r2, #roots of possible blocks to merge
p1,p2, #positions of the blocks
gens, #Required generators (in generality all the elements
maxlimit, #Maximum size for either a partition or number of
# partition;
checklimit,#Function for checking limit
equivrel; #Initial forest (if there is not partial closure)
## Set up limits on the size and number of partitions we can
## create a check function
##
maxlimit := 64000;
checklimit := function()
if Length(forest) >= maxlimit then return true; fi;
if First(forest, x->Length(x)>=maxlimit) <> fail then return true; fi;
return false;
end;
## check that we know the generators ....
##
if not HasGeneratingPairsOfMagmaCongruence(cong) then
Error("MagmaCongruencePartition requires GeneratingPairsOfMagmaCongruence");
fi;
if not ((HasGeneratorsOfMagma(Source(cong)) or
HasGeneratorsOfMagmaWithInverses(Source(cong))) or
(HasIsFinite(Source(cong)) and IsFinite(Source(cong)) )) then
Error("MagmaCongruencePartition requires generators for underlying semigroup or list of all elements");
fi;
## does the partition already exist if so return done deal
##
if HasEquivalenceRelationPartition(cong) then
return;
fi;
## check to see if we are to generate the trivial relation
##
## Filter all pairs of the form (a,a).
## if this filtered set is empty return the diagonal
## equivalence
##
C := List(Filtered(GeneratingPairsOfMagmaCongruence(cong),
x->not x[1]=x[2]), y->ShallowCopy(y));
if IsEmpty(C) then
SetEquivalenceRelationPartition(cong,[]);
return;
fi;
C := Set(C);
## Set the forest either to the partial closure from a previous
## call or find the smallest equivalence relation
## containing the filtered generators
##
if HasPartialClosureOfCongruence(cong) then
forest := ShallowCopy(PartialClosureOfCongruence(cong));
C := ShallowCopy(cong!.C);
else
equivrel := EquivalenceRelationPartition(
EquivalenceRelationByPairsNC(Source(cong),C));
forest := List(equivrel, x->ShallowCopy(x));
fi;
## Check partial closure might be fulfilled by initial closure
##
if partialcond(cong,forest) then
SetPartialClosureOfCongruence(cong,forest);
cong!.C := ShallowCopy(C);
return;
fi;
## Determine whether we can use generators or need
## all the elements
##
## If the Magma is associative then use generators
##
#T If the magam has a generating set but is not associative
#T then use an iterator. One need to be implemented
##
## else use elements of the magma
##
if HasGeneratorsOfMagmaWithInverses(Source(cong)) and
HasIsAssociative(Source(cong)) and
IsAssociative(Source(cong)) then
gens := GeneratorsOfMagmaWithInverses(Source(cong));
elif HasGeneratorsOfMagma(Source(cong)) and
HasIsAssociative(Source(cong)) and
IsAssociative(Source(cong)) then
gens := GeneratorsOfMagma(Source(cong));
elif HasGeneratorsOfMagma(Source(cong)) and
HasIsFinite(Source(cong)) and
IsFinite(Source(cong)) then
gens := AsSSortedList(Source(cong));
else
gens := AsSSortedList(Source(cong));
fi;
##
## Work through the branches in the forest above
## determining the closure wrt left and right
## translations following Atkinson et. al.
##
repeat
p := C[1];
RemoveSet(C,C[1]);
for g in gens do
p1 := Length(forest)+1;
p2 := Length(forest)+1;
if IsRightMagmaCongruence(cong) then
##
## Search the forest to see if each right translation
## is in one of the blocks (trees) in the forest
## Get out a soon as both are found
##
for i in [1..Length(forest)] do
if p1>Length(forest) and p[1]*g in forest[i] then
r1 := forest[i][1];
p1 := i;
if p2<=Length(forest) then break; fi;
fi;
if p2>Length(forest) and p[2]*g in forest[i] then
r2 := forest[i][1];
p2 := i;
if p1<=Length(forest) then break; fi;
fi;
od;
##
## If the translation is not in any of the
## blocks already defined make the element
## a root to a potential block
##
if p1=Length(forest)+1 then
r1:=p[1]*g;
fi;
if p2=Length(forest)+1 then
r2:=p[2]*g;
fi;
##
## If the roots are different
## merge the blocks they represent
##
if r1<>r2 then
##
## Merging of two existing blocks
## we must complete the Append and
## get rid of the one block without
## leaving a hole
##
if p1<=Length(forest) and p2<=Length(forest) and
not p1=p2 then
Append(forest[p1],forest[p2]);
Unbind(forest[p2]);
## No holes are left is at the end otherwise
## move the last one into the middle
if not p2=Length(forest) then
forest[p2]:=forest[Length(forest)];
Unbind(forest[Length(forest)]);
fi;
## Simple cases of merging a new element with
## an existing block
elif p1<=Length(forest) and not p2<=Length(forest) then
Add(forest[p1],r2);
elif p2<=Length(forest) and not p1<=Length(forest) then
Add(forest[p2],r1);
## Add new non-trivial block made up of r1 and r2
else
Add(forest,[r1,r2]);
fi;
## Add the new branch to C
AddSet(C,[r1,r2]);
fi;
fi;
if IsLeftMagmaCongruence(cong) then
##
## Complete the left translations in an exact
## manner as above
##
p1 := Length(forest)+1;
p2 := Length(forest)+1;
for i in [1..Length(forest)] do
if p1>Length(forest) and g*p[1] in forest[i] then
r1 := forest[i][1];
p1 := i;
if p2<=Length(forest) then break; fi;
fi;
if p2>Length(forest) and g*p[2] in forest[i] then
r2 := forest[i][1];
p2 := i;
if p1<=Length(forest) then break; fi;
fi;
od;
if p1=Length(forest)+1 then
r1:=g*p[1];
fi;
if p2=Length(forest)+1 then
r2:=g*p[2];
fi;
if r1<>r2 then
if p1<=Length(forest) and p2<=Length(forest)
and not p1=p2 then
Append(forest[p1],forest[p2]);
Unbind(forest[p2]);
if not p2=Length(forest) then
forest[p2]:=forest[Length(forest)];
Unbind(forest[Length(forest)]);
fi;
elif p1<=Length(forest) and not p2<=Length(forest) then
Add(forest[p1],r2);
elif p2<=Length(forest) and not p1<=Length(forest) then
Add(forest[p2],r1);
else
Add(forest,[r1,r2]);
fi;
AddSet(C,[r1,r2]);
fi;
fi;
od;
## Exit conditions are:
## full closure is complete
## we have created a partition larger than our limit
## partial closure condition is satisfied
##
until IsEmpty(C) or checklimit() or partialcond(cong,forest);
## Set the equivalence partition if we have full closure
##
if IsEmpty(C) then
SetEquivalenceRelationPartition(cong,forest);
## Set partial closure if partialcond is met or
## size limit has been reached
##
elif partialcond(cong,forest) then
SetPartialClosureOfCongruence(cong,forest);
cong!.C := ShallowCopy(C);
elif checklimit() then
Info(InfoWarning,1,
"The congruence has either over 64,000 blocks or a \n",
"#I block with over 64,000 elements. Hence only a\n",
"#I a partial closure has been completed. You may view\n",
"#I this partition using the 'PartialClosureOfCongruence'\n",
"#I attribute");
SetPartialClosureOfCongruence(cong,forest);
cong!.C := ShallowCopy(C);
else
Error("error, internal error in mgmcong.gi");
fi;
end);
######################################################################
##
## EquivalenceRelationPartition(<cong>)
## Calculate the partition attribute of a left congruence
##
######################################################################
InstallMethod(EquivalenceRelationPartition,
"for a left congruence on a magma",
true,
[IsLeftMagmaCongruence], 0,
function(cong) # cong a congruence.
# close the congruence with respect to left mult.
MagmaCongruencePartition(cong,function(x,y) return false; end);
return EquivalenceRelationPartition(cong);
end);
######################################################################
##
## EquivalenceRelationPartition(<cong>)
## Calculate the partition attribute of a right congruence
##
######################################################################
InstallMethod(EquivalenceRelationPartition,
"for a right congruence on a magma",
true,
[IsRightMagmaCongruence], 0,
function(cong) # cong a congruence.
# close the congruence with respect to right mult.
MagmaCongruencePartition(cong,function(x,y) return false; end);
return EquivalenceRelationPartition(cong);
end);
######################################################################
##
## EquivalenceRelationPartition(<cong>)
## Calculate the partition attribute of a congruence
##
######################################################################
InstallMethod(EquivalenceRelationPartition,
"for a congruence on a magma",
true,
[IsMagmaCongruence], 0,
function(cong) # cong a congruence.
# close the congruence with respect to left and right mult.
MagmaCongruencePartition(cong,function(x,y) return false; end);
return EquivalenceRelationPartition(cong);
end);
#############################################################################
##
#M JoinMagmaCongruences(<cong1>,<cong2>)
##
## Find the transitive closure of equivalence relations represented by
## cong1 and cong2
##
InstallMethod(JoinMagmaCongruences,
"for magma congruences", true,
[IsMagmaCongruence, IsMagmaCongruence],0,
function(c1,c2)
local
er, # Join is equivalence relations
cong; # Join congruence
# Check to see that the both congruences have the same
# parent magma
#
if Source(c1)<>Source(c2) then
Error("usage: the source of <cong1> and <cong2> must be the same");
fi;
# Find the join of the two congruences ar equivalence relations
#
er := JoinEquivalenceRelations(c1,c2);
# Create the congruence and set the partition to that of
# of er
#
cong := LR2MagmaCongruenceByGeneratingPairsCAT(Source(c1),
Union(GeneratingPairsOfMagmaCongruence(c1),
GeneratingPairsOfMagmaCongruence(c2)),
IsMagmaCongruence);
cong!.EquivalenceRelationPartition := EquivalenceRelationPartition(er);
if HasIsAssociative(Source(c1)) and IsAssociative(Source(c1)) then
SetIsSemigroupCongruence(cong,true);
fi;
return cong;
end);
#############################################################################
##
#M MeetMagmaCongruences(<cong1>,<cong2>)
##
## Find the meet of the equivalence relations represented by
## cong1 and cong2
##
InstallMethod(MeetMagmaCongruences,
"for magma congruences", true,
[IsMagmaCongruence, IsMagmaCongruence],0,
function(c1,c2)
local
er, # Meet os equivalence relations
cong; # Meet congruence
# Check to see that the both congruences have the same
# parent magma
#
if Source(c1)<>Source(c2) then
Error("The source of <cong1> and <cong2> must be the same");
fi;
# Find the meet of the two congruences as equivalence relations
#
er := MeetEquivalenceRelations(c1,c2);
# Create the congruence and set the partition to that of
# of er
#
cong := LR2MagmaCongruenceByGeneratingPairsCAT(Source(c1),
Intersection(GeneratingPairsOfMagmaCongruence(c1),
GeneratingPairsOfMagmaCongruence(c2)),
IsMagmaCongruence);
cong!.EquivalenceRelationPartition := EquivalenceRelationPartition(er);
if HasIsAssociative(Source(c1)) and IsAssociative(Source(c1)) then
SetIsSemigroupCongruence(cong,true);
fi;
return cong;
end);
#############################################################################
##
#M \in( <x>, <C> )
##
## Checks whether <x> is contained in the magma congruence class <C>
## If <C> is infinite, this will not necessarily terminate.
##
InstallMethod( \in, "for a magma congruence class", true,
[IsObject, IsCongruenceClass], 0,
function(x, C)
local
partialclosure, #Partial closure
part, #Partition
rep,
rel,
class,
GLOBAL_SEARCH_ELEMENT,
GLOBAL_REP;
# first ensure that <x> is in the right family
if FamilyObj(x) <>
ElementsFamily(FamilyObj(Source(EquivalenceClassRelation(C)))) then
Error("incompatible arguments for \in");
fi;
# quick check to see if element is representative
if x=Representative(C) then return true; fi;
## If the partition has been computed let the equivalence relation
## method deal with it
if HasEquivalenceRelationPartition(EquivalenceClassRelation(C)) then
TryNextMethod();
fi;
## We have partial closure see if this is enough
##
if HasPartialClosureOfCongruence(EquivalenceClassRelation(C)) then
part := PartialClosureOfCongruence(EquivalenceClassRelation(C));
rep := Representative(C);
class := First(part,y->rep in y);
# the partial closure has the elements in the same class
# return true
if class <> fail and x in class then
return true;
fi;
fi;
## Need to see if a partial closure can give an answer
## NOT possible to give a negative solution if the number
## of blocks or the size of a block is infinite
##
GLOBAL_REP := Representative(C);
GLOBAL_SEARCH_ELEMENT := x;
rel := EquivalenceClassRelation(C);
## These global variables are constant and used
## in the following partial closure test:
## stop when the search element is found in
## a block with the class's representative
##
partialclosure :=
function(cong, forest)
local block;
block := First(forest,y-> GLOBAL_SEARCH_ELEMENT in y);
if block=fail then return false; fi;
return GLOBAL_REP in block;
end;
MagmaCongruencePartition(rel, partialclosure);
## We might have gotten a full closure from this call if so
## delegate the next method to determine if we have
## the element in the class
## Otherwise the partial condition must have been satisfied
## return true
##
if HasEquivalenceRelationPartition(rel) then
TryNextMethod();
else
return true;
fi;
end);
#############################################################################
##
#M Enumerator( <C> )
##
## Enumerator for a magma congruence class.
##
InstallMethod( Enumerator, "for a magma congruence class", true,
[IsCongruenceClass], 0,
function(class)
local cong; # the congruence of which class is a class
cong := EquivalenceClassRelation(class);
## if the partition is already known, just go through the
## generic equivalence class method else compute the partition
## then get lazy and call generic equivalence
##
if HasEquivalenceRelationPartition(EquivalenceClassRelation(class)) then
TryNextMethod();
else
MagmaCongruencePartition(cong,function(x,y) return false; end);
TryNextMethod();
fi;
end);
#############################################################################
##
#M EquivalenceClassOfElement( <C>, <rep> )
#M EquivalenceClassOfElementNC( <C>, <rep> )
##
## Returns the equivalence class of an element <rep> with respect to a
## magma congrucene <C>. No calculation is performed at this stage.
## We do not always wish to check that <rep> is in the underlying set
## of <C>, since we may wish to use equivalence relations to perform
## membership tests (for example when checking membership of a
## transformation in a monoid, we use Greens relations and classes).
##
InstallMethod(EquivalenceClassOfElementNC,
"for magma congruence with no check",
[IsMagmaCongruence, IsObject],
function(rel, rep)
local filts, new;
filts:= IsCongruenceClass and IsEquivalenceClassDefaultRep;
if IsMultiplicativeElementWithOne(rep) then
filts:=filts and IsMultiplicativeElementWithOne;
else
filts:=filts and IsMultiplicativeElement;
fi;
if IsAssociativeElement(rep) then
filts:=filts and IsAssociativeElement;
fi;
new:= Objectify(NewType(CollectionsFamily(FamilyObj(rep)), filts), rec());
SetEquivalenceClassRelation(new, rel);
SetRepresentative(new, rep);
SetParent(new, UnderlyingDomainOfBinaryRelation(rel));
return new;
end);
InstallMethod(EquivalenceClassOfElementNC,
"for magma congruence with no check", true,
[IsLeftMagmaCongruence, IsObject], 0,
function(rel, rep)
local new;
if IsMultiplicativeElementWithOne(rep) then
new:= Objectify(NewType(CollectionsFamily(FamilyObj(rep)),
IsCongruenceClass and IsEquivalenceClassDefaultRep
and IsMultiplicativeElementWithOne), rec());
else
new:= Objectify(NewType(CollectionsFamily(FamilyObj(rep)),
IsCongruenceClass and IsEquivalenceClassDefaultRep
and IsMultiplicativeElement), rec());
fi;
SetEquivalenceClassRelation(new, rel);
SetRepresentative(new, rep);
SetParent(new, UnderlyingDomainOfBinaryRelation(rel));
return new;
end);
InstallMethod(EquivalenceClassOfElementNC,
"for magma congruence with no check", true,
[IsRightMagmaCongruence, IsObject], 0,
function(rel, rep)
local new;
if IsMultiplicativeElementWithOne(rep) then
new:= Objectify(NewType(CollectionsFamily(FamilyObj(rep)),
IsCongruenceClass and IsEquivalenceClassDefaultRep
and IsMultiplicativeElementWithOne), rec());
else
new:= Objectify(NewType(CollectionsFamily(FamilyObj(rep)),
IsCongruenceClass and IsEquivalenceClassDefaultRep
and IsMultiplicativeElement), rec());
fi;
SetEquivalenceClassRelation(new, rel);
SetRepresentative(new, rep);
SetParent(new, UnderlyingDomainOfBinaryRelation(rel));
return new;
end);
InstallMethod(EquivalenceClassOfElement, "for magma congruence with checking", true,
[IsMagmaCongruence, IsObject], 0,
function(rel, rep)
if not rep in UnderlyingDomainOfBinaryRelation(rel) then
Error("Representative must lie in underlying set of the relation");
fi;
return EquivalenceClassOfElementNC(rel, rep);
end);
InstallMethod(EquivalenceClassOfElement, "for left magma congruence with checking", true,
[IsLeftMagmaCongruence, IsObject], 0,
function(rel, rep)
if not rep in UnderlyingDomainOfBinaryRelation(rel) then
Error("Representative must lie in underlying set of the relation");
fi;
return EquivalenceClassOfElementNC(rel, rep);
end);
InstallMethod(EquivalenceClassOfElement, "for right magma congruence with checking", true,
[IsRightMagmaCongruence, IsObject], 0,
function(rel, rep)
if not rep in UnderlyingDomainOfBinaryRelation(rel) then
Error("Representative must lie in underlying set of the relation");
fi;
return EquivalenceClassOfElementNC(rel, rep);
end);
#############################################################################
##
#M ImagesElm( <rel>, <elm> ) . . . for a magma congruence
## assume we can compute the partition
##
InstallMethod( ImagesElm,
"for magma congruence and element",
FamSourceEqFamElm,
[ IsMagmaCongruence, IsObject ], 0,
function( rel, elm )
return Set(Enumerator(EquivalenceClassOfElement(rel,elm)));
end);
#############################################################################
##
#M ImagesElm( <rel>, <elm> ) . . . for a left magma congruence
## assume we can compute the partition
##
InstallMethod( ImagesElm,
"for magma congruence and element",
FamSourceEqFamElm,
[ IsLeftMagmaCongruence, IsObject ], 0,
function( rel, elm )
return Set(Enumerator(EquivalenceClassOfElement(rel,elm)));
end);
#############################################################################
##
#M ImagesElm( <rel>, <elm> ) . . . for a right magma congruence
## assume we can compute the partition
##
InstallMethod( ImagesElm,
"for magma congruence and element",
FamSourceEqFamElm,
[ IsRightMagmaCongruence, IsObject ], 0,
function( rel, elm )
return Set(Enumerator(EquivalenceClassOfElement(rel,elm)));
end);
#############################################################################
##
#E
|