This file is indexed.

/usr/share/gap/lib/mgmcong.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
#############################################################################
##
#W  mgmcong.gi              GAP library                       Robert F. Morse
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains generic methods for magma congruences
##
##  Maintenance and further development by:
##  Robert F. Morse
##  Andrew Solomon
##
##


#############################################################################
##
#M  PrintObj( <S> )
##  print a [left, right, two-sided] Magma Congruence
##

##  left magma congruence

InstallMethod( PrintObj,
    "for a left magma congruence",
    true,
    [ IsLeftMagmaCongruence ], 0,
    function( S )
        Print( "LeftMagmaCongruence( ... )" );
    end );

InstallMethod( PrintObj,
    "for a left magma congruence with known generating pairs",
    true,
    [ IsLeftMagmaCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
    function( S )
        Print( "LeftMagmaCongruence( ", 
               GeneratingPairsOfMagmaCongruence( S ), " )" );
    end );

##  right magma congruence

InstallMethod( PrintObj,
    "for a right magma congruence",
    true,
    [ IsRightMagmaCongruence ], 0,
    function( S )
        Print( "RightMagmaCongruence( ... )" );
    end );

InstallMethod( PrintObj,
    "for a right magma congruence with known generating pairs",
    true,
    [ IsRightMagmaCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
    function( S )
        Print( "RightMagmaCongruence( ", 
               GeneratingPairsOfMagmaCongruence( S ), " )" );
    end );


##  two sided magma congruence

InstallMethod( PrintObj,
    "for a magma congruence",
    true,
    [ IsMagmaCongruence ], 0,
    function( S )
        Print( "MagmaCongruence( ... )" );
    end );

InstallMethod( PrintObj,
    "for a magma Congruence with known generating pairs",
    true,
    [ IsMagmaCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
    function( S )
        Print( "MagmaCongruence( ", 
                GeneratingPairsOfMagmaCongruence( S ), " )" );
    end );

#############################################################################
##
#M  ViewObj( <S> )  
##	view a [left,right,two-sided] magma congruence
##

##  left magma congruence

InstallMethod( ViewObj,
    "for a LeftMagmaCongruence",
    true,
    [ IsLeftMagmaCongruence ], 0,
    function( S )
        Print( "<LeftMagmaCongruence>" );
    end );

InstallMethod( ViewObj,
    "for a LeftMagmaCongruence with known generating pairs",
    true,
    [ IsLeftMagmaCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
    function( S )
        Print( "<LeftMagmaCongruence with ", 
               Length( GeneratingPairsOfMagmaCongruence( S ) ), 
               " generating pairs>" );
    end );

##  right magma congruence

InstallMethod( ViewObj,
    "for a RightMagmaCongruence",
    true,
    [ IsRightMagmaCongruence ], 0,
    function( S )
        Print( "<RightMagmaCongruence>" );
    end );

InstallMethod( ViewObj,
    "for a RightMagmaCongruence with generators",
    true,
    [ IsRightMagmaCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
    function( S )
        Print( "<RightMagmaCongruence with ", 
               Length( GeneratingPairsOfMagmaCongruence( S ) ), 
               " generating pairs>" );
    end );

## two sided magma congruence

InstallMethod( ViewObj,
    "for a magma congruence",
    true,
    [ IsMagmaCongruence ], 0,
    function( S )
        Print( "<MagmaCongruence>" );
    end );

InstallMethod( ViewObj,
    "for a magma congruence with generating pairs",
    true,
    [ IsMagmaCongruence and HasGeneratingPairsOfMagmaCongruence ], 0,
    function( S )
        Print( "<MagmaCongruence with ", 
               Length( GeneratingPairsOfMagmaCongruence( S ) ), 
               " generating pairs>" );
    end );

#############################################################################
##
#M  LR2MagmaCongruenceByGeneratingPairsCAT(<F>,<rels>,<category>) 
##
##  create the magma congruence with generating pairs <rels> as
##  a <category> where <category> is IsLeftMagmaCongruence, 
##  IsRightMagmaCongruence or IsMagmaCongruence.
##
InstallGlobalFunction( LR2MagmaCongruenceByGeneratingPairsCAT, 
function(F, gens, category )

    local r, cong, fam;

    # Check that the relations are all lists of length 2
    for r in gens do
        if Length(r) <> 2 then
            Error("A relation should be a list of length 2");
        fi;
    od;

    # Create the equivalence relation
    fam := GeneralMappingsFamily( ElementsFamily(FamilyObj(F)),
               ElementsFamily(FamilyObj(F)) );
    
    # Create the default type for the elements.
    cong := Objectify(NewType(fam, 
                category and IsEquivalenceRelationDefaultRep), rec());
    SetSource(cong, F);
    SetRange(cong, F);

    # Add the generators in the appropriate attribute
    #    They are all set in a common place with special names
    #    as needed
    if (category = IsMagmaCongruence) then 
        SetGeneratingPairsOfMagmaCongruence(cong, Immutable(gens));
    elif (category = IsLeftMagmaCongruence) then  
        SetGeneratingPairsOfLeftMagmaCongruence(cong, Immutable(gens)); 
        SetGeneratingPairsOfMagmaCongruence(cong, Immutable(gens)); 
    elif (category = IsRightMagmaCongruence) then 
        SetGeneratingPairsOfMagmaCongruence(cong, Immutable(gens)); 
        SetGeneratingPairsOfRightMagmaCongruence(cong, Immutable(gens)); 
    else
        Error("Invalid category ",category," of Magma congruence");
    fi;
    return cong;
end);


#############################################################################
##
#M  LR2MagmaCongruenceByPartitionNCCAT(<F>,<part>,<category>) 
##
##  create the magma congruence with partition <part> as
##  a <category> where <category> is IsLeftMagmaCongruence, 
##  IsRightMagmaCongruence or IsMagmaCongruence.
##
##  <part> is a list of lists containing (at least) all of the non singleton
##  blocks of the partition.  It is not checked that <part> is actually 
##  a congruence in the category specified.
##
InstallGlobalFunction( LR2MagmaCongruenceByPartitionNCCAT, 
function(F, part, cat)

    local cong, fam;

    # The only cheap check we can do:
    if not IsElmsColls(FamilyObj(F), FamilyObj(part)) then
        Error("<part> should be a list of lists of elements of the magma");
    fi;


    # Create the equivalence relation
    fam :=  GeneralMappingsFamily( ElementsFamily(FamilyObj(F)),
                ElementsFamily(FamilyObj(F)) );
    
    # Create the default type for the elements.
    cong :=  Objectify(NewType(fam, 
                 cat and IsEquivalenceRelationDefaultRep), rec());
    SetSource(cong, F);
    SetRange(cong, F);
    SetEquivalenceRelationPartition(cong, part);


    return cong;
end);

#############################################################################
##
#M  LeftMagmaCongruenceByGeneratingPairs( <D>, <gens> )
#M  RightMagmaCongruenceByGeneratingPairs( <D>, <gens> )
#M  MagmaCongruenceByGeneratingPairs( <D>, <gens> )
##
InstallMethod( LeftMagmaCongruenceByGeneratingPairs,
    "for a magma and a list of pairs of its elements",
    IsElmsColls,
    [ IsMagma, IsList ], 0,
    function( M, gens )
        return LR2MagmaCongruenceByGeneratingPairsCAT(M, gens, 
                   IsLeftMagmaCongruence);
    end );

InstallMethod( LeftMagmaCongruenceByGeneratingPairs,
    "for a magma and an empty list",
    true,
    [ IsMagma, IsList and IsEmpty ], 0,
    function( M, gens )
        return LR2MagmaCongruenceByGeneratingPairsCAT(M, gens, 
                   IsLeftMagmaCongruence);
    end );

InstallMethod( RightMagmaCongruenceByGeneratingPairs,
    "for a magma and a list of pairs of its elements",
    IsElmsColls,
    [ IsMagma, IsList ], 0,
    function( M, gens )
        return LR2MagmaCongruenceByGeneratingPairsCAT(M, gens, 
               IsRightMagmaCongruence);
    end );

InstallMethod( RightMagmaCongruenceByGeneratingPairs,
    "for a magma and an empty list",
    true,
    [ IsMagma, IsList and IsEmpty ], 0,
    function( M, gens )
        return LR2MagmaCongruenceByGeneratingPairsCAT(M, gens, 
                   IsRightMagmaCongruence);
    end );

InstallMethod( MagmaCongruenceByGeneratingPairs,
    "for a magma and a list of pairs of its elements",
    IsElmsColls,
    [ IsMagma, IsList ], 0,
    function( M, gens )
				local c;
				

        c :=  LR2MagmaCongruenceByGeneratingPairsCAT(M, gens, 
                   IsMagmaCongruence);

				if HasIsSemigroup(M) and IsSemigroup(M) then
					SetIsSemigroupCongruence(c,true);
				fi;

				return c;
    end );


InstallMethod( MagmaCongruenceByGeneratingPairs,
    "for a magma and an empty list",
    true,
    [ IsMagma, IsList and IsEmpty ], 0,
    function( M, gens )
				local c;

        c :=  LR2MagmaCongruenceByGeneratingPairsCAT(M, gens, 
                   IsMagmaCongruence);

				if HasIsSemigroup(M) and IsSemigroup(M) then
					SetIsSemigroupCongruence(c,true);
				fi;

				return c;
    end );

#############################################################################
##
#M  EquivalenceClasses( <E> )
##
##  For a MagmaCongruence 
##
InstallMethod(EquivalenceClasses,
    "for magma congruences", true, [IsMagmaCongruence], 0,
    function(e)
        local part,         # the partition of the equivalence relation
              distinctreps; # the reprentatives of distinct non-trivial
                            # congruence classes

        part := EquivalenceRelationPartition(e);
        distinctreps := List(part,x->x[1]);
        return List(distinctreps, x->EquivalenceClassOfElementNC(e, x));
    end);

#############################################################################
##
#M  \*( <x1>, <x2> )
##
##  Product of congruence classes. As in fp-semigroups we just
##  multiply without worrying about getting the representative right.
##  Then we check equality when doing < or =.
##
InstallMethod( \*,
    "for two magma congruence classes",
    IsIdenticalObj,
    [ IsCongruenceClass, IsCongruenceClass ],
    0,
    
    function( x1, x2 )
        if EquivalenceClassRelation(x1) <> EquivalenceClassRelation(x2) then
            Error("Can only multiply classes of the same congruence");
        fi;
        return EquivalenceClassOfElementNC(EquivalenceClassRelation(x1),
                   Representative(x1)*Representative(x2));
    end );

############################################################################
##
#M  One(<congruence class>)
##
##  It is installed as 
##  OtherMethod to appease GAP since the selection filters
##  IsCongruenceClass and IsMultiplicativeElementWithOne
##  match two declarations of One - the first filter for domains,
##  the second filter for IsMultiplicativeElementWithOne.
##
InstallOtherMethod(One,
"One(<congruence class>)", true,
[IsCongruenceClass and IsMultiplicativeElementWithOne], 0,
    function(x)
        return EquivalenceClassOfElement(EquivalenceClassRelation(x),
                   One(Representative(x)));
    end);

######################################################################
##
#F  MagmaCongruencePartition(<cong>,<partialcond>)
##
##  This function sets one of the two attributes 
##
##       EquivalenceRelationPartition
##       PartialClosureOfCongruence
##
##  depending on whether full closure is found or partial closure is
##  found. Both of these attributes are partitions of the magma's 
##  elements. If a previously computed PartialClosureOfCongruence satisfies
##  the <partialcond> no computations are performed.
##
##  A left magma congruence, right magma congruence, and magma congruence
##  is the smallest equivalence relation containing the generating pairs
##  closed under the operations of left multiplication, right 
##  multiplication or both respectively.
##
##  If the magma is infinite (or very large) it may not be possible to compute 
##  the entire partition. <partialcond> allows for a stop condition (possibly) 
##  short of full closure. The function <partialcond> takes two parameters 
##  (congruence, forest). Other variables that might be needed by <partialcond> 
##  should be assigned to globals variables before MagmaCongruencePartition is 
##  called. 
##
##  A PartialClosureOfCongruence reflects a partial computation that can be used
##  in subsequent computations. Hence it is a mutable attribute.
##
##  A partial closure is also provided if either one block or the number of 
##  blocks exceeds 64,000 in length. The partial closure attribute is stored for 
##  the user to inspect.
##
##  This algorithm is based on Atkinson et. al. (Group Theory on a 
##  Microcomputer, in Computational Group Theory, 1984).
##
##  Non-trivial blocks are considered trees and the block system a forest
##
##  Data representation: 
##     o Forest is a list of non-empty lists with no holes. 
##     o Each list in the forest represents a non-empty tree of depth 1 
##       with root the first element (hence it has at least 2 elements).
##  
##     If follows from the data representations that full path compression 
##     is used.
##
##     The merging of blocks can only be done via list Append.
##     This insures that the root of the left tree being merged does not change 
##     and hence is an invariant. 
##
######################################################################
BindGlobal("MagmaCongruencePartition",
    function(cong,partialcond)
	
        local C,         #Initial branches (given pairs)
              forest,    #Forest in which each tree is a block
              i,p,g,j,   #index variables
              r1,r2,     #roots of possible blocks to merge
              p1,p2,     #positions of the blocks
              gens,      #Required generators (in generality all the elements
              maxlimit,  #Maximum size for either a partition or number of 
                         #    partition;
              checklimit,#Function for checking limit
              equivrel;  #Initial forest (if there is not partial closure)

        ## Set up limits on the size and number of partitions we can 
        ##    create a check function
        ##
        maxlimit := 64000;
        checklimit := function()
            if Length(forest) >= maxlimit then return true; fi;
            if First(forest, x->Length(x)>=maxlimit) <> fail then return true; fi;
            return false;
        end; 

        ## check that we know the generators ....
        ##
        if not HasGeneratingPairsOfMagmaCongruence(cong) then
            Error("MagmaCongruencePartition requires GeneratingPairsOfMagmaCongruence");
        fi;

        if not ((HasGeneratorsOfMagma(Source(cong)) or 
                HasGeneratorsOfMagmaWithInverses(Source(cong))) or 
               (HasIsFinite(Source(cong)) and IsFinite(Source(cong)) )) then
            Error("MagmaCongruencePartition requires generators for underlying semigroup or list of all elements");
        fi;
		
        ## does the partition already exist if so return done deal 
        ##
        if HasEquivalenceRelationPartition(cong) then 
            return;
        fi;

        ## check to see if we are to generate the trivial relation
        ## 
        ## Filter all pairs of the form (a,a).
        ##   if this filtered set is empty return the diagonal
        ##   equivalence
        ##
        C := List(Filtered(GeneratingPairsOfMagmaCongruence(cong),
                 x->not x[1]=x[2]), y->ShallowCopy(y));

        if IsEmpty(C) then 
            SetEquivalenceRelationPartition(cong,[]); 
            return;
        fi;
 
        C := Set(C);

        ## Set the forest either to the partial closure from a previous
        ##   call or find the smallest equivalence relation
        ##   containing the filtered generators
        ##
        if HasPartialClosureOfCongruence(cong) then
            forest := ShallowCopy(PartialClosureOfCongruence(cong));
            C := ShallowCopy(cong!.C);
        else
            equivrel := EquivalenceRelationPartition(
                            EquivalenceRelationByPairsNC(Source(cong),C));
            forest := List(equivrel, x->ShallowCopy(x));          
        fi;

        ## Check partial closure might be fulfilled by initial closure
        ## 
        if partialcond(cong,forest) then
            SetPartialClosureOfCongruence(cong,forest);
            cong!.C := ShallowCopy(C); 
            return;
        fi;

        ## Determine whether we can use generators or need
        ##     all the elements
        ##
        ## If the Magma is associative then use generators
        ##
        #T If the magam has a generating set but is not associative
        #T then use an iterator. One need to be implemented
        ##
        ## else use elements of the magma
        ##
        if HasGeneratorsOfMagmaWithInverses(Source(cong)) and
               HasIsAssociative(Source(cong)) and 
                   IsAssociative(Source(cong)) then
            gens := GeneratorsOfMagmaWithInverses(Source(cong));
        elif HasGeneratorsOfMagma(Source(cong)) and
                 HasIsAssociative(Source(cong)) and 
                     IsAssociative(Source(cong)) then
            gens := GeneratorsOfMagma(Source(cong));
        elif HasGeneratorsOfMagma(Source(cong)) and 
                 HasIsFinite(Source(cong)) and
                     IsFinite(Source(cong)) then
            gens := AsSSortedList(Source(cong));
        else
            gens := AsSSortedList(Source(cong));
        fi;

        ##
        ## Work through the branches in the forest above
        ##    determining the closure wrt left and right
        ##    translations following Atkinson et. al.
        ##
        repeat 

            p := C[1];
            RemoveSet(C,C[1]);

            for g in gens do

                p1 := Length(forest)+1;
                p2 := Length(forest)+1;

                if IsRightMagmaCongruence(cong) then
                    ##
                    ## Search the forest to see if each right translation
                    ##     is in one of the blocks (trees) in the forest
                    ##     Get out a soon as both are found 
                    ##
                    for i in [1..Length(forest)] do
                        if p1>Length(forest) and p[1]*g in forest[i] then
                            r1 := forest[i][1];
                            p1 := i;
                            if p2<=Length(forest) then break; fi;
                        fi; 
                        if p2>Length(forest) and p[2]*g in forest[i] then
                            r2 := forest[i][1];
                            p2 := i;
                            if p1<=Length(forest) then break; fi; 
                        fi; 
                    od;

                    ##
                    ## If the translation is not in any of the
                    ##     blocks already defined make the element
                    ##     a root to a potential block
                    ##
                    if p1=Length(forest)+1 then 
                        r1:=p[1]*g;
                    fi;
                    if p2=Length(forest)+1 then 
                        r2:=p[2]*g;
                    fi;
                    ## 
                    ## If the roots are different
                    ##     merge the blocks they represent
                    ##
                    if r1<>r2 then
                        ##
                        ## Merging of two existing blocks
                        ##     we must complete the Append and
                        ##     get rid of the one block without 
                        ##     leaving a hole
                        ##
                        if p1<=Length(forest) and p2<=Length(forest) and 
                               not p1=p2 then
                            Append(forest[p1],forest[p2]);
                            Unbind(forest[p2]);

                            ## No holes are left is at the end otherwise
                            ##    move the last one into the middle
                            if not p2=Length(forest) then 
                                forest[p2]:=forest[Length(forest)];
                                Unbind(forest[Length(forest)]);
                            fi;

                        ## Simple cases of merging a new element with
                        ##     an existing block
                        elif p1<=Length(forest) and not p2<=Length(forest) then
                            Add(forest[p1],r2);

                        elif p2<=Length(forest) and not p1<=Length(forest) then
                            Add(forest[p2],r1);

                        ## Add new non-trivial block made up of r1 and r2
                        else
                             Add(forest,[r1,r2]);
                        fi;

                        ## Add the new branch to C
                        AddSet(C,[r1,r2]);
                    fi;

                fi;

                if IsLeftMagmaCongruence(cong) then 

                    ##
                    ## Complete the left translations in an exact 
                    ##     manner as above
                    ##

                    p1 := Length(forest)+1;
                    p2 := Length(forest)+1;

                    for i in [1..Length(forest)] do
                        if p1>Length(forest) and g*p[1] in forest[i] then
                            r1 := forest[i][1];
                            p1 := i;
                            if p2<=Length(forest) then break; fi;
                        fi; 
                            if p2>Length(forest) and g*p[2] in forest[i] then
                            r2 := forest[i][1];
                            p2 := i;
                            if p1<=Length(forest) then break; fi; 
                        fi; 
                    od;

                    if p1=Length(forest)+1 then 
                        r1:=g*p[1];
                    fi;
 
                    if p2=Length(forest)+1 then 
                        r2:=g*p[2];
                    fi;
  
                    if r1<>r2 then
                        if p1<=Length(forest) and p2<=Length(forest) 
                               and not p1=p2 then
                            Append(forest[p1],forest[p2]);
                            Unbind(forest[p2]);
                            if not p2=Length(forest) then 
                                forest[p2]:=forest[Length(forest)];
                                Unbind(forest[Length(forest)]);
                            fi;
                        elif p1<=Length(forest) and not p2<=Length(forest) then
                            Add(forest[p1],r2);
                        elif p2<=Length(forest) and not p1<=Length(forest) then
                            Add(forest[p2],r1);
                        else
                            Add(forest,[r1,r2]);
                        fi;
                        AddSet(C,[r1,r2]);
                    fi;
                fi;
            od; 

            ## Exit conditions are:
            ##     full closure is complete
            ##     we have created a partition larger than our limit
            ##     partial closure condition is satisfied
            ##
        until IsEmpty(C) or checklimit() or partialcond(cong,forest);

        ## Set the equivalence partition if we have full closure
        ##
        if IsEmpty(C) then
            SetEquivalenceRelationPartition(cong,forest); 

        ## Set partial closure if partialcond is met or 
        ##   size limit has been reached
        ##
        elif partialcond(cong,forest) then
            SetPartialClosureOfCongruence(cong,forest);
            cong!.C := ShallowCopy(C); 
        elif checklimit() then
            Info(InfoWarning,1,
                "The congruence has either over 64,000 blocks or a \n",
                "#I block with over 64,000 elements. Hence only a\n",
                "#I a partial closure has been completed. You may view\n",
                "#I this partition using the 'PartialClosureOfCongruence'\n",
                "#I attribute"); 
            SetPartialClosureOfCongruence(cong,forest);
            cong!.C := ShallowCopy(C); 
        else 
            Error("error, internal error in mgmcong.gi");
        fi;
    end);

######################################################################
##
##  EquivalenceRelationPartition(<cong>)
##  Calculate the partition attribute of a left congruence
##
######################################################################

InstallMethod(EquivalenceRelationPartition,
    "for a left congruence on a magma",
    true,
    [IsLeftMagmaCongruence], 0,
    
    function(cong) # cong a congruence.
	
        # close the congruence with respect to left mult.
        MagmaCongruencePartition(cong,function(x,y) return false; end);           
        return EquivalenceRelationPartition(cong); 
 
    end);

######################################################################
##
##  EquivalenceRelationPartition(<cong>)
##  Calculate the partition attribute of a right congruence
##
######################################################################

InstallMethod(EquivalenceRelationPartition,
    "for a right congruence on a magma",
    true,
    [IsRightMagmaCongruence], 0,

    function(cong) # cong a congruence.

        # close the congruence with respect to right mult.
        MagmaCongruencePartition(cong,function(x,y) return false; end);           
        return EquivalenceRelationPartition(cong); 

    end);

######################################################################
##
##  EquivalenceRelationPartition(<cong>)
##  Calculate the partition attribute of a congruence
##
######################################################################

InstallMethod(EquivalenceRelationPartition,
    "for a congruence on a magma",
    true,
    [IsMagmaCongruence], 0,

    function(cong) # cong a congruence.

        # close the congruence with respect to left and right mult.
        MagmaCongruencePartition(cong,function(x,y) return false; end);           
        return EquivalenceRelationPartition(cong); 
 
    end);

#############################################################################
##
#M JoinMagmaCongruences(<cong1>,<cong2>)
##
## Find the transitive closure of equivalence relations represented by
##    cong1 and cong2
##
InstallMethod(JoinMagmaCongruences, 
    "for magma congruences", true,
    [IsMagmaCongruence, IsMagmaCongruence],0,

    function(c1,c2)
        local 
            er,      # Join is equivalence relations
            cong;    # Join congruence

        # Check to see that the both congruences have the same
        #     parent magma 
        #
        if Source(c1)<>Source(c2) then
            Error("usage: the source of <cong1> and <cong2> must be the same");
        fi;

        # Find the join of the two congruences ar equivalence relations
        #
        er := JoinEquivalenceRelations(c1,c2); 

        # Create the congruence and set the partition to that of
        #     of er
        #
        cong := LR2MagmaCongruenceByGeneratingPairsCAT(Source(c1), 
            Union(GeneratingPairsOfMagmaCongruence(c1),
                      GeneratingPairsOfMagmaCongruence(c2)),
            IsMagmaCongruence);
       
        cong!.EquivalenceRelationPartition := EquivalenceRelationPartition(er);
        
        if HasIsAssociative(Source(c1)) and IsAssociative(Source(c1)) then
            SetIsSemigroupCongruence(cong,true);
        fi;
        return cong;
    end);  

#############################################################################
##
#M MeetMagmaCongruences(<cong1>,<cong2>)
##
## Find the meet of the equivalence relations represented by
##    cong1 and cong2
##
InstallMethod(MeetMagmaCongruences,
    "for magma congruences", true,
    [IsMagmaCongruence, IsMagmaCongruence],0,

    function(c1,c2)
        local 
            er,      # Meet os equivalence relations
            cong;    # Meet congruence

        # Check to see that the both congruences have the same
        #     parent magma 
        #
        if Source(c1)<>Source(c2) then
            Error("The source of <cong1> and <cong2> must be the same");
        fi;

        # Find the meet of the two congruences as equivalence relations
        #
        er := MeetEquivalenceRelations(c1,c2); 

        # Create the congruence and set the partition to that of
        #     of er
        #
        cong := LR2MagmaCongruenceByGeneratingPairsCAT(Source(c1), 
            Intersection(GeneratingPairsOfMagmaCongruence(c1),
                      GeneratingPairsOfMagmaCongruence(c2)),
            IsMagmaCongruence);
       
        cong!.EquivalenceRelationPartition := EquivalenceRelationPartition(er);
        
        if HasIsAssociative(Source(c1)) and IsAssociative(Source(c1)) then
            SetIsSemigroupCongruence(cong,true);
        fi;

        return cong;
    end);

#############################################################################
##
#M  \in( <x>, <C> )
##
##  Checks whether <x> is contained in the magma congruence class <C>
##  If <C> is infinite, this will not necessarily terminate.
##
InstallMethod( \in, "for a magma congruence class", true,
     [IsObject, IsCongruenceClass], 0, 

     function(x, C)
         local
             partialclosure,           #Partial closure
             part,                     #Partition
             rep,           
             rel, 
             class,
             GLOBAL_SEARCH_ELEMENT,
             GLOBAL_REP;

         # first ensure that <x> is in the right family
         if FamilyObj(x) <>
             ElementsFamily(FamilyObj(Source(EquivalenceClassRelation(C)))) then
             Error("incompatible arguments for \in");
         fi;

         # quick check to see if element is representative
         if x=Representative(C) then return true; fi;

         ## If the partition has been computed let the equivalence relation 
         ## method deal with it
         if HasEquivalenceRelationPartition(EquivalenceClassRelation(C)) then
             TryNextMethod();
         fi;

         ## We have partial closure see if this is enough
         ##
         if HasPartialClosureOfCongruence(EquivalenceClassRelation(C)) then
             part := PartialClosureOfCongruence(EquivalenceClassRelation(C));
             rep := Representative(C); 
             class := First(part,y->rep in y);
         
             # the partial closure has the elements in the same class
             #    return true
             if class <> fail and x in class then 
                 return true;
             fi; 
         fi;

         ## Need to see if a partial closure can give an answer
         ##     NOT possible to give a negative solution if the number
         ##     of blocks or the size of a block is infinite
         ##
         GLOBAL_REP := Representative(C); 
         GLOBAL_SEARCH_ELEMENT := x;
         rel := EquivalenceClassRelation(C);            

         ## These global variables are constant and used 
         ##     in the following partial closure test:
         ##     stop when the search element is found in 
         ##     a block with the class's representative
         ##
         partialclosure := 
             function(cong, forest)
                 local block;
                 block := First(forest,y-> GLOBAL_SEARCH_ELEMENT in y);
                 if block=fail then return false; fi;
                 return  GLOBAL_REP in block;
             end;
         MagmaCongruencePartition(rel, partialclosure);

         ## We might have gotten a full closure from this call if so
         ##     delegate the next method to determine if we have 
         ##     the element in the class
         ## Otherwise the partial condition must have been satisfied 
         ##    return true
         ##
         if HasEquivalenceRelationPartition(rel) then
             TryNextMethod();
         else
             return true;
         fi;
     end);

#############################################################################
##
#M  Enumerator( <C> )
##
##	Enumerator for a magma congruence class.
##
InstallMethod( Enumerator, "for a magma congruence class", true,
    [IsCongruenceClass], 0,

    function(class)
	local   cong;  # the congruence of which class is a class

        cong := EquivalenceClassRelation(class);

        ## if the partition is already known, just go through the 
        ## generic equivalence class method else compute the partition
        ## then get lazy and call generic equivalence
        ##
        if HasEquivalenceRelationPartition(EquivalenceClassRelation(class)) then
            TryNextMethod();
        else
            MagmaCongruencePartition(cong,function(x,y) return false; end);           
            TryNextMethod();
        fi;

    end);

#############################################################################
##
#M      EquivalenceClassOfElement( <C>, <rep> )
#M      EquivalenceClassOfElementNC( <C>, <rep> )
##
##      Returns the equivalence class of an element <rep> with respect to a
##      magma congrucene <C>.   No calculation is performed at this stage.
##      We do not always wish to check that <rep> is in the underlying set
##      of <C>, since we may wish to use equivalence relations to perform
##      membership tests (for example when checking membership of a
##      transformation in a monoid, we use Greens relations and classes).
##
InstallMethod(EquivalenceClassOfElementNC, 
"for magma congruence with no check", 
[IsMagmaCongruence, IsObject],
function(rel, rep)
  local filts, new;

  filts:= IsCongruenceClass and IsEquivalenceClassDefaultRep;
  
  if IsMultiplicativeElementWithOne(rep) then 
    filts:=filts and IsMultiplicativeElementWithOne;
  else
    filts:=filts and IsMultiplicativeElement;
  fi;

  if IsAssociativeElement(rep) then 
    filts:=filts and IsAssociativeElement;
  fi;

  new:= Objectify(NewType(CollectionsFamily(FamilyObj(rep)), filts), rec());

  SetEquivalenceClassRelation(new, rel);
  SetRepresentative(new, rep);
  SetParent(new, UnderlyingDomainOfBinaryRelation(rel));
  return new;
end);

InstallMethod(EquivalenceClassOfElementNC, 
        "for magma congruence with no check", true,
        [IsLeftMagmaCongruence, IsObject], 0,
function(rel, rep)
    local new;

    if IsMultiplicativeElementWithOne(rep) then
         new:= Objectify(NewType(CollectionsFamily(FamilyObj(rep)),
                   IsCongruenceClass and IsEquivalenceClassDefaultRep 
                   and IsMultiplicativeElementWithOne), rec());
    else
         new:= Objectify(NewType(CollectionsFamily(FamilyObj(rep)),
                   IsCongruenceClass and IsEquivalenceClassDefaultRep 
                   and IsMultiplicativeElement), rec());
    fi;

    SetEquivalenceClassRelation(new, rel);
    SetRepresentative(new, rep);
    SetParent(new, UnderlyingDomainOfBinaryRelation(rel));
    return new;
end);

InstallMethod(EquivalenceClassOfElementNC, 
    "for magma congruence with no check", true,
    [IsRightMagmaCongruence, IsObject], 0,
    function(rel, rep)
        local new;

        if IsMultiplicativeElementWithOne(rep) then
             new:= Objectify(NewType(CollectionsFamily(FamilyObj(rep)),
                       IsCongruenceClass and IsEquivalenceClassDefaultRep 
                       and IsMultiplicativeElementWithOne), rec());
        else
             new:= Objectify(NewType(CollectionsFamily(FamilyObj(rep)),
                       IsCongruenceClass and IsEquivalenceClassDefaultRep 
                       and IsMultiplicativeElement), rec());
        fi;

        SetEquivalenceClassRelation(new, rel);
        SetRepresentative(new, rep);
        SetParent(new, UnderlyingDomainOfBinaryRelation(rel));
        return new;
    end);

InstallMethod(EquivalenceClassOfElement, "for magma congruence with checking", true,
    [IsMagmaCongruence, IsObject], 0,
    function(rel, rep)

        if not rep in UnderlyingDomainOfBinaryRelation(rel) then
            Error("Representative must lie in underlying set of the relation");
        fi;

        return EquivalenceClassOfElementNC(rel, rep);
    end);

InstallMethod(EquivalenceClassOfElement, "for left magma congruence with checking", true,
    [IsLeftMagmaCongruence, IsObject], 0,
    function(rel, rep)

        if not rep in UnderlyingDomainOfBinaryRelation(rel) then
            Error("Representative must lie in underlying set of the relation");
        fi;

        return EquivalenceClassOfElementNC(rel, rep);
    end);

InstallMethod(EquivalenceClassOfElement, "for right magma congruence with checking", true,
    [IsRightMagmaCongruence, IsObject], 0,
    function(rel, rep)

        if not rep in UnderlyingDomainOfBinaryRelation(rel) then
            Error("Representative must lie in underlying set of the relation");
        fi;

        return EquivalenceClassOfElementNC(rel, rep);
    end);

#############################################################################
##
#M  ImagesElm( <rel>, <elm> )  . . . for a  magma congruence
##  																	assume we can compute the partition
##
InstallMethod( ImagesElm,
    "for magma congruence and element",
    FamSourceEqFamElm,
    [ IsMagmaCongruence, IsObject ], 0,
    function( rel, elm )
        return Set(Enumerator(EquivalenceClassOfElement(rel,elm)));
    end);

#############################################################################
##
#M  ImagesElm( <rel>, <elm> )  . . . for a left magma congruence
##  																	assume we can compute the partition
##
InstallMethod( ImagesElm,
    "for magma congruence and element",
    FamSourceEqFamElm,
    [ IsLeftMagmaCongruence, IsObject ], 0,
    function( rel, elm )
        return Set(Enumerator(EquivalenceClassOfElement(rel,elm)));
    end);

#############################################################################
##
#M  ImagesElm( <rel>, <elm> )  . . . for a  right magma congruence
##  																	assume we can compute the partition
##
InstallMethod( ImagesElm,
    "for magma congruence and element",
    FamSourceEqFamElm,
    [ IsRightMagmaCongruence, IsObject ], 0,
    function( rel, elm )
        return Set(Enumerator(EquivalenceClassOfElement(rel,elm)));
    end);

#############################################################################
##
#E