/usr/share/gap/lib/mgmfree.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 | #############################################################################
##
#W mgmfree.gi GAP library Thomas Breuer
#W & Frank Celler
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for free magmas and free magma-with-ones.
##
## Element objects of free magmas are nonassociative words.
## For the external representation of elements, see the file `word.gi'.
##
## (Note that a free semigroup is not a free magma, so we must not deal
## with objects in `IsWord' here but with objects in `IsNonassocWord'.)
##
#############################################################################
##
#M IsWholeFamily( <M> ) . . . . . . . . . is a free magma the whole family
##
## <M> contains the whole family of its elements if and only if all
## magma generators of the family are among the magma generators of <M>.
##
InstallMethod( IsWholeFamily,
"for a free magma",
[ IsMagma and IsNonassocWordCollection ],
M -> IsSubset( MagmaGeneratorsOfFamily( ElementsFamily( FamilyObj(M) ) ),
GeneratorsOfMagma( M ) ) );
#############################################################################
##
#T Iterator( <M> ) . . . . . . . . . . . . . . . . iterator for a free magma
##
#############################################################################
##
#M Enumerator( <M> ) . . . . . . . . . . . . . . enumerator for a free magma
##
## Let <M> be a free magma on $N$ generators $x_1, x_2, \ldots, x_N$, say.
## Each element in <M> is uniquely determined by an element in a free
## semigroup $S$ over $s_1, s_2, \ldots, s_N$ (which is obtained by mapping
## $x_i$ to $s_i$) plus the ``bracketing of the element.
## Thus we can describe each element $x$ in <M> by a quadruple $[N,l,p,q]$
## where $l$ is the length of the corresponding associative word $s$, say,
## $p$ is the position of $s$ among the associative words of length $l$ in
## $S$ (so $0 \leq p < N^l$),
## and $q$ is the position of the bracketing of $x$
## (so $0 \leq q < C(l-1)$),
## where the ordering of these bracketings is defined below,
## and $C(n) = {2n \choose n} / (n+1)$ is the $n$-th *Catalan number*.
## See the On-Line Encyclopedia of Integer Sequences for more on Catalan
## numbers.
## Here we use the identity
## $C(l-1) = \sum_{i=1}^{l-2} C(i-1) \cdot C(l-i-1)$
## to define the ordering of bracketings recursively:
## The product of a word of length $k$ with one of length $l-k$ comes
## before the product of a word of length $k'$ with one of length $l-k'$
## if $k' < k$ or if $k = k'$ and either the bracketing of the first factor
## in the first word comes before that of the first factor in the second
## or they are equal and the bracketing of the second factor in the first
## word comes before that of the second factor in the second.
##
## We set $x = w([N,l,p,q])$ and assign the position
## $\sum_{i=1}^{l-1} N^i \cdot C(i-1) + p \cdot C(l-1) + q + 1$ to it.
## If $x_1 = w([N, l_1, p_1, q_1])$ and $x_2 = w([N, l_2, p_2, q_2])$ then
## $x_1 x_2 = w([N, l_1 + l_2, p_1 + N^{l_1} \cdot (p_2-1),
## \sum_{i=1}^{l_1-1} C(i-1) \cdot C(l_1+l_2-i-1)
## + (q_1-1) \cdot C(l_2-1) + q_2])$
## holds.
## Conversely, the word at position $M$ is $w([N,l,p,q])$ where $l$ is given
## by the relation
## $\sum_{i=1}^{l-1} N^i \cdot C(i-1) < M
## \leq \sum_{i=1}^l N^i \cdot C(i-1)$;
## if we set $M' = M - \sum_{i=1}^{l-1} N^i \cdot C(i-1)$ then
## $q = (M'-1) \bmod C(l-1)$ and $p = (M'-q-1 ) / C(l-1)$.
##
BindGlobal( "SHIFTED_CATALAN", [ 1 ] );
BindGlobal( "ShiftedCatalan", function( n )
if not IsBound( SHIFTED_CATALAN[n] ) then
SHIFTED_CATALAN[n]:= Binomial( 2*n-2, n-1 ) / n;
fi;
return SHIFTED_CATALAN[n];
end );
BindGlobal( "ElementNumber_FreeMagma", function( enum, nr )
local WordFromInfo, n, l, summand, NB, q, p;
# Create the external representation (recursively).
WordFromInfo:= function( N, l, p, q )
local k, NB, summand, Nk, p1, p2, q1, q2;;
if l = 1 then
return p + 1;
fi;
k:= 0;
while 0 <= q do
k:= k+1;
NB:= ShiftedCatalan( l-k );
summand:= ShiftedCatalan( k ) * NB;
q:= q - summand;
od;
q:= q + summand;
Nk:= N^k;
p1:= p mod Nk;
p2:= ( p - p1 ) / Nk;
q2:= q mod NB;
q1:= ( q - q2 ) / NB;
return [ WordFromInfo( N, k, p1, q1 ),
WordFromInfo( N, l-k, p2, q2 ) ];
end;
n:= enum!.nrgenerators;
l:= 0;
nr:= nr - 1;
while 0 <= nr do
l:= l+1;
NB:= ShiftedCatalan( l );
summand:= n^l * NB;
nr:= nr - summand;
od;
nr:= nr + summand;
q:= nr mod NB;
p:= ( nr - q ) / NB;
return ObjByExtRep( enum!.family, WordFromInfo( n, l, p, q ) );
end );
BindGlobal( "NumberElement_FreeMagma", function( enum, elm )
local WordInfo, n, info, pos, i;
if not IsCollsElms( FamilyObj( enum ), FamilyObj( elm ) ) then
return fail;
fi;
# Analyze the structure (recursively).
WordInfo:= function( ngens, obj )
local info1, info2, N;
if IsInt( obj ) then
return [ ngens, 1, obj-1, 0 ];
else
info1:= WordInfo( ngens, obj[1] );
info2:= WordInfo( ngens, obj[2] );
N:= info1[2] + info2[2];
return [ ngens, N,
info1[3]+ ngens^info1[2] * info2[3],
Sum( List( [ 1 .. info1[2]-1 ],
i -> ShiftedCatalan( i ) * ShiftedCatalan( N-i ) ), 0 )
+ info1[4] * ShiftedCatalan( info2[2] ) + info2[4] ];
fi;
end;
# Calculate the length, the number of the corresponding assoc. word,
# and the number of the bracketing.
n:= enum!.nrgenerators;
info:= WordInfo( n, ExtRepOfObj( elm ) );
# Compute the position.
pos:= 0;
for i in [ 1 .. info[2]-1 ] do
pos:= pos + n^i * ShiftedCatalan( i );
od;
return pos + info[3] * ShiftedCatalan( info[2] ) + info[4] + 1;
end );
InstallMethod( Enumerator,
"for a free magma",
[ IsWordCollection and IsWholeFamily and IsMagma ],
function( M )
# A free associative structure needs another method.
if IsAssocWordCollection( M ) then
TryNextMethod();
fi;
return EnumeratorByFunctions( M, rec(
ElementNumber := ElementNumber_FreeMagma,
NumberElement := NumberElement_FreeMagma,
family := ElementsFamily( FamilyObj( M ) ),
nrgenerators := Length( ElementsFamily(
FamilyObj( M ) )!.names ) ) );
end );
#############################################################################
##
#M IsFinite( <M> ) . . . . . . . . . . . . . for a magma of nonassoc. words
##
InstallMethod( IsFinite,
"for a magma of nonassoc. words",
[ IsMagma and IsNonassocWordCollection ],
IsTrivial );
#############################################################################
##
#M IsAssociative( <M> ) . . . . . . . . . . for a magma of nonassoc. words
##
InstallMethod( IsAssociative,
"for a magma of nonassoc. words",
[ IsMagma and IsNonassocWordCollection ],
IsTrivial );
#############################################################################
##
#M Size( <M> ) . . . . . . . . . . . . . . . . . . . . size of a free magma
##
InstallMethod( Size,
"for a free magma",
[ IsMagma and IsNonassocWordCollection ],
function( M )
if IsTrivial( M ) then
return 1;
else
return infinity;
fi;
end );
#############################################################################
##
#M Random( <S> ) . . . . . . . . . . . . . . random element of a free magma
##
#T use better method for the whole family
##
InstallMethod( Random,
"for a free magma",
[ IsMagma and IsNonassocWordCollection ],
function( M )
local len, result, gens, i;
# Get a random length for the word.
len:= Random( Integers );
if 0 <= len then
len:= 2 * len;
else
len:= -2 * len - 1;
fi;
# Multiply $'len' + 1$ random generators.
gens:= GeneratorsOfMagma( M );
result:= Random( gens );
for i in [ 1 .. len ] do
if Random( [ 0, 1 ] ) = 0 then
result:= result * Random( gens );
else
result:= Random( gens ) * result;
fi;
od;
# Return the result.
return result;
end );
#############################################################################
##
#M MagmaGeneratorsOfFamily( <F> ) . . . . for family of free magma elements
##
InstallMethod( MagmaGeneratorsOfFamily,
"for a family of free magma elements",
[ IsNonassocWordFamily ],
F -> List( [ 1 .. Length( F!.names ) ], i -> ObjByExtRep( F, i ) ) );
#############################################################################
##
#F FreeMagma( <rank> )
#F FreeMagma( <rank>, <name> )
#F FreeMagma( <name1>, <name2>, ... )
#F FreeMagma( <names> )
#F FreeMagma( infinity, <name>, <init> )
##
InstallGlobalFunction( FreeMagma,
function( arg )
local names, # list of generators names
F, # family of free magma element objects
M; # free magma, result
# Get and check the argument list, and construct names if necessary.
if Length( arg ) = 1 and arg[1] = infinity then
names:= InfiniteListOfNames( "x" );
elif Length( arg ) = 2 and arg[1] = infinity then
names:= InfiniteListOfNames( arg[2] );
elif Length( arg ) = 3 and arg[1] = infinity then
names:= InfiniteListOfNames( arg[2], arg[3] );
elif Length( arg ) = 1 and IsInt( arg[1] ) and 0 < arg[1] then
names:= List( [ 1 .. arg[1] ],
i -> Concatenation( "x", String(i) ) );
MakeImmutable( names );
elif Length( arg ) = 2 and IsInt( arg[1] ) and 0 < arg[1] then
names:= List( [ 1 .. arg[1] ],
i -> Concatenation( arg[2], String(i) ) );
MakeImmutable( names );
elif 1 <= Length( arg ) and ForAll( arg, IsString ) then
names:= arg;
elif Length( arg ) = 1 and IsList( arg[1] )
and not IsEmpty( arg[1] )
and ForAll( arg[1], IsString ) then
names:= arg[1];
else
Error("usage: FreeMagma(<name1>,<name2>..),FreeMagma(<rank>)");
fi;
# Construct the family of element objects of our magma.
F:= NewFamily( "FreeMagmaElementsFamily", IsNonassocWord );
# Store the names and the default type.
F!.names:= names;
F!.defaultType:= NewType( F, IsNonassocWord and IsBracketRep );
# Make the magma.
if IsFinite( names ) then
M:= MagmaByGenerators( MagmaGeneratorsOfFamily( F ) );
else
M:= MagmaByGenerators( InfiniteListOfGenerators( F ) );
fi;
SetIsWholeFamily( M, true );
SetIsTrivial( M, false );
return M;
end );
#############################################################################
##
#F FreeMagmaWithOne( <rank> )
#F FreeMagmaWithOne( <rank>, <name> )
#F FreeMagmaWithOne( <name1>, <name2>, ... )
#F FreeMagmaWithOne( <names> )
#F FreeMagmaWithOne( infinity, <name>, <init> )
##
InstallGlobalFunction( FreeMagmaWithOne,
function( arg )
local names, # list of generators names
F, # family of free magma element objects
M; # free magma, result
# Get and check the argument list, and construct names if necessary.
if Length( arg ) = 1 and arg[1] = infinity then
names:= InfiniteListOfNames( "x" );
elif Length( arg ) = 2 and arg[1] = infinity then
names:= InfiniteListOfNames( arg[2] );
elif Length( arg ) = 3 and arg[1] = infinity then
names:= InfiniteListOfNames( arg[2], arg[3] );
elif Length( arg ) = 1 and IsInt( arg[1] ) and 0 < arg[1] then
names:= List( [ 1 .. arg[1] ],
i -> Concatenation( "x", String(i) ) );
MakeImmutable( names );
elif Length( arg ) = 2 and IsInt( arg[1] ) and 0 < arg[1] then
names:= List( [ 1 .. arg[1] ],
i -> Concatenation( arg[2], String(i) ) );
MakeImmutable( names );
elif 1 <= Length( arg ) and ForAll( arg, IsString ) then
names:= arg;
elif Length( arg ) = 1 and IsList( arg[1] )
and not IsEmpty( arg[1])
and ForAll( arg[1], IsString ) then
names:= arg[1];
else
Error( "usage: FreeMagmaWithOne(<name1>,<name2>..),",
"FreeMagmaWithOne(<rank>)" );
fi;
# Handle the trivial case.
if IsEmpty( names ) then
return FreeGroup( 0 );
fi;
# Construct the family of element objects of our magma-with-one.
F:= NewFamily( "FreeMagmaWithOneElementsFamily", IsNonassocWordWithOne );
# Store the names and the default type.
F!.names:= names;
F!.defaultType:= NewType( F, IsNonassocWordWithOne and IsBracketRep );
# Make the magma.
if IsFinite( names ) then
M:= MagmaWithOneByGenerators( MagmaGeneratorsOfFamily( F ) );
else
M:= MagmaWithOneByGenerators( InfiniteListOfGenerators( F ) );
fi;
SetIsWholeFamily( M, true );
SetIsTrivial( M, false );
return M;
end );
#############################################################################
##
#M ViewObj( <M> ) . . . . . . . . . . . . . . . . . . . . for a free magma
##
InstallMethod( ViewObj,
"for a free magma containing the whole family",
[ IsMagma and IsWordCollection and IsWholeFamily ],
function( M )
if GAPInfo.ViewLength * 10 < Length( GeneratorsOfMagma( M ) ) then
Print( "<free magma with ", Length( GeneratorsOfMagma( M ) ),
" generators>" );
else
Print( "<free magma on the generators ", GeneratorsOfMagma( M ), ">" );
fi;
end );
#############################################################################
##
#M ViewObj( <M> ) . . . . . . . . . . . . . . . . for a free magma-with-one
##
InstallMethod( ViewObj,
"for a free magma-with-one containing the whole family",
[ IsMagmaWithOne and IsWordCollection and IsWholeFamily ],
function( M )
if GAPInfo.ViewLength * 10 < Length( GeneratorsOfMagmaWithOne( M ) ) then
Print( "<free magma-with-one with ",
Length( GeneratorsOfMagmaWithOne( M ) ), " generators>" );
else
Print( "<free magma-with-one on the generators ",
GeneratorsOfMagmaWithOne( M ), ">" );
fi;
end );
#############################################################################
##
#M \.( <F>, <n> ) . . . . . . . . . . access to generators of a free magma
#M \.( <F>, <n> ) . . . . . . access to generators of a free magma-with-one
##
InstallAccessToGenerators( IsMagma and IsWordCollection and IsWholeFamily,
"free magma containing the whole family",
GeneratorsOfMagma );
InstallAccessToGenerators( IsMagmaWithOne and IsWordCollection
and IsWholeFamily,
"free magma-with-one containing the whole family",
GeneratorsOfMagmaWithOne );
#############################################################################
##
#E
|