This file is indexed.

/usr/share/gap/lib/mgmfree.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
#############################################################################
##
#W  mgmfree.gi                  GAP library                     Thomas Breuer
#W                                                             & Frank Celler
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the methods for free magmas and free magma-with-ones.
##
##  Element objects of free magmas are nonassociative words.
##  For the external representation of elements, see the file `word.gi'.
##
##  (Note that a free semigroup is not a free magma, so we must not deal
##  with objects in `IsWord' here but with objects in `IsNonassocWord'.)
##


#############################################################################
##
#M  IsWholeFamily( <M> )  . . . . . . . . .  is a free magma the whole family
##
##  <M> contains the whole family of its elements if and only if all
##  magma generators of the family are among the magma generators of <M>.
##
InstallMethod( IsWholeFamily,
    "for a free magma",
    [ IsMagma and IsNonassocWordCollection ],
    M -> IsSubset( MagmaGeneratorsOfFamily( ElementsFamily( FamilyObj(M) ) ),
                   GeneratorsOfMagma( M ) ) );


#############################################################################
##
#T  Iterator( <M> ) . . . . . . . . . . . . . . . . iterator for a free magma
##


#############################################################################
##
#M  Enumerator( <M> ) . . . . . . . . . . . . . . enumerator for a free magma
##
##  Let <M> be a free magma on $N$ generators $x_1, x_2, \ldots, x_N$, say.
##  Each element in <M> is uniquely determined by an element in a free
##  semigroup $S$ over $s_1, s_2, \ldots, s_N$ (which is obtained by mapping
##  $x_i$ to $s_i$) plus the ``bracketing of the element.
##  Thus we can describe each element $x$ in <M> by a quadruple $[N,l,p,q]$
##  where $l$ is the length of the corresponding associative word $s$, say,
##  $p$ is the position of $s$ among the associative words of length $l$ in
##  $S$ (so $0 \leq p < N^l$),
##  and $q$ is the position of the bracketing of $x$
##  (so $0 \leq q < C(l-1)$),
##  where the ordering of these bracketings is defined below,
##  and $C(n) = {2n \choose n} / (n+1)$ is the $n$-th *Catalan number*.
##  See the On-Line Encyclopedia of Integer Sequences for more on Catalan
##  numbers.
##  Here we use the identity
##  $C(l-1) = \sum_{i=1}^{l-2} C(i-1) \cdot C(l-i-1)$
##  to define the ordering of bracketings recursively:
##  The product of a word of length $k$ with one of length $l-k$ comes
##  before the product of a word of length $k'$ with one of length $l-k'$
##  if $k' < k$ or if $k = k'$ and either the bracketing of the first factor
##  in the first word comes before that of the first factor in the second
##  or they are equal and the bracketing of the second factor in the first
##  word comes before that of the second factor in the second.
##
##  We set $x = w([N,l,p,q])$ and assign the position
##  $\sum_{i=1}^{l-1} N^i \cdot C(i-1) + p \cdot C(l-1) + q + 1$ to it.
##  If $x_1 = w([N, l_1, p_1, q_1])$ and $x_2 = w([N, l_2, p_2, q_2])$ then
##  $x_1 x_2 = w([N, l_1 + l_2, p_1 + N^{l_1} \cdot (p_2-1),
##               \sum_{i=1}^{l_1-1} C(i-1) \cdot C(l_1+l_2-i-1)
##               + (q_1-1) \cdot C(l_2-1) + q_2])$
##  holds.
##  Conversely, the word at position $M$ is $w([N,l,p,q])$ where $l$ is given
##  by the relation
##  $\sum_{i=1}^{l-1} N^i \cdot C(i-1) < M
##      \leq \sum_{i=1}^l N^i \cdot C(i-1)$;
##  if we set $M' = M - \sum_{i=1}^{l-1} N^i \cdot C(i-1)$ then
##  $q = (M'-1) \bmod C(l-1)$ and $p = (M'-q-1 ) / C(l-1)$.
##  
BindGlobal( "SHIFTED_CATALAN", [ 1 ] );

BindGlobal( "ShiftedCatalan", function( n )
    if not IsBound( SHIFTED_CATALAN[n] ) then
      SHIFTED_CATALAN[n]:= Binomial( 2*n-2, n-1 ) / n;
    fi;
    return SHIFTED_CATALAN[n];
end );

BindGlobal( "ElementNumber_FreeMagma", function( enum, nr )
    local WordFromInfo, n, l, summand, NB, q, p;

    # Create the external representation (recursively).
    WordFromInfo:= function( N, l, p, q )
      local k, NB, summand, Nk, p1, p2, q1, q2;;

      if l = 1 then
        return p + 1;
      fi;

      k:= 0;
      while 0 <= q do
        k:= k+1;
        NB:= ShiftedCatalan( l-k );
        summand:= ShiftedCatalan( k ) * NB;
        q:= q - summand;
      od;
      q:= q + summand;

      Nk:= N^k;
      p1:= p mod Nk;
      p2:= ( p - p1 ) / Nk;

      q2:= q mod NB;
      q1:= ( q - q2 ) / NB;

      return [ WordFromInfo( N, k,   p1, q1 ),
               WordFromInfo( N, l-k, p2, q2 ) ];
    end;

    n:= enum!.nrgenerators;
    l:= 0;
    nr:= nr - 1;
    while 0 <= nr do
      l:= l+1;
      NB:= ShiftedCatalan( l );
      summand:= n^l * NB;
      nr:= nr - summand;
    od;
    nr:= nr + summand;

    q:= nr mod NB;
    p:= ( nr - q ) / NB;

    return ObjByExtRep( enum!.family, WordFromInfo( n, l, p, q ) );
end );

BindGlobal( "NumberElement_FreeMagma", function( enum, elm )
    local WordInfo, n, info, pos, i;

    if not IsCollsElms( FamilyObj( enum ), FamilyObj( elm ) ) then
      return fail;
    fi;

    # Analyze the structure (recursively).
    WordInfo:= function( ngens, obj )
      local info1, info2, N;

      if IsInt( obj ) then
        return [ ngens, 1, obj-1, 0 ];
      else
        info1:= WordInfo( ngens, obj[1] );
        info2:= WordInfo( ngens, obj[2] );
        N:= info1[2] + info2[2];
        return [ ngens, N,
                 info1[3]+ ngens^info1[2] * info2[3],
                 Sum( List( [ 1 .. info1[2]-1 ],
                      i -> ShiftedCatalan( i ) * ShiftedCatalan( N-i ) ), 0 )
                 + info1[4] * ShiftedCatalan( info2[2] ) + info2[4] ];
      fi;
    end;

    # Calculate the length, the number of the corresponding assoc. word,
    # and the number of the bracketing.
    n:= enum!.nrgenerators;
    info:= WordInfo( n, ExtRepOfObj( elm ) );

    # Compute the position.
    pos:= 0;
    for i in [ 1 .. info[2]-1 ] do
      pos:= pos + n^i * ShiftedCatalan( i );
    od;
    return pos + info[3] * ShiftedCatalan( info[2] ) + info[4] + 1;
end );

InstallMethod( Enumerator,
    "for a free magma",
    [ IsWordCollection and IsWholeFamily and IsMagma ],
    function( M )

    # A free associative structure needs another method.
    if IsAssocWordCollection( M ) then
      TryNextMethod();
    fi;

    return EnumeratorByFunctions( M, rec(
               ElementNumber := ElementNumber_FreeMagma,
               NumberElement := NumberElement_FreeMagma,

               family       := ElementsFamily( FamilyObj( M ) ),
               nrgenerators := Length( ElementsFamily( 
                                           FamilyObj( M ) )!.names ) ) );
    end );


#############################################################################
##
#M  IsFinite( <M> ) . . . . . . . . . . . . .  for a magma of nonassoc. words
##
InstallMethod( IsFinite,
    "for a magma of nonassoc. words",
    [ IsMagma and IsNonassocWordCollection ],
    IsTrivial );


#############################################################################
##
#M  IsAssociative( <M> )  . . . . . . . . . .  for a magma of nonassoc. words
##
InstallMethod( IsAssociative,
    "for a magma of nonassoc. words",
    [ IsMagma and IsNonassocWordCollection ],
    IsTrivial );


#############################################################################
##
#M  Size( <M> ) . . . . . . . . . . . . . . . . . . . .  size of a free magma
##
InstallMethod( Size,
    "for a free magma",
    [ IsMagma and IsNonassocWordCollection ],
    function( M )
    if IsTrivial( M ) then
      return 1;
    else
      return infinity;
    fi;
    end );


#############################################################################
##
#M  Random( <S> ) . . . . . . . . . . . . . .  random element of a free magma
##
#T use better method for the whole family
##
InstallMethod( Random,
    "for a free magma",
    [ IsMagma and IsNonassocWordCollection ],
    function( M )
    local len, result, gens, i;

    # Get a random length for the word.
    len:= Random( Integers );
    if 0 <= len then
      len:= 2 * len;
    else
      len:= -2 * len - 1;
    fi;

    # Multiply $'len' + 1$ random generators.
    gens:= GeneratorsOfMagma( M );
    result:= Random( gens );
    for i in [ 1 .. len ] do
      if Random( [ 0, 1 ] ) = 0 then
        result:= result * Random( gens );
      else
        result:= Random( gens ) * result;
      fi;
    od;

    # Return the result.
    return result;
    end );


#############################################################################
##
#M  MagmaGeneratorsOfFamily( <F> )  . . . . for family of free magma elements
##
InstallMethod( MagmaGeneratorsOfFamily,
    "for a family of free magma elements",
    [ IsNonassocWordFamily ],
    F -> List( [ 1 .. Length( F!.names ) ], i -> ObjByExtRep( F, i ) ) );


#############################################################################
##
#F  FreeMagma( <rank> )
#F  FreeMagma( <rank>, <name> )
#F  FreeMagma( <name1>, <name2>, ... )
#F  FreeMagma( <names> )
#F  FreeMagma( infinity, <name>, <init> )
##
InstallGlobalFunction( FreeMagma,
    function( arg )
    local   names,      # list of generators names
            F,          # family of free magma element objects
            M;          # free magma, result

    # Get and check the argument list, and construct names if necessary.
    if   Length( arg ) = 1 and arg[1] = infinity then
      names:= InfiniteListOfNames( "x" );
    elif Length( arg ) = 2 and arg[1] = infinity then
      names:= InfiniteListOfNames( arg[2] );
    elif Length( arg ) = 3 and arg[1] = infinity then
      names:= InfiniteListOfNames( arg[2], arg[3] );
    elif Length( arg ) = 1 and IsInt( arg[1] ) and 0 < arg[1] then
      names:= List( [ 1 .. arg[1] ],
                    i -> Concatenation( "x", String(i) ) );
      MakeImmutable( names );
    elif Length( arg ) = 2 and IsInt( arg[1] ) and 0 < arg[1] then
      names:= List( [ 1 .. arg[1] ],
                    i -> Concatenation( arg[2], String(i) ) );
      MakeImmutable( names );
    elif 1 <= Length( arg ) and ForAll( arg, IsString ) then
      names:= arg;
    elif Length( arg ) = 1 and IsList( arg[1] )
                           and not IsEmpty( arg[1] )
                           and ForAll( arg[1], IsString ) then
      names:= arg[1];
    else
      Error("usage: FreeMagma(<name1>,<name2>..),FreeMagma(<rank>)");
    fi;

    # Construct the family of element objects of our magma.
    F:= NewFamily( "FreeMagmaElementsFamily", IsNonassocWord );

    # Store the names and the default type.
    F!.names:= names;
    F!.defaultType:= NewType( F, IsNonassocWord and IsBracketRep );

    # Make the magma.
    if IsFinite( names ) then
      M:= MagmaByGenerators( MagmaGeneratorsOfFamily( F ) );
    else
      M:= MagmaByGenerators( InfiniteListOfGenerators( F ) );
    fi;

    SetIsWholeFamily( M, true );
    SetIsTrivial( M, false );
    return M;
end );


#############################################################################
##
#F  FreeMagmaWithOne( <rank> )
#F  FreeMagmaWithOne( <rank>, <name> )
#F  FreeMagmaWithOne( <name1>, <name2>, ... )
#F  FreeMagmaWithOne( <names> )
#F  FreeMagmaWithOne( infinity, <name>, <init> )
##
InstallGlobalFunction( FreeMagmaWithOne,
    function( arg )
    local   names,      # list of generators names
            F,          # family of free magma element objects
            M;          # free magma, result

    # Get and check the argument list, and construct names if necessary.
    if   Length( arg ) = 1 and arg[1] = infinity then
      names:= InfiniteListOfNames( "x" );
    elif Length( arg ) = 2 and arg[1] = infinity then
      names:= InfiniteListOfNames( arg[2] );
    elif Length( arg ) = 3 and arg[1] = infinity then
      names:= InfiniteListOfNames( arg[2], arg[3] );
    elif Length( arg ) = 1 and IsInt( arg[1] ) and 0 < arg[1] then
      names:= List( [ 1 .. arg[1] ],
                    i -> Concatenation( "x", String(i) ) );
      MakeImmutable( names );
    elif Length( arg ) = 2 and IsInt( arg[1] ) and 0 < arg[1] then
      names:= List( [ 1 .. arg[1] ],
                    i -> Concatenation( arg[2], String(i) ) );
      MakeImmutable( names );
    elif 1 <= Length( arg ) and ForAll( arg, IsString ) then
      names:= arg;
    elif Length( arg ) = 1 and IsList( arg[1] )
                           and not IsEmpty( arg[1])
                           and ForAll( arg[1], IsString ) then
      names:= arg[1];
    else
      Error( "usage: FreeMagmaWithOne(<name1>,<name2>..),",
             "FreeMagmaWithOne(<rank>)" );
    fi;

    # Handle the trivial case.
    if IsEmpty( names ) then
      return FreeGroup( 0 );
    fi;

    # Construct the family of element objects of our magma-with-one.
    F:= NewFamily( "FreeMagmaWithOneElementsFamily", IsNonassocWordWithOne );

    # Store the names and the default type.
    F!.names:= names;
    F!.defaultType:= NewType( F, IsNonassocWordWithOne and IsBracketRep );

    # Make the magma.
    if IsFinite( names ) then
      M:= MagmaWithOneByGenerators( MagmaGeneratorsOfFamily( F ) );
    else
      M:= MagmaWithOneByGenerators( InfiniteListOfGenerators( F ) );
    fi;

    SetIsWholeFamily( M, true );
    SetIsTrivial( M, false );
    return M;
end );


#############################################################################
##
#M  ViewObj( <M> )  . . . . . . . . . . . . . . . . . . . .  for a free magma
##
InstallMethod( ViewObj,
    "for a free magma containing the whole family",
    [ IsMagma and IsWordCollection and IsWholeFamily ],
    function( M )
    if GAPInfo.ViewLength * 10 < Length( GeneratorsOfMagma( M ) ) then
      Print( "<free magma with ", Length( GeneratorsOfMagma( M ) ),
             " generators>" );
    else
      Print( "<free magma on the generators ", GeneratorsOfMagma( M ), ">" );
    fi;
end );


#############################################################################
##
#M  ViewObj( <M> )  . . . . . . . . . . . . . . . . for a free magma-with-one
##
InstallMethod( ViewObj,
    "for a free magma-with-one containing the whole family",
    [ IsMagmaWithOne and IsWordCollection and IsWholeFamily ],
    function( M )
    if GAPInfo.ViewLength * 10 < Length( GeneratorsOfMagmaWithOne( M ) ) then
      Print( "<free magma-with-one with ",
             Length( GeneratorsOfMagmaWithOne( M ) ), " generators>" );
    else
      Print( "<free magma-with-one on the generators ",
             GeneratorsOfMagmaWithOne( M ), ">" );
    fi;
end );


#############################################################################
##                                               
#M  \.( <F>, <n> )  . . . . . . . . . .  access to generators of a free magma
#M  \.( <F>, <n> )  . . . . . . access to generators of a free magma-with-one
##                                            
InstallAccessToGenerators( IsMagma and IsWordCollection and IsWholeFamily,
                           "free magma containing the whole family",
                           GeneratorsOfMagma );

InstallAccessToGenerators( IsMagmaWithOne and IsWordCollection
                                          and IsWholeFamily,
                           "free magma-with-one containing the whole family",
                           GeneratorsOfMagmaWithOne );


#############################################################################
##
#E