This file is indexed.

/usr/share/gap/lib/mgmideal.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#############################################################################
##
#W  mgmideal.gd                  GAP library                   Andrew Solomon
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declaration of operations for magma ideals.
##

#############################################################################
#############################################################################
##
##
##               Left Magma Ideals
##
##
#############################################################################
#############################################################################

#############################################################################
##
#P  IsLeftMagmaIdeal( <D> )
##
##  A *left magma ideal* is a submagma (see~"Magmas") which is closed under
##	left multiplication by elements of its parent magma.
##
DeclareSynonym("IsLeftMagmaIdeal", IsMagma and IsLeftActedOnBySuperset);

##  As a sub magma, a left magma ideal has a Parent (the enclosing magma)
##  and as LeftActedOnBySuperset it has a  LeftActingDomain. 
##  We must ensure that these two are the same object when the 
##  left magma ideal is created.
##

#############################################################################
##
#F  LeftMagmaIdeal(<D>, <gens> ) 
##
##  `LeftMagmaIdeal' returns the magma containing the elements in the 
##  homogeneous list <gens> and closed under left multiplication by elements 
##  of the magma <D> in which it embeds.
##

##  This has to put in the parent and left acting set. Although it is a 
##  submagma, we can't call the generic submagma creation since that
##  requires *magma* generators.
##
##
DeclareGlobalFunction( "LeftMagmaIdeal" );


#############################################################################
##
#O  AsLeftMagmaIdeal( <D>, <C> )
##
##  Let <D> be a domain and <C> a collection.
##  If <C> is a subset of <D> 
##  `AsLeftMagmaIdeal' returns the LeftMagmaIdeal with generators <C>, 
##  and with parent <D>.
##  Otherwise `fail' is returned.
##  Probably more desirable would be to regard <C> as the set of 
##  elements of <D>.
##
DeclareOperation( "AsLeftMagmaIdeal", [ IsDomain, IsCollection ] );





#############################################################################
##
#A  GeneratorsOfLeftMagmaIdeal( <I> )
##
##  These are left ideal generators, not magma generators.
##
DeclareSynonymAttr( "GeneratorsOfLeftMagmaIdeal", GeneratorsOfExtLSet );


#############################################################################
##
#O  LeftMagmaIdealByGenerators(<D>, <gens> )
##
##  is the underlying operation of `LeftMagmaIdeal' 
##
DeclareOperation( "LeftMagmaIdealByGenerators", [IsMagma, IsCollection ] );



#############################################################################
#############################################################################
##
##
##               Right Magma Ideals
##
##
#############################################################################
#############################################################################

#############################################################################
##
#P  IsRightMagmaIdeal( <D> )
##
##  A *right magma ideal* is a submagma (see~"Magmas") which is closed under
##	right multiplication by elements of its parent magma.
##
DeclareSynonym("IsRightMagmaIdeal", IsMagma and IsRightActedOnBySuperset);

##  As a sub magma, a right magma ideal has a Parent (the enclosing magma)
##  and as RightActedOnBySuperset it has a  RightActingDomain. 
##  We must ensure that these two are the same object when the 
##  right magma ideal is created.
##

#############################################################################
##
#F  RightMagmaIdeal(<D>, <gens> ) . . . . . . . . . . 
##
##  `RightMagmaIdeal' returns the magma containing the elements in the 
##  homogeneous list <gens> and closed under right multiplication by elements 
##  of the parent magma <D>  in which it embeds.
##
##
DeclareGlobalFunction( "RightMagmaIdeal" );


#############################################################################
##
#O  AsRightMagmaIdeal( <D>, <C> )
##
##  Let <D> be a domain and <C> a collection.
##  If <C> is a subset of <D> that forms a RightMagmaIdeal then 
##  `AsRightMagmaIdeal' returns this RightMagmaIdeal, with parent <D>.
##  Otherwise `fail' is returned.
##
DeclareOperation( "AsRightMagmaIdeal", [ IsDomain, IsCollection ] );





#############################################################################
##
#A  GeneratorsOfRightMagmaIdeal( <I> )
##
##  These are right ideal generators, not magma generators.
##
DeclareSynonymAttr( "GeneratorsOfRightMagmaIdeal", GeneratorsOfExtRSet );



#############################################################################
##
#O  RightMagmaIdealByGenerators(<D>, <gens> )
##
##  is the underlying operation of `RightMagmaIdeal' 
##
DeclareOperation( "RightMagmaIdealByGenerators", [IsMagma, IsCollection ] );



#############################################################################
#############################################################################
##
##
##               Two Sided Magma Ideals
##
##
#############################################################################
#############################################################################


#############################################################################
##
#P  IsMagmaIdeal( <D> )
##
##  A *magma ideal* is a submagma (see~"Magmas") which is closed under
##	left and right multiplication by elements of its parent magma.
##
DeclareSynonym("IsMagmaIdeal", IsLeftMagmaIdeal and IsRightMagmaIdeal);

##  As a sub magma, a magma ideal has a Parent (the enclosing magma)
##  and as LeftActedOnBySuperset it has a  LeftActingDomain, 
##  and as RightActedOnBySuperset it has a  RightActingDomain.
##  We must ensure that these three are the same object when the 
##  magma ideal is created.
##

#############################################################################
##
#F  MagmaIdeal(<D>, <gens> ) 
##
##  `MagmaIdeal' returns the magma containing the elements in the homogeneous 
##  list <gens> and closed under left  and right multiplication by elements 
##  of the parent magma <D> in which it emeds.
##
##
DeclareGlobalFunction( "MagmaIdeal" );


#############################################################################
##
#O  AsMagmaIdeal( <D>, <C> )
##
##  Let <D> be a domain and <C> a collection.
##  If <C> is a subset of <D> that forms a MagmaIdeal then 
##  `AsMagmaIdeal' returns this MagmaIdeal, with parent <D>.
##  Otherwise `fail' is returned.
##
DeclareOperation( "AsMagmaIdeal", [ IsDomain, IsCollection ] );


#############################################################################
##
#A  GeneratorsOfMagmaIdeal( <I> )
##
##  These are ideal generators, not magma generators.
##
DeclareAttribute( "GeneratorsOfMagmaIdeal", IsMagmaIdeal );




#############################################################################
##
#O  MagmaIdealByGenerators( <D>, <gens> )
##
##  is the underlying operation of `MagmaIdeal' 
##
DeclareOperation( "MagmaIdealByGenerators", [IsMagma, IsCollection ] );




#############################################################################
##
#E