This file is indexed.

/usr/share/gap/lib/mgmring.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
#############################################################################
##
#W  mgmring.gd                  GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file declares operations for magma rings.
##
##  <#GAPDoc Label="[1]{mgmring}">
##  <Index>group algebra</Index>
##  <Index>group ring</Index>
##  Given a magma <M>M</M> then the <E>free magma ring</E>
##  (or <E>magma ring</E> for short) <M>RM</M> of <M>M</M>
##  over a ring-with-one <M>R</M> is the set of finite sums
##  <M>\sum_{{i \in I}} r_i m_i</M> with <M>r_i \in R</M>,
##  and <M>m_i \in M</M>.
##  With the obvious addition and <M>R</M>-action from the left,
##  <M>RM</M> is a free <M>R</M>-module with <M>R</M>-basis <M>M</M>,
##  and with the usual convolution product, <M>RM</M> is a ring.
##  <P/>
##  Typical examples of free magma rings are
##  <P/>
##  <List>
##  <Item>
##      (multivariate) polynomial rings
##      (see&nbsp;<Ref Chap="Polynomial Rings and Function Fields"/>),
##      where the magma is a free abelian monoid generated by the
##      indeterminates,
##  </Item>
##  <Item>
##      group rings (see&nbsp;<Ref Func="IsGroupRing"/>),
##      where the magma is a group,
##  </Item>
##  <Item>
##      Laurent polynomial rings, which are group rings of the free abelian
##      <!-- #T (see~???) -->
##      groups generated by the indeterminates,
##  </Item>
##  <Item>
##      free algebras and free associative algebras, with or without one,
##      where the magma is a free magma or a free semigroup,
##      or a free magma-with-one or a free monoid, respectively.
##  </Item>
##  </List>
##  Note that formally, polynomial rings in &GAP; are not constructed 
##  as free magma rings.
##  <P/>
##  Furthermore, a free Lie algebra is <E>not</E> a magma ring,
##  because of the additional relations given by the Jacobi identity;
##  see&nbsp;<Ref Sect="Magma Rings modulo Relations"/> for a generalization
##  of magma rings that covers such structures.
##  <P/>
##  The coefficient ring <M>R</M> and the magma <M>M</M> cannot be regarded
##  as subsets of <M>RM</M>,
##  hence the natural <E>embeddings</E> of <M>R</M> and <M>M</M> into
##  <M>RM</M> must be handled via explicit embedding maps
##  (see&nbsp;<Ref Sect="Natural Embeddings related to Magma Rings"/>).
##  Note that in a magma ring, the addition of elements is in general
##  different from an addition that may be defined already for the elements
##  of the magma;
##  for example, the addition in the group ring of a matrix group does in
##  general <E>not</E> coincide with the addition of matrices.
##  <P/>
##  <Example><![CDATA[
##  gap> a:= Algebra( GF(2), [ [ [ Z(2) ] ] ] );;  Size( a );
##  2
##  gap> rm:= FreeMagmaRing( GF(2), a );;
##  gap> emb:= Embedding( a, rm );;
##  gap> z:= Zero( a );;  o:= One( a );;
##  gap> imz:= z ^ emb;  IsZero( imz );
##  (Z(2)^0)*[ [ 0*Z(2) ] ]
##  false
##  gap> im1:= ( z + o ) ^ emb;
##  (Z(2)^0)*[ [ Z(2)^0 ] ]
##  gap> im2:= z ^ emb + o ^ emb;
##  (Z(2)^0)*[ [ 0*Z(2) ] ]+(Z(2)^0)*[ [ Z(2)^0 ] ]
##  gap> im1 = im2;
##  false
##  ]]></Example>
##  <#/GAPDoc>
##
##  <#GAPDoc Label="[2]{mgmring}">
##  In order to treat elements of free magma rings uniformly,
##  also without an external representation, the attributes
##  <Ref Attr="CoefficientsAndMagmaElements"/>
##  and <Ref Attr="ZeroCoefficient"/>
##  were introduced that allow one to <Q>take an element of an arbitrary
##  magma ring into pieces</Q>.
##  <P/>
##  Conversely, for constructing magma ring elements from coefficients
##  and magma elements, <Ref Func="ElementOfMagmaRing"/> can be used.
##  (Of course one can also embed each magma element into the magma ring,
##  see&nbsp;<Ref Sect="Natural Embeddings related to Magma Rings"/>,
##  and then form the linear combination,
##  but many unnecessary intermediate elements are created this way.)
##  <#/GAPDoc>
##
##  <#GAPDoc Label="[3]{mgmring}">
##  <Index Key="Embedding" Subkey="for magma rings"><C>Embedding</C></Index>
##  Neither the coefficient ring <M>R</M> nor the magma <M>M</M>
##  are regarded as subsets of the magma ring <M>RM</M>,
##  so one has to use <E>embeddings</E>
##  (see&nbsp;<Ref Func="Embedding" Label="for two domains"/>)
##  explicitly whenever one needs for example the magma ring element
##  corresponding to a given magma element.
##  <P/>
##  <Example><![CDATA[
##  gap> f:= Rationals;;  g:= SymmetricGroup( 3 );;
##  gap> fg:= FreeMagmaRing( f, g );
##  <algebra-with-one over Rationals, with 2 generators>
##  gap> Dimension( fg );
##  6
##  gap> gens:= GeneratorsOfAlgebraWithOne( fg );
##  [ (1)*(1,2,3), (1)*(1,2) ]
##  gap> ( 3*gens[1] - 2*gens[2] ) * ( gens[1] + gens[2] );
##  (-2)*()+(3)*(2,3)+(3)*(1,3,2)+(-2)*(1,3)
##  gap> One( fg );
##  (1)*()
##  gap> emb:= Embedding( g, fg );;
##  gap> elm:= (1,2,3)^emb;  elm in fg;
##  (1)*(1,2,3)
##  true
##  gap> new:= elm + One( fg );
##  (1)*()+(1)*(1,2,3)
##  gap> new^2;
##  (1)*()+(2)*(1,2,3)+(1)*(1,3,2)
##  gap> emb2:= Embedding( f, fg );;
##  gap> elm:= One( f )^emb2;  elm in fg;
##  (1)*()
##  true
##  ]]></Example>
##  <#/GAPDoc>
##
##  <#GAPDoc Label="[4]{mgmring}">
##  A more general construction than that of free magma rings allows one
##  to create rings that are not free <M>R</M>-modules on a given magma
##  <M>M</M> but arise from the magma ring <M>RM</M> by factoring out certain
##  identities.
##  Examples for such structures are finitely presented (associative)
##  algebras and free Lie algebras
##  (see&nbsp;<Ref Func="FreeLieAlgebra" Label="for ring, rank (and name)"/>).
##  <!-- #T see ... ? -->
##  <P/>
##  In &GAP;, the use of magma rings modulo relations is limited to
##  situations where a normal form of the elements is known and where
##  one wants to guarantee that all elements actually constructed are
##  in normal form.
##  (In particular, the computation of the normal form must be cheap.)
##  This is because the methods for comparing elements in magma rings
##  modulo relations via <C>\=</C> and <C>\&lt;</C>
##  just compare the involved coefficients and magma elements,
##  and also the vector space functions regard those monomials as
##  linearly independent over the coefficients ring that actually occur
##  in the representation of an element of a magma ring modulo relations.
##  <P/>
##  Thus only very special finitely presented algebras will be represented
##  as magma rings modulo relations,
##  in general finitely presented algebras are dealt with via the
##  mechanism described in
##  Chapter&nbsp;<Ref Chap="Finitely Presented Algebras"/>.
##  <#/GAPDoc>
##
##  <#GAPDoc Label="[5]{mgmring}">
##  The <E>family</E> containing elements in the magma ring <M>RM</M>
##  in fact contains all elements with coefficients in the family of elements
##  of <M>R</M> and magma elements in the family of elements of <M>M</M>.
##  So arithmetic operations with coefficients outside <M>R</M> or with
##  magma elements outside <M>M</M> might create elements outside <M>RM</M>.
##  <P/>
##  It should be mentioned that each call of <Ref Func="FreeMagmaRing"/>
##  creates a new family of elements,
##  so for example the elements of two group rings of permutation groups
##  over the same ring lie in different families and therefore are regarded
##  as different.
##  <P/>
##  <Example><![CDATA[
##  gap> g:= SymmetricGroup( 3 );;
##  gap> h:= AlternatingGroup( 3 );;
##  gap> IsSubset( g, h );
##  true
##  gap> f:= GF(2);;
##  gap> fg:= GroupRing( f, g );
##  <algebra-with-one over GF(2), with 2 generators>
##  gap> fh:= GroupRing( f, h );
##  <algebra-with-one over GF(2), with 1 generators>
##  gap> IsSubset( fg, fh );
##  false
##  gap> o1:= One( fh );  o2:= One( fg );  o1 = o2;
##  (Z(2)^0)*()
##  (Z(2)^0)*()
##  false
##  gap> emb:= Embedding( g, fg );;
##  gap> im:= Image( emb, h );
##  <group of size 3 with 1 generators>
##  gap> IsSubset( fg, im );
##  true
##  ]]></Example>
##  <P/>
##  There is <E>no</E> generic <E>external representation</E> for elements
##  in an arbitrary free magma ring.
##  For example, polynomials are elements of a free magma ring,
##  and they have an external representation relying on the special form
##  of the underlying monomials.
##  On the other hand, elements in a group ring of a permutation group
##  do not admit such an external representation.
##  <P/>
##  For convenience, magma rings constructed with
##  <Ref Func="FreeAlgebra" Label="for ring, rank (and name)"/>,
##  <Ref Func="FreeAssociativeAlgebra" Label="for ring, rank (and name)"/>,
##  <Ref Func="FreeAlgebraWithOne" Label="for ring, rank (and name)"/>, and
##  <Ref Func="FreeAssociativeAlgebraWithOne"
##  Label="for ring, rank (and name)"/>
##  support an external representation of their elements,
##  which is defined as a list of length 2,
##  the first entry being the zero coefficient, the second being a list with
##  the external representations of the magma elements at the odd positions
##  and the corresponding coefficients at the even positions.
##  <P/>
##  As the above examples show, there are several possible representations
##  of magma ring elements, the representations used for polynomials
##  (see Chapter &nbsp;<Ref Sect="Polynomials and Rational Functions"/>)
##  as well as the default representation <Ref Filt="IsMagmaRingObjDefaultRep"/>
##  of magma ring elements.
##  The latter simply stores the zero coefficient and a list containing
##  the coefficients of the element at the even positions
##  and the corresponding magma elements at the odd positions,
##  where the succession is compatible with the ordering of magma elements
##  via <C>\&lt;</C>.
##  <#/GAPDoc>
##


#############################################################################
##
#C  IsElementOfMagmaRingModuloRelations( <obj> )
#C  IsElementOfMagmaRingModuloRelationsCollection( <obj> )
##
##  <#GAPDoc Label="IsElementOfMagmaRingModuloRelations">
##  <ManSection>
##  <Filt Name="IsElementOfMagmaRingModuloRelations" Arg='obj'
##   Type='Category'/>
##  <Filt Name="IsElementOfMagmaRingModuloRelationsCollection" Arg='obj'
##   Type='Category'/>
##
##  <Description>
##  This category is used, e.&nbsp;g., for elements of free Lie algebras.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsElementOfMagmaRingModuloRelations", IsScalar );

DeclareCategoryCollections( "IsElementOfMagmaRingModuloRelations" );


#############################################################################
##
#C  IsElementOfMagmaRingModuloRelationsFamily( <Fam> )
##
##  <#GAPDoc Label="IsElementOfMagmaRingModuloRelationsFamily">
##  <ManSection>
##  <Filt Name="IsElementOfMagmaRingModuloRelationsFamily" Arg='Fam'
##   Type='Category'/>
##
##  <Description>
##  The family category for the category 
##  <Ref Filt="IsElementOfMagmaRingModuloRelations" />.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategoryFamily( "IsElementOfMagmaRingModuloRelations" );


#############################################################################
##
#C  IsElementOfFreeMagmaRing( <obj> )
#C  IsElementOfFreeMagmaRingCollection( <obj> )
##
##  <#GAPDoc Label="IsElementOfFreeMagmaRing">
##  <ManSection>
##  <Filt Name="IsElementOfFreeMagmaRing" Arg='obj' Type='Category'/>
##  <Filt Name="IsElementOfFreeMagmaRingCollection" Arg='obj'
##   Type='Category'/>
##
##  <Description>
##  The category of elements of a free magma ring
##  (See <Ref Func="IsFreeMagmaRing"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsElementOfFreeMagmaRing",
    IsElementOfMagmaRingModuloRelations );

DeclareCategoryCollections( "IsElementOfFreeMagmaRing" );


#############################################################################
##
#C  IsElementOfFreeMagmaRingFamily( <Fam> )
##
##  <#GAPDoc Label="IsElementOfFreeMagmaRingFamily">
##  <ManSection>
##  <Filt Name="IsElementOfFreeMagmaRingFamily" Arg='Fam' Type='Category'/>
##
##  <Description>
##  Elements of families in this category have trivial normalisation, i.e.,
##  efficient methods for <C>\=</C> and <C>\&lt;</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategoryFamily( "IsElementOfFreeMagmaRing" );


#############################################################################
##
#A  CoefficientsAndMagmaElements( <elm> ) . . . . .  for elm. in a magma ring
##
##  <#GAPDoc Label="CoefficientsAndMagmaElements">
##  <ManSection>
##  <Attr Name="CoefficientsAndMagmaElements" Arg='elm'/>
##
##  <Description>
##  is a list that contains at the odd positions the magma elements,
##  and at the even positions their coefficients in the element <A>elm</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CoefficientsAndMagmaElements",
    IsElementOfMagmaRingModuloRelations );


#############################################################################
##
#A  ZeroCoefficient( <elm> )
##
##  <#GAPDoc Label="ZeroCoefficient">
##  <ManSection>
##  <Attr Name="ZeroCoefficient" Arg='elm'/>
##
##  <Description>
##  For an element <A>elm</A> of a magma ring (modulo relations) <M>RM</M>,
##  <Ref Attr="ZeroCoefficient"/> returns the zero element
##  of the coefficient ring <M>R</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ZeroCoefficient", IsElementOfMagmaRingModuloRelations );


#############################################################################
##
#O  NormalizedElementOfMagmaRingModuloRelations( <F>, <descr> )
##
##  <#GAPDoc Label="NormalizedElementOfMagmaRingModuloRelations">
##  <ManSection>
##  <Oper Name="NormalizedElementOfMagmaRingModuloRelations" Arg='F, descr'/>
##
##  <Description>
##  Let <A>F</A> be a family of magma ring elements modulo relations,
##  and <A>descr</A> the description of an element in a magma ring modulo
##  relations.
##  <Ref Func="NormalizedElementOfMagmaRingModuloRelations"/> returns
##  a description of the same element,
##  but normalized w.r.t.&nbsp;the relations.
##  So two elements are equal if and only if the result of
##  <Ref Func="NormalizedElementOfMagmaRingModuloRelations"/> is equal for
##  their internal data, that is,
##  <Ref Func="CoefficientsAndMagmaElements"/> will return the same
##  for the corresponding two elements.
##  <P/>
##  <Ref Func="NormalizedElementOfMagmaRingModuloRelations"/> is allowed
##  to return <A>descr</A> itself, it need not make a copy.
##  This is the case for example in the case of free magma rings.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "NormalizedElementOfMagmaRingModuloRelations",
    [ IsElementOfMagmaRingModuloRelationsFamily, IsList ] );


#############################################################################
##
#C  IsMagmaRingModuloRelations( <obj> )
##
##  <#GAPDoc Label="IsMagmaRingModuloRelations">
##  <ManSection>
##  <Filt Name="IsMagmaRingModuloRelations" Arg='obj' Type='Category'/>
##
##  <Description>
##  A &GAP; object lies in the category
##  <Ref Func="IsMagmaRingModuloRelations"/>
##  if it has been constructed as a magma ring modulo relations.
##  Each element of such a ring has a unique normal form,
##  so <Ref Func="CoefficientsAndMagmaElements"/> is well-defined for it.
##  <P/>
##  This category is not inherited to factor structures,
##  which are in general best described as finitely presented algebras,
##  see Chapter&nbsp;<Ref Chap="Finitely Presented Algebras"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsMagmaRingModuloRelations", IsFLMLOR );


#############################################################################
##
#C  IsFreeMagmaRing( <D> )
##
##  <#GAPDoc Label="IsFreeMagmaRing">
##  <ManSection>
##  <Filt Name="IsFreeMagmaRing" Arg='D' Type='Category'/>
##
##  <Description>
##  A domain lies in the category <Ref Func="IsFreeMagmaRing"/>
##  if it has been constructed as a free magma ring.
##  In particular, if <A>D</A> lies in this category then the operations
##  <Ref Func="LeftActingDomain"/> and
##  <Ref Func="UnderlyingMagma"/> are applicable to <A>D</A>,
##  and yield the ring <M>R</M> and the magma <M>M</M>
##  such that <A>D</A> is the magma ring <M>RM</M>.
##  <P/>
##  So being a magma ring in &GAP; includes the knowledge of the ring and
##  the magma.
##  Note that a magma ring <M>RM</M> may abstractly be generated as a
##  magma ring by a magma different from the underlying magma <M>M</M>.
##  For example, the group ring of the dihedral group of order <M>8</M>
##  over the field with <M>3</M> elements is also spanned by a quaternion
##  group of order <M>8</M> over the same field.
##  <P/>
##  <Example><![CDATA[
##  gap> d8:= DihedralGroup( 8 );
##  <pc group of size 8 with 3 generators>
##  gap> rm:= FreeMagmaRing( GF(3), d8 );
##  <algebra-with-one over GF(3), with 3 generators>
##  gap> emb:= Embedding( d8, rm );;
##  gap> gens:= List( GeneratorsOfGroup( d8 ), x -> x^emb );;
##  gap> x1:= gens[1] + gens[2];;
##  gap> x2:= ( gens[1] - gens[2] ) * gens[3];;
##  gap> x3:= gens[1] * gens[2] * ( One( rm ) - gens[3] );;
##  gap> g1:= x1 - x2 + x3;;
##  gap> g2:= x1 + x2;;
##  gap> q8:= Group( g1, g2 );;
##  gap> Size( q8 );
##  8
##  gap> ForAny( [ d8, q8 ], IsAbelian );
##  false
##  gap> List( [ d8, q8 ], g -> Number( AsList( g ), x -> Order( x ) = 2 ) );
##  [ 5, 1 ]
##  gap> Dimension( Subspace( rm, q8 ) );
##  8
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsFreeMagmaRing", IsMagmaRingModuloRelations );


#############################################################################
##
#C  IsFreeMagmaRingWithOne( <obj> )
##
##  <#GAPDoc Label="IsFreeMagmaRingWithOne">
##  <ManSection>
##  <Filt Name="IsFreeMagmaRingWithOne" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Ref Filt="IsFreeMagmaRingWithOne"/> is just a synonym for the meet of
##  <Ref Filt="IsFreeMagmaRing"/> and
##  <Ref Filt="IsMagmaWithOne"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsFreeMagmaRingWithOne",
    IsFreeMagmaRing and IsMagmaWithOne );


#############################################################################
##
#P  IsGroupRing( <obj> )
##
##  <#GAPDoc Label="IsGroupRing">
##  <ManSection>
##  <Prop Name="IsGroupRing" Arg='obj'/>
##
##  <Description>
##  A <E>group ring</E> is a magma ring where the underlying magma is a group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsGroupRing", IsFreeMagmaRing );


#############################################################################
##
#A  UnderlyingMagma( <RM> )
##
##  <#GAPDoc Label="UnderlyingMagma">
##  <ManSection>
##  <Attr Name="UnderlyingMagma" Arg='RM'/>
##
##  <Description>
##  stores the underlying magma of a free magma ring.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "UnderlyingMagma", IsFreeMagmaRing );


#############################################################################
##
#O  ElementOfMagmaRing( <Fam>, <zerocoeff>, <coeffs>, <mgmelms> )
##
##  <#GAPDoc Label="ElementOfMagmaRing">
##  <ManSection>
##  <Oper Name="ElementOfMagmaRing" Arg='Fam, zerocoeff, coeffs, mgmelms'/>
##
##  <Description>
##  <Ref Func="ElementOfMagmaRing"/> returns the element
##  <M>\sum_{{i = 1}}^n c_i m_i'</M>,
##  where <M><A>coeffs</A> = [ c_1, c_2, \ldots, c_n ]</M> is a list of
##  coefficients, <M><A>mgmelms</A> = [ m_1, m_2, \ldots, m_n ]</M> is a list
##  of magma elements,
##  and <M>m_i'</M> is the image of <M>m_i</M> under an embedding
##  of a magma containing <M>m_i</M> into a magma ring
##  whose elements lie in the family <A>Fam</A>.
##  <A>zerocoeff</A> must be the zero of the coefficient ring
##  containing the <M>c_i</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ElementOfMagmaRing",
    [ IsFamily, IsRingElement, IsHomogeneousList, IsHomogeneousList ] );


#############################################################################
##
#F  FreeMagmaRing( <R>, <M> )
##
##  <#GAPDoc Label="FreeMagmaRing">
##  <ManSection>
##  <Func Name="FreeMagmaRing" Arg='R, M'/>
##
##  <Description>
##  is a free magma ring over the ring <A>R</A>, free on the magma <A>M</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FreeMagmaRing" );


#############################################################################
##
#F  GroupRing( <R>, <G> )
##
##  <#GAPDoc Label="GroupRing">
##  <ManSection>
##  <Func Name="GroupRing" Arg='R, G'/>
##
##  <Description>
##  is the group ring of the group <A>G</A>, over the ring <A>R</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "GroupRing" );


#############################################################################
##
#A  AugmentationIdeal( <RG> )
##
##  <#GAPDoc Label="AugmentationIdeal">
##  <ManSection>
##  <Attr Name="AugmentationIdeal" Arg='RG'/>
##
##  <Description>
##  is the augmentation ideal of the group ring <A>RG</A>,
##  i.e., the kernel of the trivial representation of <A>RG</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "AugmentationIdeal", IsFreeMagmaRing );


#############################################################################
##
#F  MagmaRingModuloSpanOfZero( <R>, <M>, <z> )
##
##  <#GAPDoc Label="MagmaRingModuloSpanOfZero">
##  <ManSection>
##  <Func Name="MagmaRingModuloSpanOfZero" Arg='R, M, z'/>
##
##  <Description>
##  Let <A>R</A> be a ring, <A>M</A> a magma, and <A>z</A> an element of
##  <A>M</A> with the property that <M><A>z</A> * m = <A>z</A></M> holds
##  for all <M>m \in M</M>.
##  The element <A>z</A> could be called a <Q>zero element</Q> of <A>M</A>,
##  but note that in general <A>z</A> cannot be obtained as
##  <C>Zero( </C><M>m</M><C> )</C> for each <M>m \in M</M>,
##  so this situation does not match the definition of <Ref Func="Zero"/>.
##  <P/>
##  <Ref Func="MagmaRingModuloSpanOfZero"/> returns the magma ring
##  <M><A>R</A><A>M</A></M> modulo the relation given by the identification
##  of <A>z</A> with zero.
##  This is an example of a magma ring modulo relations,
##  see&nbsp;<Ref Sect="Magma Rings modulo Relations"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MagmaRingModuloSpanOfZero" );


#############################################################################
##
#C  IsMagmaRingModuloSpanOfZero( <RM> )
##
##  <#GAPDoc Label="IsMagmaRingModuloSpanOfZero">
##  <ManSection>
##  <Filt Name="IsMagmaRingModuloSpanOfZero" Arg='RM' Type='Category'/>
##
##  <Description>
##  The category of magma rings modulo the span of a zero element.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsMagmaRingModuloSpanOfZero", IsMagmaRingModuloRelations );


#############################################################################
##
#C  IsElementOfMagmaRingModuloSpanOfZeroFamily( <Fam> )
##
##  <#GAPDoc Label="IsElementOfMagmaRingModuloSpanOfZeroFamily">
##  <ManSection>
##  <Filt Name="IsElementOfMagmaRingModuloSpanOfZeroFamily" Arg='Fam'
##   Type='Category'/>
##
##  <Description>
##  We need this for the normalization method, which takes a family as first
##  argument.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsElementOfMagmaRingModuloSpanOfZeroFamily",
    IsElementOfMagmaRingModuloRelationsFamily );


#############################################################################
##
##  3. Free left modules in magma rings modulo relations
##


#############################################################################
##
#F  IsSpaceOfElementsOfMagmaRing( <V> )
##
##  <ManSection>
##  <Func Name="IsSpaceOfElementsOfMagmaRing" Arg='V'/>
##
##  <Description>
##  If an <M>F</M>-vector space <A>V</A> is in the filter
##  <Ref Func="IsSpaceOfElementsOfMagmaRing"/> then this expresses that
##  <A>V</A> consists of elements in a magma ring modulo relations,
##  and that <A>V</A> is handled via the mechanism of nice bases
##  (see&nbsp;<Ref ???="..."/>) in the following way.
##  Let <M>V</M> be a free <M>F</M>-module of elements in a magma ring modulo
##  relations <M>FM</M>, and let <M>S</M> be the set of magma elements that
##  occur in the vector space generators of <M>V</M>.
##  Then the <Ref Func="NiceFreeLeftModuleInfo"/> value of <A>V</A> is
##  a record with the following components.
##  <List>
##  <Mark><C>family</C></Mark>
##  <Item>
##     the elements family of <A>V</A>,
##  </Item>
##  <Mark><C>monomials</C></Mark>
##  <Item>
##     the list <M>S</M> of magma elements that occur in elements of <A>V</A>,
##  </Item>
##  <Mark><C>zerocoeff</C></Mark>
##  <Item>
##     the zero coefficient of elements in <A>V</A>,
##  </Item>
##  <Mark><C>zerovector</C></Mark>
##  <Item>
##     the zero row vector in the nice left module.
##  </Item>
##  </List>
##  The <Ref Func="NiceVector"/> value of <M>v \in</M> <A>V</A> is defined as
##  the row vector of coefficients of <M>v</M> w.r.t.&nbsp;<M>S</M>.
##  <P/>
##  Finite dimensional free left modules of elements in a magma ring modulo
##  relations
##  (<E>not</E> the magma rings themselves, they have special methods)
##  are by default handled via the mechanism of nice bases.
##  </Description>
##  </ManSection>
##
DeclareHandlingByNiceBasis( "IsSpaceOfElementsOfMagmaRing",
    "for free left modules of magma rings modulo relations" );


#############################################################################
##
#E