/usr/share/gap/lib/mgmring.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 | #############################################################################
##
#W mgmring.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares operations for magma rings.
##
## <#GAPDoc Label="[1]{mgmring}">
## <Index>group algebra</Index>
## <Index>group ring</Index>
## Given a magma <M>M</M> then the <E>free magma ring</E>
## (or <E>magma ring</E> for short) <M>RM</M> of <M>M</M>
## over a ring-with-one <M>R</M> is the set of finite sums
## <M>\sum_{{i \in I}} r_i m_i</M> with <M>r_i \in R</M>,
## and <M>m_i \in M</M>.
## With the obvious addition and <M>R</M>-action from the left,
## <M>RM</M> is a free <M>R</M>-module with <M>R</M>-basis <M>M</M>,
## and with the usual convolution product, <M>RM</M> is a ring.
## <P/>
## Typical examples of free magma rings are
## <P/>
## <List>
## <Item>
## (multivariate) polynomial rings
## (see <Ref Chap="Polynomial Rings and Function Fields"/>),
## where the magma is a free abelian monoid generated by the
## indeterminates,
## </Item>
## <Item>
## group rings (see <Ref Func="IsGroupRing"/>),
## where the magma is a group,
## </Item>
## <Item>
## Laurent polynomial rings, which are group rings of the free abelian
## <!-- #T (see~???) -->
## groups generated by the indeterminates,
## </Item>
## <Item>
## free algebras and free associative algebras, with or without one,
## where the magma is a free magma or a free semigroup,
## or a free magma-with-one or a free monoid, respectively.
## </Item>
## </List>
## Note that formally, polynomial rings in &GAP; are not constructed
## as free magma rings.
## <P/>
## Furthermore, a free Lie algebra is <E>not</E> a magma ring,
## because of the additional relations given by the Jacobi identity;
## see <Ref Sect="Magma Rings modulo Relations"/> for a generalization
## of magma rings that covers such structures.
## <P/>
## The coefficient ring <M>R</M> and the magma <M>M</M> cannot be regarded
## as subsets of <M>RM</M>,
## hence the natural <E>embeddings</E> of <M>R</M> and <M>M</M> into
## <M>RM</M> must be handled via explicit embedding maps
## (see <Ref Sect="Natural Embeddings related to Magma Rings"/>).
## Note that in a magma ring, the addition of elements is in general
## different from an addition that may be defined already for the elements
## of the magma;
## for example, the addition in the group ring of a matrix group does in
## general <E>not</E> coincide with the addition of matrices.
## <P/>
## <Example><![CDATA[
## gap> a:= Algebra( GF(2), [ [ [ Z(2) ] ] ] );; Size( a );
## 2
## gap> rm:= FreeMagmaRing( GF(2), a );;
## gap> emb:= Embedding( a, rm );;
## gap> z:= Zero( a );; o:= One( a );;
## gap> imz:= z ^ emb; IsZero( imz );
## (Z(2)^0)*[ [ 0*Z(2) ] ]
## false
## gap> im1:= ( z + o ) ^ emb;
## (Z(2)^0)*[ [ Z(2)^0 ] ]
## gap> im2:= z ^ emb + o ^ emb;
## (Z(2)^0)*[ [ 0*Z(2) ] ]+(Z(2)^0)*[ [ Z(2)^0 ] ]
## gap> im1 = im2;
## false
## ]]></Example>
## <#/GAPDoc>
##
## <#GAPDoc Label="[2]{mgmring}">
## In order to treat elements of free magma rings uniformly,
## also without an external representation, the attributes
## <Ref Attr="CoefficientsAndMagmaElements"/>
## and <Ref Attr="ZeroCoefficient"/>
## were introduced that allow one to <Q>take an element of an arbitrary
## magma ring into pieces</Q>.
## <P/>
## Conversely, for constructing magma ring elements from coefficients
## and magma elements, <Ref Func="ElementOfMagmaRing"/> can be used.
## (Of course one can also embed each magma element into the magma ring,
## see <Ref Sect="Natural Embeddings related to Magma Rings"/>,
## and then form the linear combination,
## but many unnecessary intermediate elements are created this way.)
## <#/GAPDoc>
##
## <#GAPDoc Label="[3]{mgmring}">
## <Index Key="Embedding" Subkey="for magma rings"><C>Embedding</C></Index>
## Neither the coefficient ring <M>R</M> nor the magma <M>M</M>
## are regarded as subsets of the magma ring <M>RM</M>,
## so one has to use <E>embeddings</E>
## (see <Ref Func="Embedding" Label="for two domains"/>)
## explicitly whenever one needs for example the magma ring element
## corresponding to a given magma element.
## <P/>
## <Example><![CDATA[
## gap> f:= Rationals;; g:= SymmetricGroup( 3 );;
## gap> fg:= FreeMagmaRing( f, g );
## <algebra-with-one over Rationals, with 2 generators>
## gap> Dimension( fg );
## 6
## gap> gens:= GeneratorsOfAlgebraWithOne( fg );
## [ (1)*(1,2,3), (1)*(1,2) ]
## gap> ( 3*gens[1] - 2*gens[2] ) * ( gens[1] + gens[2] );
## (-2)*()+(3)*(2,3)+(3)*(1,3,2)+(-2)*(1,3)
## gap> One( fg );
## (1)*()
## gap> emb:= Embedding( g, fg );;
## gap> elm:= (1,2,3)^emb; elm in fg;
## (1)*(1,2,3)
## true
## gap> new:= elm + One( fg );
## (1)*()+(1)*(1,2,3)
## gap> new^2;
## (1)*()+(2)*(1,2,3)+(1)*(1,3,2)
## gap> emb2:= Embedding( f, fg );;
## gap> elm:= One( f )^emb2; elm in fg;
## (1)*()
## true
## ]]></Example>
## <#/GAPDoc>
##
## <#GAPDoc Label="[4]{mgmring}">
## A more general construction than that of free magma rings allows one
## to create rings that are not free <M>R</M>-modules on a given magma
## <M>M</M> but arise from the magma ring <M>RM</M> by factoring out certain
## identities.
## Examples for such structures are finitely presented (associative)
## algebras and free Lie algebras
## (see <Ref Func="FreeLieAlgebra" Label="for ring, rank (and name)"/>).
## <!-- #T see ... ? -->
## <P/>
## In &GAP;, the use of magma rings modulo relations is limited to
## situations where a normal form of the elements is known and where
## one wants to guarantee that all elements actually constructed are
## in normal form.
## (In particular, the computation of the normal form must be cheap.)
## This is because the methods for comparing elements in magma rings
## modulo relations via <C>\=</C> and <C>\<</C>
## just compare the involved coefficients and magma elements,
## and also the vector space functions regard those monomials as
## linearly independent over the coefficients ring that actually occur
## in the representation of an element of a magma ring modulo relations.
## <P/>
## Thus only very special finitely presented algebras will be represented
## as magma rings modulo relations,
## in general finitely presented algebras are dealt with via the
## mechanism described in
## Chapter <Ref Chap="Finitely Presented Algebras"/>.
## <#/GAPDoc>
##
## <#GAPDoc Label="[5]{mgmring}">
## The <E>family</E> containing elements in the magma ring <M>RM</M>
## in fact contains all elements with coefficients in the family of elements
## of <M>R</M> and magma elements in the family of elements of <M>M</M>.
## So arithmetic operations with coefficients outside <M>R</M> or with
## magma elements outside <M>M</M> might create elements outside <M>RM</M>.
## <P/>
## It should be mentioned that each call of <Ref Func="FreeMagmaRing"/>
## creates a new family of elements,
## so for example the elements of two group rings of permutation groups
## over the same ring lie in different families and therefore are regarded
## as different.
## <P/>
## <Example><![CDATA[
## gap> g:= SymmetricGroup( 3 );;
## gap> h:= AlternatingGroup( 3 );;
## gap> IsSubset( g, h );
## true
## gap> f:= GF(2);;
## gap> fg:= GroupRing( f, g );
## <algebra-with-one over GF(2), with 2 generators>
## gap> fh:= GroupRing( f, h );
## <algebra-with-one over GF(2), with 1 generators>
## gap> IsSubset( fg, fh );
## false
## gap> o1:= One( fh ); o2:= One( fg ); o1 = o2;
## (Z(2)^0)*()
## (Z(2)^0)*()
## false
## gap> emb:= Embedding( g, fg );;
## gap> im:= Image( emb, h );
## <group of size 3 with 1 generators>
## gap> IsSubset( fg, im );
## true
## ]]></Example>
## <P/>
## There is <E>no</E> generic <E>external representation</E> for elements
## in an arbitrary free magma ring.
## For example, polynomials are elements of a free magma ring,
## and they have an external representation relying on the special form
## of the underlying monomials.
## On the other hand, elements in a group ring of a permutation group
## do not admit such an external representation.
## <P/>
## For convenience, magma rings constructed with
## <Ref Func="FreeAlgebra" Label="for ring, rank (and name)"/>,
## <Ref Func="FreeAssociativeAlgebra" Label="for ring, rank (and name)"/>,
## <Ref Func="FreeAlgebraWithOne" Label="for ring, rank (and name)"/>, and
## <Ref Func="FreeAssociativeAlgebraWithOne"
## Label="for ring, rank (and name)"/>
## support an external representation of their elements,
## which is defined as a list of length 2,
## the first entry being the zero coefficient, the second being a list with
## the external representations of the magma elements at the odd positions
## and the corresponding coefficients at the even positions.
## <P/>
## As the above examples show, there are several possible representations
## of magma ring elements, the representations used for polynomials
## (see Chapter <Ref Sect="Polynomials and Rational Functions"/>)
## as well as the default representation <Ref Filt="IsMagmaRingObjDefaultRep"/>
## of magma ring elements.
## The latter simply stores the zero coefficient and a list containing
## the coefficients of the element at the even positions
## and the corresponding magma elements at the odd positions,
## where the succession is compatible with the ordering of magma elements
## via <C>\<</C>.
## <#/GAPDoc>
##
#############################################################################
##
#C IsElementOfMagmaRingModuloRelations( <obj> )
#C IsElementOfMagmaRingModuloRelationsCollection( <obj> )
##
## <#GAPDoc Label="IsElementOfMagmaRingModuloRelations">
## <ManSection>
## <Filt Name="IsElementOfMagmaRingModuloRelations" Arg='obj'
## Type='Category'/>
## <Filt Name="IsElementOfMagmaRingModuloRelationsCollection" Arg='obj'
## Type='Category'/>
##
## <Description>
## This category is used, e. g., for elements of free Lie algebras.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsElementOfMagmaRingModuloRelations", IsScalar );
DeclareCategoryCollections( "IsElementOfMagmaRingModuloRelations" );
#############################################################################
##
#C IsElementOfMagmaRingModuloRelationsFamily( <Fam> )
##
## <#GAPDoc Label="IsElementOfMagmaRingModuloRelationsFamily">
## <ManSection>
## <Filt Name="IsElementOfMagmaRingModuloRelationsFamily" Arg='Fam'
## Type='Category'/>
##
## <Description>
## The family category for the category
## <Ref Filt="IsElementOfMagmaRingModuloRelations" />.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategoryFamily( "IsElementOfMagmaRingModuloRelations" );
#############################################################################
##
#C IsElementOfFreeMagmaRing( <obj> )
#C IsElementOfFreeMagmaRingCollection( <obj> )
##
## <#GAPDoc Label="IsElementOfFreeMagmaRing">
## <ManSection>
## <Filt Name="IsElementOfFreeMagmaRing" Arg='obj' Type='Category'/>
## <Filt Name="IsElementOfFreeMagmaRingCollection" Arg='obj'
## Type='Category'/>
##
## <Description>
## The category of elements of a free magma ring
## (See <Ref Func="IsFreeMagmaRing"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsElementOfFreeMagmaRing",
IsElementOfMagmaRingModuloRelations );
DeclareCategoryCollections( "IsElementOfFreeMagmaRing" );
#############################################################################
##
#C IsElementOfFreeMagmaRingFamily( <Fam> )
##
## <#GAPDoc Label="IsElementOfFreeMagmaRingFamily">
## <ManSection>
## <Filt Name="IsElementOfFreeMagmaRingFamily" Arg='Fam' Type='Category'/>
##
## <Description>
## Elements of families in this category have trivial normalisation, i.e.,
## efficient methods for <C>\=</C> and <C>\<</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategoryFamily( "IsElementOfFreeMagmaRing" );
#############################################################################
##
#A CoefficientsAndMagmaElements( <elm> ) . . . . . for elm. in a magma ring
##
## <#GAPDoc Label="CoefficientsAndMagmaElements">
## <ManSection>
## <Attr Name="CoefficientsAndMagmaElements" Arg='elm'/>
##
## <Description>
## is a list that contains at the odd positions the magma elements,
## and at the even positions their coefficients in the element <A>elm</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CoefficientsAndMagmaElements",
IsElementOfMagmaRingModuloRelations );
#############################################################################
##
#A ZeroCoefficient( <elm> )
##
## <#GAPDoc Label="ZeroCoefficient">
## <ManSection>
## <Attr Name="ZeroCoefficient" Arg='elm'/>
##
## <Description>
## For an element <A>elm</A> of a magma ring (modulo relations) <M>RM</M>,
## <Ref Attr="ZeroCoefficient"/> returns the zero element
## of the coefficient ring <M>R</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ZeroCoefficient", IsElementOfMagmaRingModuloRelations );
#############################################################################
##
#O NormalizedElementOfMagmaRingModuloRelations( <F>, <descr> )
##
## <#GAPDoc Label="NormalizedElementOfMagmaRingModuloRelations">
## <ManSection>
## <Oper Name="NormalizedElementOfMagmaRingModuloRelations" Arg='F, descr'/>
##
## <Description>
## Let <A>F</A> be a family of magma ring elements modulo relations,
## and <A>descr</A> the description of an element in a magma ring modulo
## relations.
## <Ref Func="NormalizedElementOfMagmaRingModuloRelations"/> returns
## a description of the same element,
## but normalized w.r.t. the relations.
## So two elements are equal if and only if the result of
## <Ref Func="NormalizedElementOfMagmaRingModuloRelations"/> is equal for
## their internal data, that is,
## <Ref Func="CoefficientsAndMagmaElements"/> will return the same
## for the corresponding two elements.
## <P/>
## <Ref Func="NormalizedElementOfMagmaRingModuloRelations"/> is allowed
## to return <A>descr</A> itself, it need not make a copy.
## This is the case for example in the case of free magma rings.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "NormalizedElementOfMagmaRingModuloRelations",
[ IsElementOfMagmaRingModuloRelationsFamily, IsList ] );
#############################################################################
##
#C IsMagmaRingModuloRelations( <obj> )
##
## <#GAPDoc Label="IsMagmaRingModuloRelations">
## <ManSection>
## <Filt Name="IsMagmaRingModuloRelations" Arg='obj' Type='Category'/>
##
## <Description>
## A &GAP; object lies in the category
## <Ref Func="IsMagmaRingModuloRelations"/>
## if it has been constructed as a magma ring modulo relations.
## Each element of such a ring has a unique normal form,
## so <Ref Func="CoefficientsAndMagmaElements"/> is well-defined for it.
## <P/>
## This category is not inherited to factor structures,
## which are in general best described as finitely presented algebras,
## see Chapter <Ref Chap="Finitely Presented Algebras"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsMagmaRingModuloRelations", IsFLMLOR );
#############################################################################
##
#C IsFreeMagmaRing( <D> )
##
## <#GAPDoc Label="IsFreeMagmaRing">
## <ManSection>
## <Filt Name="IsFreeMagmaRing" Arg='D' Type='Category'/>
##
## <Description>
## A domain lies in the category <Ref Func="IsFreeMagmaRing"/>
## if it has been constructed as a free magma ring.
## In particular, if <A>D</A> lies in this category then the operations
## <Ref Func="LeftActingDomain"/> and
## <Ref Func="UnderlyingMagma"/> are applicable to <A>D</A>,
## and yield the ring <M>R</M> and the magma <M>M</M>
## such that <A>D</A> is the magma ring <M>RM</M>.
## <P/>
## So being a magma ring in &GAP; includes the knowledge of the ring and
## the magma.
## Note that a magma ring <M>RM</M> may abstractly be generated as a
## magma ring by a magma different from the underlying magma <M>M</M>.
## For example, the group ring of the dihedral group of order <M>8</M>
## over the field with <M>3</M> elements is also spanned by a quaternion
## group of order <M>8</M> over the same field.
## <P/>
## <Example><![CDATA[
## gap> d8:= DihedralGroup( 8 );
## <pc group of size 8 with 3 generators>
## gap> rm:= FreeMagmaRing( GF(3), d8 );
## <algebra-with-one over GF(3), with 3 generators>
## gap> emb:= Embedding( d8, rm );;
## gap> gens:= List( GeneratorsOfGroup( d8 ), x -> x^emb );;
## gap> x1:= gens[1] + gens[2];;
## gap> x2:= ( gens[1] - gens[2] ) * gens[3];;
## gap> x3:= gens[1] * gens[2] * ( One( rm ) - gens[3] );;
## gap> g1:= x1 - x2 + x3;;
## gap> g2:= x1 + x2;;
## gap> q8:= Group( g1, g2 );;
## gap> Size( q8 );
## 8
## gap> ForAny( [ d8, q8 ], IsAbelian );
## false
## gap> List( [ d8, q8 ], g -> Number( AsList( g ), x -> Order( x ) = 2 ) );
## [ 5, 1 ]
## gap> Dimension( Subspace( rm, q8 ) );
## 8
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsFreeMagmaRing", IsMagmaRingModuloRelations );
#############################################################################
##
#C IsFreeMagmaRingWithOne( <obj> )
##
## <#GAPDoc Label="IsFreeMagmaRingWithOne">
## <ManSection>
## <Filt Name="IsFreeMagmaRingWithOne" Arg='obj' Type='Category'/>
##
## <Description>
## <Ref Filt="IsFreeMagmaRingWithOne"/> is just a synonym for the meet of
## <Ref Filt="IsFreeMagmaRing"/> and
## <Ref Filt="IsMagmaWithOne"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsFreeMagmaRingWithOne",
IsFreeMagmaRing and IsMagmaWithOne );
#############################################################################
##
#P IsGroupRing( <obj> )
##
## <#GAPDoc Label="IsGroupRing">
## <ManSection>
## <Prop Name="IsGroupRing" Arg='obj'/>
##
## <Description>
## A <E>group ring</E> is a magma ring where the underlying magma is a group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsGroupRing", IsFreeMagmaRing );
#############################################################################
##
#A UnderlyingMagma( <RM> )
##
## <#GAPDoc Label="UnderlyingMagma">
## <ManSection>
## <Attr Name="UnderlyingMagma" Arg='RM'/>
##
## <Description>
## stores the underlying magma of a free magma ring.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "UnderlyingMagma", IsFreeMagmaRing );
#############################################################################
##
#O ElementOfMagmaRing( <Fam>, <zerocoeff>, <coeffs>, <mgmelms> )
##
## <#GAPDoc Label="ElementOfMagmaRing">
## <ManSection>
## <Oper Name="ElementOfMagmaRing" Arg='Fam, zerocoeff, coeffs, mgmelms'/>
##
## <Description>
## <Ref Func="ElementOfMagmaRing"/> returns the element
## <M>\sum_{{i = 1}}^n c_i m_i'</M>,
## where <M><A>coeffs</A> = [ c_1, c_2, \ldots, c_n ]</M> is a list of
## coefficients, <M><A>mgmelms</A> = [ m_1, m_2, \ldots, m_n ]</M> is a list
## of magma elements,
## and <M>m_i'</M> is the image of <M>m_i</M> under an embedding
## of a magma containing <M>m_i</M> into a magma ring
## whose elements lie in the family <A>Fam</A>.
## <A>zerocoeff</A> must be the zero of the coefficient ring
## containing the <M>c_i</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ElementOfMagmaRing",
[ IsFamily, IsRingElement, IsHomogeneousList, IsHomogeneousList ] );
#############################################################################
##
#F FreeMagmaRing( <R>, <M> )
##
## <#GAPDoc Label="FreeMagmaRing">
## <ManSection>
## <Func Name="FreeMagmaRing" Arg='R, M'/>
##
## <Description>
## is a free magma ring over the ring <A>R</A>, free on the magma <A>M</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FreeMagmaRing" );
#############################################################################
##
#F GroupRing( <R>, <G> )
##
## <#GAPDoc Label="GroupRing">
## <ManSection>
## <Func Name="GroupRing" Arg='R, G'/>
##
## <Description>
## is the group ring of the group <A>G</A>, over the ring <A>R</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "GroupRing" );
#############################################################################
##
#A AugmentationIdeal( <RG> )
##
## <#GAPDoc Label="AugmentationIdeal">
## <ManSection>
## <Attr Name="AugmentationIdeal" Arg='RG'/>
##
## <Description>
## is the augmentation ideal of the group ring <A>RG</A>,
## i.e., the kernel of the trivial representation of <A>RG</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AugmentationIdeal", IsFreeMagmaRing );
#############################################################################
##
#F MagmaRingModuloSpanOfZero( <R>, <M>, <z> )
##
## <#GAPDoc Label="MagmaRingModuloSpanOfZero">
## <ManSection>
## <Func Name="MagmaRingModuloSpanOfZero" Arg='R, M, z'/>
##
## <Description>
## Let <A>R</A> be a ring, <A>M</A> a magma, and <A>z</A> an element of
## <A>M</A> with the property that <M><A>z</A> * m = <A>z</A></M> holds
## for all <M>m \in M</M>.
## The element <A>z</A> could be called a <Q>zero element</Q> of <A>M</A>,
## but note that in general <A>z</A> cannot be obtained as
## <C>Zero( </C><M>m</M><C> )</C> for each <M>m \in M</M>,
## so this situation does not match the definition of <Ref Func="Zero"/>.
## <P/>
## <Ref Func="MagmaRingModuloSpanOfZero"/> returns the magma ring
## <M><A>R</A><A>M</A></M> modulo the relation given by the identification
## of <A>z</A> with zero.
## This is an example of a magma ring modulo relations,
## see <Ref Sect="Magma Rings modulo Relations"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "MagmaRingModuloSpanOfZero" );
#############################################################################
##
#C IsMagmaRingModuloSpanOfZero( <RM> )
##
## <#GAPDoc Label="IsMagmaRingModuloSpanOfZero">
## <ManSection>
## <Filt Name="IsMagmaRingModuloSpanOfZero" Arg='RM' Type='Category'/>
##
## <Description>
## The category of magma rings modulo the span of a zero element.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsMagmaRingModuloSpanOfZero", IsMagmaRingModuloRelations );
#############################################################################
##
#C IsElementOfMagmaRingModuloSpanOfZeroFamily( <Fam> )
##
## <#GAPDoc Label="IsElementOfMagmaRingModuloSpanOfZeroFamily">
## <ManSection>
## <Filt Name="IsElementOfMagmaRingModuloSpanOfZeroFamily" Arg='Fam'
## Type='Category'/>
##
## <Description>
## We need this for the normalization method, which takes a family as first
## argument.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsElementOfMagmaRingModuloSpanOfZeroFamily",
IsElementOfMagmaRingModuloRelationsFamily );
#############################################################################
##
## 3. Free left modules in magma rings modulo relations
##
#############################################################################
##
#F IsSpaceOfElementsOfMagmaRing( <V> )
##
## <ManSection>
## <Func Name="IsSpaceOfElementsOfMagmaRing" Arg='V'/>
##
## <Description>
## If an <M>F</M>-vector space <A>V</A> is in the filter
## <Ref Func="IsSpaceOfElementsOfMagmaRing"/> then this expresses that
## <A>V</A> consists of elements in a magma ring modulo relations,
## and that <A>V</A> is handled via the mechanism of nice bases
## (see <Ref ???="..."/>) in the following way.
## Let <M>V</M> be a free <M>F</M>-module of elements in a magma ring modulo
## relations <M>FM</M>, and let <M>S</M> be the set of magma elements that
## occur in the vector space generators of <M>V</M>.
## Then the <Ref Func="NiceFreeLeftModuleInfo"/> value of <A>V</A> is
## a record with the following components.
## <List>
## <Mark><C>family</C></Mark>
## <Item>
## the elements family of <A>V</A>,
## </Item>
## <Mark><C>monomials</C></Mark>
## <Item>
## the list <M>S</M> of magma elements that occur in elements of <A>V</A>,
## </Item>
## <Mark><C>zerocoeff</C></Mark>
## <Item>
## the zero coefficient of elements in <A>V</A>,
## </Item>
## <Mark><C>zerovector</C></Mark>
## <Item>
## the zero row vector in the nice left module.
## </Item>
## </List>
## The <Ref Func="NiceVector"/> value of <M>v \in</M> <A>V</A> is defined as
## the row vector of coefficients of <M>v</M> w.r.t. <M>S</M>.
## <P/>
## Finite dimensional free left modules of elements in a magma ring modulo
## relations
## (<E>not</E> the magma rings themselves, they have special methods)
## are by default handled via the mechanism of nice bases.
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsSpaceOfElementsOfMagmaRing",
"for free left modules of magma rings modulo relations" );
#############################################################################
##
#E
|