This file is indexed.

/usr/share/gap/lib/modfree.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
#############################################################################
##
#W  modfree.gi                  GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains generic methods for free left modules.
##


#############################################################################
##
#M  \=( <V>, <W> )  . . . . . . . . . test if two free left modules are equal
##
##  This method is used also for algebras and algebras-with-one,
##  in particular also for infinite dimensional vector spaces.
##  Note that no generators are accessed here,
##  this happens in the method chosen for `IsSubset'.
##
InstallMethod( \=,
    "for two free left modules (at least one fin. dim.)",
    IsIdenticalObj,
    [ IsFreeLeftModule, IsFreeLeftModule ],
    function( V, W )

    # If the dimensions of the two free modules are known and are different
    # then we need not look at elements.
    if     HasDimension( V ) and HasDimension( W )
       and IsIdenticalObj( LeftActingDomain( V ), LeftActingDomain( W ) ) then
      if   Dimension( V ) <> Dimension( W ) then
        return false;
      elif IsInt( Dimension( V ) ) then
        # Only one inclusion must be tested.
        return IsSubset( V, W );
      fi;
    fi;

    # Check the inclusions.
    return IsSubset( V, W ) and IsSubset( W, V );
    end );


#############################################################################
##
#M  \<( <V>, <W> )  . . . . . . . . . . . . . .  test if <V> is less than <W>
##
##  If the left acting domains are different, compare the free modules viewed
##  over their intersection.
##  Otherwise compare the dimensions, and if both are equal,
##  delegate to canonical bases.
##
##  (Note that modules over different left acting domains can be equal,
##  so we are not allowed to compare first w.r.t. the left acting domains.)
##
InstallMethod( \<,
    "for two free left modules",
    IsIdenticalObj,
    [ IsFreeLeftModule, IsFreeLeftModule ],
    function( V, W )
    local inters;
    if LeftActingDomain( V ) <> LeftActingDomain( W ) then
      inters:= Intersection( LeftActingDomain( V ), LeftActingDomain( W ) );
      return AsLeftModule( inters, V ) < AsLeftModule( inters, W );
    elif Dimension( V ) <> Dimension( W ) then
      return Dimension( V ) < Dimension( W );
    else
      return   Reversed( BasisVectors( CanonicalBasis( V ) ) )
             < Reversed( BasisVectors( CanonicalBasis( W ) ) );
    fi;
    end );


#############################################################################
##
#M  \in( <v>, <V> ) . . . . . . . . . .  membership test for free left module
##
##  We delegate this task to a basis.
##
InstallMethod( \in,
    "for vector and fin. dim. free left module",
    IsElmsColls,
    [ IsVector, IsFreeLeftModule and IsFiniteDimensional ],
    function( v, V )
    return Coefficients( Basis( V ), v ) <> fail;
    end );


#############################################################################
##
#M  IsFinite( <V> ) . . . . . . . . . .  test if a free left module is finite
##
##  A free left module is finite if and only if it is trivial (that is, all
##  generators are zero) or if it is finite dimensional and the coefficients
##  domain is finite.
##
##  Note that we have to be careful not to delegate to `IsFinite' for the
##  left acting domain if the module is equal to its left acting domain,
##  which may occur for fields.
##  (Note that no special method for a FLMLOR, FLMLOR-with-one, or division
##  ring is needed since all generator dependent questions are handled in the
##  `IsTrivial' call.)
##
InstallImmediateMethod( IsFinite,
    IsFreeLeftModule and HasIsFiniteDimensional, 0,
    function( V )
    if not IsFiniteDimensional( V ) then
      return false;
    else
      TryNextMethod();
    fi;
    end );

InstallMethod( IsFinite,
    "for a free left module",
    [ IsFreeLeftModule ],
    function( V )
    if not IsFiniteDimensional( V ) then
      return false;
    elif IsTrivial( V ) then
      return true;
    elif V <> LeftActingDomain( V ) then
      return IsFinite( LeftActingDomain( V ) );
    elif Characteristic( V ) = 0 then
      return false;
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  IsTrivial( <V> )
##
InstallImmediateMethod( IsTrivial, IsFreeLeftModule and HasDimension, 0,
    V -> Dimension( V ) = 0 );

InstallMethod( IsTrivial,
    "for a free left module",
    [ IsFreeLeftModule ],
    V -> Dimension( V ) = 0 );


#############################################################################
##
#M  Size( <V> ) . . . . . . . . . . . . . . . . .  size of a free left module
##
InstallMethod( Size,
    "for a free left module",
    [ IsFreeLeftModule ],
    function( V )
    if IsFiniteDimensional( V ) then
      if   IsFinite( LeftActingDomain( V ) ) then
        return Size( LeftActingDomain( V ) ) ^ Dimension( V );
      elif IsTrivial( V ) then
        return 1;
      fi;
    fi;
    return infinity;
    end );


#############################################################################
##
#M  AsList( <V> ) . . . . . . . . . . . . . .  elements of a free left module
#M  AsSSortedList( <V> ) . . . . . . . . . . .  elements of a free left module
##
##  is the set of elements of the free left module <V>,
##  computed from a basis of <V>.
##
##  Either this basis has been entered when the space was constructed, or a
##  basis is computed together with the elements list.
##
AsListOfFreeLeftModule := function( V )
    local elms,      # elements list, result
          B,         # $F$-basis of $V$
          new,       # intermediate elements list
          v,         # one generator of $V$
          i;         # loop variable

    if not IsFinite( V ) then
      Error( "cannot compute elements list of infinite domain <V>" );
    fi;

    B    := Basis( V );
    elms := [ Zero( V ) ];
#T check whether we have the elements now ?
    for v in BasisVectors( B ) do
      new:= [];
      for i in AsList( LeftActingDomain( V ) ) do
        Append( new, List( elms, x -> x + i * v ) );
      od;
      elms:= new;
    od;
    Sort( elms );

    # Return the elements list.
    return elms;
end;

InstallMethod( AsList,
    "for a free left module",
    [ IsFreeLeftModule ],
    AsListOfFreeLeftModule );

InstallMethod( AsSSortedList,
    "for a free left module",
    [ IsFreeLeftModule ],
    AsListOfFreeLeftModule );
#T problem: may be called twice, but does the same job ...
#T Note that 'AsList' is not allowed to call 'AsSSortedList'!


#############################################################################
##
#M  Random( <V> ) . . . . . . . . . . . . random vector of a free left module
##
InstallMethod( Random,
    "for a free left module",
    [ IsFreeLeftModule ],
    function( V )
    local F;    # coefficient field of <V>

    if IsFiniteDimensional( V ) then
      F:= LeftActingDomain( V );
      return LinearCombination( Basis( V ),
                                List( [ 1 .. Dimension( V ) ],
                                      x -> Random( F ) ) );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#F  GeneratorsOverIntersection( <V>, <gens>, <K>, <L> )
##
##  Let <gens> be a list of (vector space, algebra, algebra-with-one, field)
##  generators of a <K>-free left module <V>,
##  and <L> be a field with the same prime field as <K>.
##  Furthermore, let $I$ be the intersection of <K> and <L>,
##  and let $B$ be an $I$-basis of <K>.
##  If <gens> is nonempty then `GeneratorsOverIntersection' returns
##  the list containing $\{ b \cdot a; b \in B, a \in <gens> \}$,
##  which is a set of generators (in the same sense) of <V> over <L>.
##  If <gens> is empty then the list containing the zero element of <V> is
##  returned.
##
##  This function is used for `IsSubset' methods for vector spaces, algebras,
##  algebras-with-one.
##  Note that in `IsSubset', we want to avoid delegating to structures with
##  equal `LeftActingDomain' value, mainly because we want to use the
##  membership test for the original arguments of `IsSubset' rather than for
##  newly created objects.
##
BindGlobal( "GeneratorsOverIntersection", function( V, gens, K, L )
    local I, B;

    if   IsEmpty( gens ) then
      return [ Zero( V ) ];
    elif IsSubset( L, K ) then
      return gens;
    elif IsSubset( K, L ) then
      I:= L;
    else
      I:= Intersection( K, L );
    fi;
    K:= AsField( I, K );
    Assert( 1, IsFiniteDimensional( K ) );
    B:= BasisVectors( Basis( K ) );
    return Concatenation( List( B, b -> List( gens, a -> b * a ) ) );
    end );


#############################################################################
##
#M  IsSubset( <V>, <U> )
##
##  This method is used also in situations where <U> is a (perhaps infinite
##  dimensional) algebra but <V> is not.
##
InstallMethod( IsSubset,
    "for two free left modules",
    IsIdenticalObj,
    [ IsFreeLeftModule, IsFreeLeftModule ],
    function( V, U )
    local K, L;
    K:= LeftActingDomain( U );
    L:= LeftActingDomain( V );
    if   IsFiniteDimensional( U ) then
#T does only work if the left acting domain is a field!
#T (would work for division rings or algebras, but general rings ?)
      return IsSubset( V, GeneratorsOverIntersection(
                              U, GeneratorsOfLeftModule( U ), K, L ) );
    elif     IsFiniteDimensional( V )
         and IsFiniteDimensional( AsField( Intersection2( K, L ), L ) ) then
      return false;
    else
      # For two infinite dimensional modules, we should have succeeded
      # in a more special method.
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  Dimension( <V> )
##
InstallMethod( Dimension,
    "for a free left module",
    [ IsFreeLeftModule ],
    function( V )
    if IsFiniteDimensional( V ) then
      return Length( BasisVectors( Basis( V ) ) );
    else
      return infinity;
    fi;
    end );


#############################################################################
##
#M  IsFiniteDimensional( <M> )  . for a free left module with known dimension
##
InstallMethod( IsFiniteDimensional,
    "for a free left module with known dimension",
    [ IsFreeLeftModule and HasDimension ],
    M -> IsInt( Dimension( M ) ) );


#############################################################################
##
#M  GeneratorsOfLeftModule( <V> ) . left module geners. of a free left module
##
InstallImmediateMethod( GeneratorsOfLeftModule,
    IsFreeLeftModule and HasBasis and IsAttributeStoringRep, 0,
    function( V )
    V:= Basis( V );
    if HasBasisVectors( V ) then
      return BasisVectors( V );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  Enumerator( <V> )
##
##  We delegate this task to a basis of <V>.
##  *Note* that anyhow we want the possibility to enumerate w.r.t.
##  a prescribed basis.
##
InstallMethod( Enumerator,
    "for free left module (delegate to 'EnumeratorByBasis')",
    [ IsFreeLeftModule ],
    V -> EnumeratorByBasis( Basis( V ) ) );


#############################################################################
##
#M  Iterator( <V> )
##
##  We delegate this task to a basis of <V>.
##  *Note* that anyhow we want the possibility to iterate w.r.t.
##  a prescribed basis.
##
InstallMethod( Iterator,
    "for free left module (delegate to 'IteratorByBasis')",
    [ IsFreeLeftModule ],
    V -> IteratorByBasis( Basis( V ) ) );


#############################################################################
##
#M  ClosureLeftModule( <V>, <a> ) . . . . . . . closure of a free left module
##
InstallMethod( ClosureLeftModule,
    "for free left module and vector",
    IsCollsElms,
    [ IsFreeLeftModule and HasBasis, IsVector ],
    function( V, w )
    local   B;  # basis of 'V'

    # We can test membership easily.
#T why easily?
    B:= Basis( V );
    if Coefficients( B, w ) = fail then
      return LeftModuleByGenerators( LeftActingDomain( V ),
                             Concatenation( BasisVectors( B ), [ w ] ) );
    else
      return V;
    fi;
    end );


#############################################################################
##
#F  FreeLeftModule( <R>, <gens>[, <zero>][, "basis"] )
##
InstallGlobalFunction(FreeLeftModule,function( arg )
#T check that the families have the same characteristic?
#T 'CharacteristicFamily' ?
    local V;

    # ring and list of generators
    if Length( arg ) = 2 and IsRing( arg[1] )
                         and IsHomogeneousList( arg[2] ) then
      V:= LeftModuleByGenerators( arg[1], arg[2] );
      SetFilterObj( V, IsFreeLeftModule );

    # ring, list of generators plus zero
    elif Length( arg ) = 3 and IsRing( arg[1] )
                           and IsList( arg[2] ) then
      if arg[3] = "basis" then
        V:= LeftModuleByGenerators( arg[1], arg[2] );
        SetFilterObj( V, IsFreeLeftModule );
        UseBasis( V, arg[2] );
      else
        V:= LeftModuleByGenerators( arg[1], arg[2], arg[3] );
        SetFilterObj( V, IsFreeLeftModule );
      fi;

    # ring, list of generators plus zero
    elif Length( arg ) = 4 and IsRing( arg[1] )
                           and IsList( arg[2] )
                           and arg[4] = "basis" then
      V:= LeftModuleByGenerators( arg[1], arg[2], arg[3] );
      SetFilterObj( V, IsFreeLeftModule );
      UseBasis( V, arg[2] );

    # no argument given, error
    else
      Error( "usage: FreeLeftModule( <R>, <gens>[, <zero>][, \"basis\"] )");
    fi;

    # Return the result.
    return V;
end);


##############################################################################
##
#M  UseBasis( <V>, <gens> )
##
##  The vectors in the list <gens> are known to form a basis of the free left
##  module <V>.
##  'UseBasis' stores information in <V> that can be derived form this fact,
##  namely
##  - <gens> are stored as left module generators if no such generators were
##    bound (this is useful especially if <V> is an algebra),
##  - the dimension of <V> is stored,
##  - a basis record is constructed from the vectors in <gens>, and if this
##    basis is semi-echelonized, or if it knows about a semi-echelonized
##    basis (this means that the basis itself is a relative basis),
##    then the nice basis is stored as '<V>.basis'.
#T Shall the overhead be avoided to compute a relative basis and then to
#T decide here that we want to forget about it ?
##
InstallMethod( UseBasis,
    "for a free left module and a homog. list",
    [ IsFreeLeftModule, IsHomogeneousList ],
    function( V, gens )
#T    local B;
    if not HasGeneratorsOfLeftModule( V ) then
      SetGeneratorsOfLeftModule( V, gens );
    fi;
    if not HasDimension( V ) then
      SetDimension( V, Length( gens ) );
    fi;
#T     if not HasBasis( V ) then
#T       B:= BasisNC( V, gens );
#T       if   IsSemiEchelonized( B ) then
#T         SetBasis( V, B );
#T       elif IsBound( B.basis ) then
#T         V.basis:= B.basis;
#T       fi;
#T     fi;
    end );


#############################################################################
##
#M  ViewObj( <V> )  . . . . . . . . . . . . . . . . . view a free left module
##
##  print left acting domain, if known also dimension or no. of generators
##
InstallMethod( ViewObj,
    "for free left module with known dimension",
    [ IsFreeLeftModule and HasDimension ],
    function( V )
    Print( "<free left module of dimension ", Dimension( V ),
           " over ", LeftActingDomain( V ), ">" );
    end );

InstallMethod( ViewObj,
    "for free left module with known generators",
    [ IsFreeLeftModule and HasGeneratorsOfLeftModule ],
    function( V )
    Print( "<free left module over ", LeftActingDomain( V ), ", with ",
           Length( GeneratorsOfLeftModule( V ) ), " generators>" );
    end );

InstallMethod( ViewObj,
    "for free left module",
    [ IsFreeLeftModule ],
    function( V )
    Print( "<free left module over ", LeftActingDomain( V ), ">" );
    end );


#############################################################################
##
#M  PrintObj( <A> ) . . . . . . . . . . . . . pretty print a free left module
##
InstallMethod( PrintObj,
    "for free left module with known generators",
    [ IsFreeLeftModule and HasGeneratorsOfLeftModule ],
    function( V )
    if IsEmpty( GeneratorsOfLeftModule( V ) ) then
      Print( "FreeLeftModule( ", LeftActingDomain( V ), ", [], ",
             Zero( V ), " )" );
    else
      Print( "FreeLeftModule( ", LeftActingDomain( V ), ", ",
             GeneratorsOfLeftModule( V ), " )" );
    fi;
    end );

InstallMethod( PrintObj,
    "for free left module",
    [ IsFreeLeftModule ],
    function( V )
    Print( "FreeLeftModule( ", LeftActingDomain( V ), ", ... )" );
    end );


#############################################################################
##
#E