/usr/share/gap/lib/modfree.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 | #############################################################################
##
#W modfree.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains generic methods for free left modules.
##
#############################################################################
##
#M \=( <V>, <W> ) . . . . . . . . . test if two free left modules are equal
##
## This method is used also for algebras and algebras-with-one,
## in particular also for infinite dimensional vector spaces.
## Note that no generators are accessed here,
## this happens in the method chosen for `IsSubset'.
##
InstallMethod( \=,
"for two free left modules (at least one fin. dim.)",
IsIdenticalObj,
[ IsFreeLeftModule, IsFreeLeftModule ],
function( V, W )
# If the dimensions of the two free modules are known and are different
# then we need not look at elements.
if HasDimension( V ) and HasDimension( W )
and IsIdenticalObj( LeftActingDomain( V ), LeftActingDomain( W ) ) then
if Dimension( V ) <> Dimension( W ) then
return false;
elif IsInt( Dimension( V ) ) then
# Only one inclusion must be tested.
return IsSubset( V, W );
fi;
fi;
# Check the inclusions.
return IsSubset( V, W ) and IsSubset( W, V );
end );
#############################################################################
##
#M \<( <V>, <W> ) . . . . . . . . . . . . . . test if <V> is less than <W>
##
## If the left acting domains are different, compare the free modules viewed
## over their intersection.
## Otherwise compare the dimensions, and if both are equal,
## delegate to canonical bases.
##
## (Note that modules over different left acting domains can be equal,
## so we are not allowed to compare first w.r.t. the left acting domains.)
##
InstallMethod( \<,
"for two free left modules",
IsIdenticalObj,
[ IsFreeLeftModule, IsFreeLeftModule ],
function( V, W )
local inters;
if LeftActingDomain( V ) <> LeftActingDomain( W ) then
inters:= Intersection( LeftActingDomain( V ), LeftActingDomain( W ) );
return AsLeftModule( inters, V ) < AsLeftModule( inters, W );
elif Dimension( V ) <> Dimension( W ) then
return Dimension( V ) < Dimension( W );
else
return Reversed( BasisVectors( CanonicalBasis( V ) ) )
< Reversed( BasisVectors( CanonicalBasis( W ) ) );
fi;
end );
#############################################################################
##
#M \in( <v>, <V> ) . . . . . . . . . . membership test for free left module
##
## We delegate this task to a basis.
##
InstallMethod( \in,
"for vector and fin. dim. free left module",
IsElmsColls,
[ IsVector, IsFreeLeftModule and IsFiniteDimensional ],
function( v, V )
return Coefficients( Basis( V ), v ) <> fail;
end );
#############################################################################
##
#M IsFinite( <V> ) . . . . . . . . . . test if a free left module is finite
##
## A free left module is finite if and only if it is trivial (that is, all
## generators are zero) or if it is finite dimensional and the coefficients
## domain is finite.
##
## Note that we have to be careful not to delegate to `IsFinite' for the
## left acting domain if the module is equal to its left acting domain,
## which may occur for fields.
## (Note that no special method for a FLMLOR, FLMLOR-with-one, or division
## ring is needed since all generator dependent questions are handled in the
## `IsTrivial' call.)
##
InstallImmediateMethod( IsFinite,
IsFreeLeftModule and HasIsFiniteDimensional, 0,
function( V )
if not IsFiniteDimensional( V ) then
return false;
else
TryNextMethod();
fi;
end );
InstallMethod( IsFinite,
"for a free left module",
[ IsFreeLeftModule ],
function( V )
if not IsFiniteDimensional( V ) then
return false;
elif IsTrivial( V ) then
return true;
elif V <> LeftActingDomain( V ) then
return IsFinite( LeftActingDomain( V ) );
elif Characteristic( V ) = 0 then
return false;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M IsTrivial( <V> )
##
InstallImmediateMethod( IsTrivial, IsFreeLeftModule and HasDimension, 0,
V -> Dimension( V ) = 0 );
InstallMethod( IsTrivial,
"for a free left module",
[ IsFreeLeftModule ],
V -> Dimension( V ) = 0 );
#############################################################################
##
#M Size( <V> ) . . . . . . . . . . . . . . . . . size of a free left module
##
InstallMethod( Size,
"for a free left module",
[ IsFreeLeftModule ],
function( V )
if IsFiniteDimensional( V ) then
if IsFinite( LeftActingDomain( V ) ) then
return Size( LeftActingDomain( V ) ) ^ Dimension( V );
elif IsTrivial( V ) then
return 1;
fi;
fi;
return infinity;
end );
#############################################################################
##
#M AsList( <V> ) . . . . . . . . . . . . . . elements of a free left module
#M AsSSortedList( <V> ) . . . . . . . . . . . elements of a free left module
##
## is the set of elements of the free left module <V>,
## computed from a basis of <V>.
##
## Either this basis has been entered when the space was constructed, or a
## basis is computed together with the elements list.
##
AsListOfFreeLeftModule := function( V )
local elms, # elements list, result
B, # $F$-basis of $V$
new, # intermediate elements list
v, # one generator of $V$
i; # loop variable
if not IsFinite( V ) then
Error( "cannot compute elements list of infinite domain <V>" );
fi;
B := Basis( V );
elms := [ Zero( V ) ];
#T check whether we have the elements now ?
for v in BasisVectors( B ) do
new:= [];
for i in AsList( LeftActingDomain( V ) ) do
Append( new, List( elms, x -> x + i * v ) );
od;
elms:= new;
od;
Sort( elms );
# Return the elements list.
return elms;
end;
InstallMethod( AsList,
"for a free left module",
[ IsFreeLeftModule ],
AsListOfFreeLeftModule );
InstallMethod( AsSSortedList,
"for a free left module",
[ IsFreeLeftModule ],
AsListOfFreeLeftModule );
#T problem: may be called twice, but does the same job ...
#T Note that 'AsList' is not allowed to call 'AsSSortedList'!
#############################################################################
##
#M Random( <V> ) . . . . . . . . . . . . random vector of a free left module
##
InstallMethod( Random,
"for a free left module",
[ IsFreeLeftModule ],
function( V )
local F; # coefficient field of <V>
if IsFiniteDimensional( V ) then
F:= LeftActingDomain( V );
return LinearCombination( Basis( V ),
List( [ 1 .. Dimension( V ) ],
x -> Random( F ) ) );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#F GeneratorsOverIntersection( <V>, <gens>, <K>, <L> )
##
## Let <gens> be a list of (vector space, algebra, algebra-with-one, field)
## generators of a <K>-free left module <V>,
## and <L> be a field with the same prime field as <K>.
## Furthermore, let $I$ be the intersection of <K> and <L>,
## and let $B$ be an $I$-basis of <K>.
## If <gens> is nonempty then `GeneratorsOverIntersection' returns
## the list containing $\{ b \cdot a; b \in B, a \in <gens> \}$,
## which is a set of generators (in the same sense) of <V> over <L>.
## If <gens> is empty then the list containing the zero element of <V> is
## returned.
##
## This function is used for `IsSubset' methods for vector spaces, algebras,
## algebras-with-one.
## Note that in `IsSubset', we want to avoid delegating to structures with
## equal `LeftActingDomain' value, mainly because we want to use the
## membership test for the original arguments of `IsSubset' rather than for
## newly created objects.
##
BindGlobal( "GeneratorsOverIntersection", function( V, gens, K, L )
local I, B;
if IsEmpty( gens ) then
return [ Zero( V ) ];
elif IsSubset( L, K ) then
return gens;
elif IsSubset( K, L ) then
I:= L;
else
I:= Intersection( K, L );
fi;
K:= AsField( I, K );
Assert( 1, IsFiniteDimensional( K ) );
B:= BasisVectors( Basis( K ) );
return Concatenation( List( B, b -> List( gens, a -> b * a ) ) );
end );
#############################################################################
##
#M IsSubset( <V>, <U> )
##
## This method is used also in situations where <U> is a (perhaps infinite
## dimensional) algebra but <V> is not.
##
InstallMethod( IsSubset,
"for two free left modules",
IsIdenticalObj,
[ IsFreeLeftModule, IsFreeLeftModule ],
function( V, U )
local K, L;
K:= LeftActingDomain( U );
L:= LeftActingDomain( V );
if IsFiniteDimensional( U ) then
#T does only work if the left acting domain is a field!
#T (would work for division rings or algebras, but general rings ?)
return IsSubset( V, GeneratorsOverIntersection(
U, GeneratorsOfLeftModule( U ), K, L ) );
elif IsFiniteDimensional( V )
and IsFiniteDimensional( AsField( Intersection2( K, L ), L ) ) then
return false;
else
# For two infinite dimensional modules, we should have succeeded
# in a more special method.
TryNextMethod();
fi;
end );
#############################################################################
##
#M Dimension( <V> )
##
InstallMethod( Dimension,
"for a free left module",
[ IsFreeLeftModule ],
function( V )
if IsFiniteDimensional( V ) then
return Length( BasisVectors( Basis( V ) ) );
else
return infinity;
fi;
end );
#############################################################################
##
#M IsFiniteDimensional( <M> ) . for a free left module with known dimension
##
InstallMethod( IsFiniteDimensional,
"for a free left module with known dimension",
[ IsFreeLeftModule and HasDimension ],
M -> IsInt( Dimension( M ) ) );
#############################################################################
##
#M GeneratorsOfLeftModule( <V> ) . left module geners. of a free left module
##
InstallImmediateMethod( GeneratorsOfLeftModule,
IsFreeLeftModule and HasBasis and IsAttributeStoringRep, 0,
function( V )
V:= Basis( V );
if HasBasisVectors( V ) then
return BasisVectors( V );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M Enumerator( <V> )
##
## We delegate this task to a basis of <V>.
## *Note* that anyhow we want the possibility to enumerate w.r.t.
## a prescribed basis.
##
InstallMethod( Enumerator,
"for free left module (delegate to 'EnumeratorByBasis')",
[ IsFreeLeftModule ],
V -> EnumeratorByBasis( Basis( V ) ) );
#############################################################################
##
#M Iterator( <V> )
##
## We delegate this task to a basis of <V>.
## *Note* that anyhow we want the possibility to iterate w.r.t.
## a prescribed basis.
##
InstallMethod( Iterator,
"for free left module (delegate to 'IteratorByBasis')",
[ IsFreeLeftModule ],
V -> IteratorByBasis( Basis( V ) ) );
#############################################################################
##
#M ClosureLeftModule( <V>, <a> ) . . . . . . . closure of a free left module
##
InstallMethod( ClosureLeftModule,
"for free left module and vector",
IsCollsElms,
[ IsFreeLeftModule and HasBasis, IsVector ],
function( V, w )
local B; # basis of 'V'
# We can test membership easily.
#T why easily?
B:= Basis( V );
if Coefficients( B, w ) = fail then
return LeftModuleByGenerators( LeftActingDomain( V ),
Concatenation( BasisVectors( B ), [ w ] ) );
else
return V;
fi;
end );
#############################################################################
##
#F FreeLeftModule( <R>, <gens>[, <zero>][, "basis"] )
##
InstallGlobalFunction(FreeLeftModule,function( arg )
#T check that the families have the same characteristic?
#T 'CharacteristicFamily' ?
local V;
# ring and list of generators
if Length( arg ) = 2 and IsRing( arg[1] )
and IsHomogeneousList( arg[2] ) then
V:= LeftModuleByGenerators( arg[1], arg[2] );
SetFilterObj( V, IsFreeLeftModule );
# ring, list of generators plus zero
elif Length( arg ) = 3 and IsRing( arg[1] )
and IsList( arg[2] ) then
if arg[3] = "basis" then
V:= LeftModuleByGenerators( arg[1], arg[2] );
SetFilterObj( V, IsFreeLeftModule );
UseBasis( V, arg[2] );
else
V:= LeftModuleByGenerators( arg[1], arg[2], arg[3] );
SetFilterObj( V, IsFreeLeftModule );
fi;
# ring, list of generators plus zero
elif Length( arg ) = 4 and IsRing( arg[1] )
and IsList( arg[2] )
and arg[4] = "basis" then
V:= LeftModuleByGenerators( arg[1], arg[2], arg[3] );
SetFilterObj( V, IsFreeLeftModule );
UseBasis( V, arg[2] );
# no argument given, error
else
Error( "usage: FreeLeftModule( <R>, <gens>[, <zero>][, \"basis\"] )");
fi;
# Return the result.
return V;
end);
##############################################################################
##
#M UseBasis( <V>, <gens> )
##
## The vectors in the list <gens> are known to form a basis of the free left
## module <V>.
## 'UseBasis' stores information in <V> that can be derived form this fact,
## namely
## - <gens> are stored as left module generators if no such generators were
## bound (this is useful especially if <V> is an algebra),
## - the dimension of <V> is stored,
## - a basis record is constructed from the vectors in <gens>, and if this
## basis is semi-echelonized, or if it knows about a semi-echelonized
## basis (this means that the basis itself is a relative basis),
## then the nice basis is stored as '<V>.basis'.
#T Shall the overhead be avoided to compute a relative basis and then to
#T decide here that we want to forget about it ?
##
InstallMethod( UseBasis,
"for a free left module and a homog. list",
[ IsFreeLeftModule, IsHomogeneousList ],
function( V, gens )
#T local B;
if not HasGeneratorsOfLeftModule( V ) then
SetGeneratorsOfLeftModule( V, gens );
fi;
if not HasDimension( V ) then
SetDimension( V, Length( gens ) );
fi;
#T if not HasBasis( V ) then
#T B:= BasisNC( V, gens );
#T if IsSemiEchelonized( B ) then
#T SetBasis( V, B );
#T elif IsBound( B.basis ) then
#T V.basis:= B.basis;
#T fi;
#T fi;
end );
#############################################################################
##
#M ViewObj( <V> ) . . . . . . . . . . . . . . . . . view a free left module
##
## print left acting domain, if known also dimension or no. of generators
##
InstallMethod( ViewObj,
"for free left module with known dimension",
[ IsFreeLeftModule and HasDimension ],
function( V )
Print( "<free left module of dimension ", Dimension( V ),
" over ", LeftActingDomain( V ), ">" );
end );
InstallMethod( ViewObj,
"for free left module with known generators",
[ IsFreeLeftModule and HasGeneratorsOfLeftModule ],
function( V )
Print( "<free left module over ", LeftActingDomain( V ), ", with ",
Length( GeneratorsOfLeftModule( V ) ), " generators>" );
end );
InstallMethod( ViewObj,
"for free left module",
[ IsFreeLeftModule ],
function( V )
Print( "<free left module over ", LeftActingDomain( V ), ">" );
end );
#############################################################################
##
#M PrintObj( <A> ) . . . . . . . . . . . . . pretty print a free left module
##
InstallMethod( PrintObj,
"for free left module with known generators",
[ IsFreeLeftModule and HasGeneratorsOfLeftModule ],
function( V )
if IsEmpty( GeneratorsOfLeftModule( V ) ) then
Print( "FreeLeftModule( ", LeftActingDomain( V ), ", [], ",
Zero( V ), " )" );
else
Print( "FreeLeftModule( ", LeftActingDomain( V ), ", ",
GeneratorsOfLeftModule( V ), " )" );
fi;
end );
InstallMethod( PrintObj,
"for free left module",
[ IsFreeLeftModule ],
function( V )
Print( "FreeLeftModule( ", LeftActingDomain( V ), ", ... )" );
end );
#############################################################################
##
#E
|