/usr/share/gap/lib/module.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 | #############################################################################
##
#W module.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for left modules, right modules,
## and bimodules.
##
#############################################################################
##
#C IsLeftOperatorAdditiveGroup( <D> )
##
## <#GAPDoc Label="IsLeftOperatorAdditiveGroup">
## <ManSection>
## <Filt Name="IsLeftOperatorAdditiveGroup" Arg='D' Type='Category'/>
##
## <Description>
## A domain <A>D</A> lies in <C>IsLeftOperatorAdditiveGroup</C>
## if it is an additive group that is closed under scalar multiplication
## from the left, and such that
## <M>\lambda * ( x + y ) = \lambda * x + \lambda * y</M>
## for all scalars <M>\lambda</M> and elements <M>x, y \in D</M>
## (here and below by scalars we mean elements of a domain acting
## on <A>D</A> from left or right as appropriate).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsLeftOperatorAdditiveGroup",
IsAdditiveGroup
and IsExtLSet
and IsDistributiveLOpDSum );
#############################################################################
##
#C IsLeftModule( <M> )
##
## <#GAPDoc Label="IsLeftModule">
## <ManSection>
## <Filt Name="IsLeftModule" Arg='M' Type='Category'/>
##
## <Description>
## A domain <A>M</A> lies in <C>IsLeftModule</C>
## if it lies in <C>IsLeftOperatorAdditiveGroup</C>,
## <E>and</E> the set of scalars forms a ring,
## <E>and</E> <M>(\lambda + \mu) * x = \lambda * x + \mu * x</M>
## for scalars <M>\lambda, \mu</M> and <M>x \in M</M>,
## <E>and</E> scalar multiplication satisfies
## <M>\lambda * (\mu * x) = (\lambda * \mu) * x</M>
## for scalars <M>\lambda, \mu</M> and <M>x \in M</M>.
## <Example><![CDATA[
## gap> V:= FullRowSpace( Rationals, 3 );
## ( Rationals^3 )
## gap> IsLeftModule( V );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsLeftModule",
IsLeftOperatorAdditiveGroup
and IsLeftActedOnByRing
and IsDistributiveLOpESum
and IsAssociativeLOpEProd
and IsTrivialLOpEOne );
#############################################################################
##
#C IsRightOperatorAdditiveGroup( <D> )
##
## <#GAPDoc Label="IsRightOperatorAdditiveGroup">
## <ManSection>
## <Filt Name="IsRightOperatorAdditiveGroup" Arg='D' Type='Category'/>
##
## <Description>
## A domain <A>D</A> lies in <C>IsRightOperatorAdditiveGroup</C>
## if it is an additive group that is closed under scalar multiplication
## from the right,
## and such that <M>( x + y ) * \lambda = x * \lambda + y * \lambda</M>
## for all scalars <M>\lambda</M> and elements <M>x, y \in D</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsRightOperatorAdditiveGroup",
IsAdditiveGroup
and IsExtRSet
and IsDistributiveROpDSum );
#############################################################################
##
#C IsRightModule( <M> )
##
## <#GAPDoc Label="IsRightModule">
## <ManSection>
## <Filt Name="IsRightModule" Arg='M' Type='Category'/>
##
## <Description>
## A domain <A>M</A> lies in <C>IsRightModule</C> if it lies in
## <C>IsRightOperatorAdditiveGroup</C>,
## <E>and</E> the set of scalars forms a ring,
## <E>and</E> <M>x * (\lambda + \mu) = x * \lambda + x * \mu</M>
## for scalars <M>\lambda, \mu</M> and <M>x \in M</M>,
## <E>and</E> scalar multiplication satisfies
## <M>(x * \mu) * \lambda = x * (\mu * \lambda)</M>
## for scalars <M>\lambda, \mu</M> and <M>x \in M</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsRightModule",
IsRightOperatorAdditiveGroup
and IsRightActedOnByRing
and IsDistributiveROpESum
and IsAssociativeROpEProd
and IsTrivialROpEOne );
#############################################################################
##
#C IsFreeLeftModule( <M> )
##
## <#GAPDoc Label="IsFreeLeftModule">
## <ManSection>
## <Filt Name="IsFreeLeftModule" Arg='M' Type='Category'/>
##
## <Description>
## A left module is free as module if it is isomorphic to a direct sum of
## copies of its left acting domain.
## <P/>
## Free left modules can have bases.
## <P/>
## The characteristic (see <Ref Func="Characteristic"/>) of a
## free left module is defined as the characteristic of its left acting
## domain (see <Ref Func="LeftActingDomain"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsFreeLeftModule", IsLeftModule );
#############################################################################
##
#P IsFiniteDimensional( <M> )
##
## <#GAPDoc Label="IsFiniteDimensional">
## <ManSection>
## <Prop Name="IsFiniteDimensional" Arg='M'/>
##
## <Description>
## is <K>true</K> if <A>M</A> is a free left module that is finite dimensional
## over its left acting domain, and <K>false</K> otherwise.
## <Example><![CDATA[
## gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
## gap> IsFiniteDimensional( V );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsFiniteDimensional", IsFreeLeftModule );
InstallSubsetMaintenance( IsFiniteDimensional,
IsFreeLeftModule and IsFiniteDimensional, IsFreeLeftModule );
InstallFactorMaintenance( IsFiniteDimensional,
IsFreeLeftModule and IsFiniteDimensional,
IsObject, IsFreeLeftModule );
InstallTrueMethod( IsFiniteDimensional, IsFreeLeftModule and IsFinite );
#############################################################################
##
#P IsFullRowModule( <M> )
##
## <#GAPDoc Label="IsFullRowModule">
## <ManSection>
## <Prop Name="IsFullRowModule" Arg='M'/>
##
## <Description>
## A <E>full row module</E> is a module <M>R^n</M>,
## for a ring <M>R</M> and a nonnegative integer <M>n</M>.
## <P/>
## More precisely, a full row module is a free left module over a ring
## <M>R</M> such that the elements are row vectors of the same length
## <M>n</M> and with entries in <M>R</M> and such that the dimension is
## equal to <M>n</M>.
## <P/>
## Several functions delegate their tasks to full row modules,
## for example <Ref Func="Iterator"/> and <Ref Func="Enumerator"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsFullRowModule", IsFreeLeftModule, 20 );
#############################################################################
##
#P IsFullMatrixModule( <M> )
##
## <#GAPDoc Label="IsFullMatrixModule">
## <ManSection>
## <Prop Name="IsFullMatrixModule" Arg='M'/>
##
## <Description>
## A <E>full matrix module</E> is a module <M>R^{{[m,n]}}</M>,
## for a ring <M>R</M> and two nonnegative integers <M>m</M>, <M>n</M>.
## <P/>
## More precisely, a full matrix module is a free left module over a ring
## <M>R</M> such that the elements are <M>m</M> by <M>n</M> matrices with
## entries in <M>R</M> and such that the dimension is equal to <M>m n</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsFullMatrixModule", IsFreeLeftModule, 20 );
#############################################################################
##
#C IsHandledByNiceBasis( <M> )
##
## <#GAPDoc Label="IsHandledByNiceBasis">
## <ManSection>
## <Filt Name="IsHandledByNiceBasis" Arg='M' Type='Category'/>
##
## <Description>
## For a free left module <A>M</A> in this category, essentially all operations
## are performed using a <Q>nicer</Q> free left module,
## which is usually a row module.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsHandledByNiceBasis",
IsFreeLeftModule and IsAttributeStoringRep );
#T individually choose for each repres. in this category?
#T why not `DeclareFilter' ?
#############################################################################
##
#A Dimension( <M> )
##
## <#GAPDoc Label="Dimension">
## <ManSection>
## <Attr Name="Dimension" Arg='M'/>
##
## <Description>
## A free left module has dimension <M>n</M> if it is isomorphic to a direct sum
## of <M>n</M> copies of its left acting domain.
## <P/>
## (We do <E>not</E> mark <Ref Attr="Dimension"/> as invariant under isomorphisms
## since we want to call <Ref Oper="UseIsomorphismRelation"/> also for free left modules
## over different left acting domains.)
## <Example><![CDATA[
## gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
## gap> Dimension( V );
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Dimension", IsFreeLeftModule );
############################################################################
##
#A GeneratorsOfLeftOperatorAdditiveGroup( <D> )
##
## <#GAPDoc Label="GeneratorsOfLeftOperatorAdditiveGroup">
## <ManSection>
## <Attr Name="GeneratorsOfLeftOperatorAdditiveGroup" Arg='D'/>
##
## <Description>
## returns a list of elements of <A>D</A> that generates <A>D</A> as a left operator
## additive group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfLeftOperatorAdditiveGroup",
IsLeftOperatorAdditiveGroup );
############################################################################
##
#A GeneratorsOfLeftModule( <M> )
##
## <#GAPDoc Label="GeneratorsOfLeftModule">
## <ManSection>
## <Attr Name="GeneratorsOfLeftModule" Arg='M'/>
##
## <Description>
## returns a list of elements of <A>M</A> that generate <A>M</A> as a left module.
## <Example><![CDATA[
## gap> V:= FullRowSpace( Rationals, 3 );;
## gap> GeneratorsOfLeftModule( V );
## [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfLeftModule",
GeneratorsOfLeftOperatorAdditiveGroup );
#############################################################################
##
#A GeneratorsOfRightOperatorAdditiveGroup( <D> )
##
## <#GAPDoc Label="GeneratorsOfRightOperatorAdditiveGroup">
## <ManSection>
## <Attr Name="GeneratorsOfRightOperatorAdditiveGroup" Arg='D'/>
##
## <Description>
## returns a list of elements of <A>D</A> that generates <A>D</A> as a right operator
## additive group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfRightOperatorAdditiveGroup",
IsRightOperatorAdditiveGroup );
#############################################################################
##
#A GeneratorsOfRightModule( <M> )
##
## <#GAPDoc Label="GeneratorsOfRightModule">
## <ManSection>
## <Attr Name="GeneratorsOfRightModule" Arg='M'/>
##
## <Description>
## returns a list of elements of <A>M</A> that generate <A>M</A> as a left module.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfRightModule",
GeneratorsOfRightOperatorAdditiveGroup );
#############################################################################
##
#A TrivialSubmodule( <M> )
##
## <#GAPDoc Label="TrivialSubmodule">
## <ManSection>
## <Attr Name="TrivialSubmodule" Arg='M'/>
##
## <Description>
## returns the zero submodule of <A>M</A>.
## <Example><![CDATA[
## gap> V:= LeftModuleByGenerators(Rationals, [[ 1, 0, 0 ], [ 0, 1, 0 ]]);;
## gap> TrivialSubmodule( V );
## <vector space over Rationals, with 0 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "TrivialSubmodule", TrivialSubadditiveMagmaWithZero );
#############################################################################
##
#O AsLeftModule( <R>, <D> )
##
## <#GAPDoc Label="AsLeftModule">
## <ManSection>
## <Oper Name="AsLeftModule" Arg='R, D'/>
##
## <Description>
## if the domain <A>D</A> forms an additive group and is closed under left
## multiplication by the elements of <A>R</A>, then <C>AsLeftModule( <A>R</A>, <A>D</A> )</C>
## returns the domain <A>D</A> viewed as a left module.
## <Example><![CDATA[
## gap> coll:= [[0*Z(2),0*Z(2)], [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)]];
## [ [ 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ],
## [ Z(2)^0, Z(2)^0 ] ]
## gap> AsLeftModule( GF(2), coll );
## <vector space of dimension 2 over GF(2)>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AsLeftModule", [ IsRing, IsCollection ] );
#############################################################################
##
#O ClosureLeftModule( <M>, <m> )
##
## <#GAPDoc Label="ClosureLeftModule">
## <ManSection>
## <Oper Name="ClosureLeftModule" Arg='M, m'/>
##
## <Description>
## is the left module generated by the left module generators of <A>M</A> and the
## element <A>m</A>.
## <Example><![CDATA[
## gap> V:= LeftModuleByGenerators(Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ]);
## <vector space over Rationals, with 2 generators>
## gap> ClosureLeftModule( V, [ 1, 1, 1 ] );
## <vector space over Rationals, with 3 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ClosureLeftModule", [ IsLeftModule, IsVector ] );
#############################################################################
##
#O LeftModuleByGenerators( <R>, <gens>[, <zero>] )
##
## <#GAPDoc Label="LeftModuleByGenerators">
## <ManSection>
## <Oper Name="LeftModuleByGenerators" Arg='R, gens[, zero]'/>
##
## <Description>
## returns the left module over <A>R</A> generated by <A>gens</A>.
## <Example><![CDATA[
## gap> coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;
## gap> V:= LeftModuleByGenerators( GF(16), coll );
## <vector space over GF(2^4), with 3 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LeftModuleByGenerators", [ IsRing, IsCollection ] );
DeclareOperation( "LeftModuleByGenerators",
[ IsRing, IsListOrCollection, IsObject ] );
#############################################################################
##
#O UseBasis( <V>, <gens> )
##
## <#GAPDoc Label="UseBasis">
## <ManSection>
## <Oper Name="UseBasis" Arg='V, gens'/>
##
## <Description>
## The vectors in the list <A>gens</A> are known to form a basis of the
## free left module <A>V</A>.
## <Ref Oper="UseBasis"/> stores information in <A>V</A> that can be derived form this fact,
## namely
## <List>
## <Item>
## <A>gens</A> are stored as left module generators if no such generators were
## bound (this is useful especially if <A>V</A> is an algebra),
## </Item>
## <Item>
## the dimension of <A>V</A> is stored.
## </Item>
## </List>
## <Example><![CDATA[
## gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
## gap> UseBasis( V, [ [ 1, 0 ], [ 1, 1 ] ] );
## gap> V; # now V knows its dimension
## <vector space of dimension 2 over Rationals>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "UseBasis", [ IsFreeLeftModule, IsHomogeneousList ] );
#############################################################################
##
#F FreeLeftModule( <R>, <gens>[, <zero>][, "basis"] )
##
## <#GAPDoc Label="FreeLeftModule">
## <ManSection>
## <Func Name="FreeLeftModule" Arg='R, gens[, zero][, "basis"]'/>
##
## <Description>
## <C>FreeLeftModule( <A>R</A>, <A>gens</A> )</C> is the free left module
## over the ring <A>R</A>, generated by the vectors in the collection
## <A>gens</A>.
## <P/>
## If there are three arguments, a ring <A>R</A> and a collection
## <A>gens</A> and an element <A>zero</A>,
## then <C>FreeLeftModule( <A>R</A>, <A>gens</A>, <A>zero</A> )</C> is the
## <A>R</A>-free left module generated by <A>gens</A>,
## with zero element <A>zero</A>.
## <P/>
## If the last argument is the string <C>"basis"</C> then the vectors in
## <A>gens</A> are known to form a basis of the free module.
## <P/>
## It should be noted that the generators <A>gens</A> must be vectors,
## that is, they must support an addition and a scalar action of <A>R</A>
## via left multiplication.
## (See also Section <Ref Sect="Constructing Domains"/>
## for the general meaning of <Q>generators</Q> in &GAP;.)
## In particular, <Ref Func="FreeLeftModule"/> is <E>not</E> an equivalent
## of commands such as <Ref Func="FreeGroup" Label="for given rank"/>
## in the sense of a constructor of a free group on abstract generators.
## Such a construction seems to be unnecessary for vector spaces,
## for that one can use for example row spaces
## (see <Ref Func="FullRowSpace"/>) in the finite dimensional case
## and polynomial rings
## (see <Ref Func="PolynomialRing" Label="for a ring and a rank (and an exclusion list)"/>)
## in the infinite dimensional case.
## Moreover, the definition of a <Q>natural</Q> addition for elements of a
## given magma (for example a permutation group) is possible via the
## construction of magma rings (see Chapter <Ref Chap="Magma Rings"/>).
## <Example><![CDATA[
## gap> V:= FreeLeftModule(Rationals, [[ 1, 0, 0 ], [ 0, 1, 0 ]], "basis");
## <vector space of dimension 2 over Rationals>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FreeLeftModule" );
#############################################################################
##
#F FullRowModule( <R>, <n> )
##
## <#GAPDoc Label="FullRowModule">
## <ManSection>
## <Func Name="FullRowModule" Arg='R, n'/>
##
## <Description>
## is the row module <C><A>R</A>^<A>n</A></C>,
## for a ring <A>R</A> and a nonnegative integer <A>n</A>.
## <Example><![CDATA[
## gap> V:= FullRowModule( Integers, 5 );
## ( Integers^5 )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FullRowModule" );
#############################################################################
##
#F FullMatrixModule( <R>, <m>, <n> )
##
## <#GAPDoc Label="FullMatrixModule">
## <ManSection>
## <Func Name="FullMatrixModule" Arg='R, m, n'/>
##
## <Description>
## is the matrix module <C><A>R</A>^[<A>m</A>,<A>n</A>]</C>,
## for a ring <A>R</A> and nonnegative integers <A>m</A> and <A>n</A>.
## <Example><![CDATA[
## gap> FullMatrixModule( GaussianIntegers, 3, 6 );
## ( GaussianIntegers^[ 3, 6 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FullMatrixModule" );
#############################################################################
##
#F StandardGeneratorsOfFullMatrixModule( <M> )
##
## <ManSection>
## <Func Name="StandardGeneratorsOfFullMatrixModule" Arg='M'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "StandardGeneratorsOfFullMatrixModule" );
#############################################################################
##
#F Submodule( <M>, <gens>[, "basis"] ) submodule of <M> generated by <gens>
##
## <#GAPDoc Label="Submodule">
## <ManSection>
## <Func Name="Submodule" Arg='M, gens[, "basis"]'/>
##
## <Description>
## is the left module generated by the collection <A>gens</A>,
## with parent module <A>M</A>.
## If the string <C>"basis"</C> is entered as the third argument then
## the submodule of <A>M</A> is created for which the list <A>gens</A>
## is known to be a list of basis vectors;
## in this case, it is <E>not</E> checked whether <A>gens</A> really is
## linearly independent and whether all in <A>gens</A> lie in <A>M</A>.
## <Example><![CDATA[
## gap> coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;
## gap> V:= LeftModuleByGenerators( GF(16), coll );;
## gap> W:= Submodule( V, [ coll[1], coll[2] ] );
## <vector space over GF(2^4), with 2 generators>
## gap> Parent( W ) = V;
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Submodule" );
#############################################################################
##
#F SubmoduleNC( <M>, <gens>[, "basis"] )
##
## <#GAPDoc Label="SubmoduleNC">
## <ManSection>
## <Func Name="SubmoduleNC" Arg='M, gens[, "basis"]'/>
##
## <Description>
## <Ref Func="SubmoduleNC"/> does the same as <Ref Func="Submodule"/>,
## except that it does not check whether all in <A>gens</A> lie in <A>M</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SubmoduleNC" );
#############################################################################
##
#P IsRowModule( <V> )
##
## <#GAPDoc Label="IsRowModule">
## <ManSection>
## <Prop Name="IsRowModule" Arg='V'/>
##
## <Description>
## A <E>row module</E> is a free left module whose elements are row vectors.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsRowModule", IsFreeLeftModule );
InstallTrueMethod( IsRowModule, IsFullRowModule );
#############################################################################
##
#P IsMatrixModule( <V> )
##
## <#GAPDoc Label="IsMatrixModule">
## <ManSection>
## <Prop Name="IsMatrixModule" Arg='V'/>
##
## <Description>
## A <E>matrix module</E> is a free left module whose elements are matrices.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsMatrixModule", IsFreeLeftModule );
InstallTrueMethod( IsMatrixModule, IsFullMatrixModule );
#############################################################################
##
#A DimensionOfVectors( <M> ) . . . . . . . . . . for row and matrix modules
##
## <#GAPDoc Label="DimensionOfVectors">
## <ManSection>
## <Attr Name="DimensionOfVectors" Arg='M'/>
##
## <Description>
## For a left module <A>M</A> that consists of row vectors
## (see <Ref Func="IsRowModule"/>),
## <Ref Func="DimensionOfVectors"/> returns the common length of all row
## vectors in <A>M</A>.
## For a left module <A>M</A> that consists of matrices
## (see <Ref Func="IsMatrixModule"/>),
## <Ref Func="DimensionOfVectors"/> returns the common matrix dimensions
## (see <Ref Func="DimensionsMat"/>) of all matrices in <A>M</A>.
## <Example><![CDATA[
## gap> DimensionOfVectors( GF(2)^5 );
## 5
## gap> DimensionOfVectors( GF(2)^[2,3] );
## [ 2, 3 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "DimensionOfVectors", IsFreeLeftModule );
#############################################################################
##
#M IsFiniteDimensional( <M> ) . . . . . . row modules are always fin. dim.
#M IsFiniteDimensional( <M> ) . . . . . matrix modules are always fin. dim.
##
## Any free left module in the filter `IsRowModule' or `IsMatrixModule'
## is finite dimensional.
##
InstallTrueMethod( IsFiniteDimensional, IsRowModule and IsFreeLeftModule );
InstallTrueMethod( IsFiniteDimensional,
IsMatrixModule and IsFreeLeftModule );
#############################################################################
##
#E
|