This file is indexed.

/usr/share/gap/lib/modulrow.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
#############################################################################
##
#W  modulrow.gi                 GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains methods for *row modules*, that is,
##  free left modules consisting of row vectors.
##
##  Especially methods for *full row modules* $R^n$ are contained.
##
##  (See the file `modulmat.gi' for the methods for matrix modules.)
##


#############################################################################
##
#F  FullRowModule( <R>, <n> )
##
InstallGlobalFunction( FullRowModule, function( R, n )
    local M;   # the free module record, result

    if not ( IsRing( R ) and IsInt( n ) and 0 <= n ) then
      Error( "usage: FullRowModule( <R>, <n> ) for ring <R>" );
    fi;

    if IsDivisionRing( R ) then
      M:= Objectify( NewType( CollectionsFamily( FamilyObj( R ) ),
                                  IsFreeLeftModule
                              and IsGaussianSpace
                              and IsFullRowModule
                              and IsAttributeStoringRep ),
                     rec() );
    else
      M:= Objectify( NewType( CollectionsFamily( FamilyObj( R ) ),
                                  IsFreeLeftModule
                              and IsFullRowModule
                              and IsAttributeStoringRep ),
                     rec() );
    fi;
    SetLeftActingDomain( M, R );
    SetDimensionOfVectors( M, n );

    return M;
end );


#############################################################################
##
#M  \^( <R>, <n> )  . . . . . . . . . . . . . . . full row module over a ring
##
InstallOtherMethod( \^,
    "for ring and integer (delegate to `FullRowModule')",
    [ IsRing, IsInt ],
    FullRowModule );


#############################################################################
##
#M  IsRowModule .  return `false' for objects which are not free left modules 
##
InstallOtherMethod( IsRowModule,
                    Concatenation("return `false' for objects which are ",
                                  "not free left modules"),
                    true, [ IsObject ], 0,

  function ( obj )
    if not IsFreeLeftModule(obj) then return false; else TryNextMethod(); fi;
  end );


#############################################################################
##
#M  IsRowModule( <M> )
##
InstallMethod( IsRowModule,
    "for a free left module",
    [ IsFreeLeftModule ],
    M -> IsRowVector( Zero( M ) ) );


#############################################################################
##
#M  IsFullRowModule( M )
##
InstallMethod( IsFullRowModule,
    "for free left (row) module",
    [ IsFreeLeftModule ],
    M ->     IsRowModule( M )
         and Dimension( M ) = DimensionOfVectors( M )
         and ForAll( GeneratorsOfLeftModule( M ),
                     v -> IsSubset( LeftActingDomain( M ), v ) ) );


#############################################################################
##
#M  Dimension( <M> )
##
InstallMethod( Dimension,
    "for full row module",
    [ IsFreeLeftModule and IsFullRowModule ],
    DimensionOfVectors );


#############################################################################
##
#M  Random( <M> )
##1
InstallMethod( Random,
    "for full row module",
    [ IsFreeLeftModule and IsFullRowModule ],
    function( M )
    local R,v;
    R:= LeftActingDomain( M );
    v := List( [ 1 .. DimensionOfVectors( M ) ], x -> Random( R ) );
    if IsField(R) then
      ConvertToVectorRep(v,R);
    fi;
    return v;
    end );


#############################################################################
##
#M  Representative( <M> )
##
InstallMethod( Representative,
    "for full row module",
    [ IsFreeLeftModule and IsFullRowModule ],
    M -> ListWithIdenticalEntries( DimensionOfVectors( M ),
                                   Zero( LeftActingDomain( M ) ) ) );


#############################################################################
##
#M  GeneratorsOfLeftModule( <V> )
##
InstallMethod( GeneratorsOfLeftModule,
    "for full row module",
    [ IsFreeLeftModule and IsFullRowModule ],
    M -> IdentityMat( DimensionOfVectors( M ), LeftActingDomain( M ) ) );


#############################################################################
##
#M  ViewObj( <M> )
##
InstallMethod( ViewObj,
    "for full row module",
    [ IsFreeLeftModule and IsFullRowModule ],
    function( M )
    Print( "( " );
    View( LeftActingDomain( M ) );
    Print( "^", DimensionOfVectors( M ), " )" );
    end );


#############################################################################
##
#M  ViewString( <M> ) . . . . . . . . . . . . . . . . .  for full row modules
##
InstallMethod( ViewString, "for full row modules", true,
               [ IsFreeLeftModule and IsFullRowModule ], 0, String );


#############################################################################
##
#M  PrintObj( <M> )
##
InstallMethod( PrintObj,
    "for full row module",
    [ IsFreeLeftModule and IsFullRowModule ],
    function( M )
    Print( "( ", LeftActingDomain( M ), "^", DimensionOfVectors( M ), " )" );
    end );


#############################################################################
##
#M  String( <M> ) . . . . . . . . . . . . . . . . . . .  for full row modules
##
InstallMethod( String, "for full row modules", true,
               [ IsFreeLeftModule and IsFullRowModule ], 0,
  M -> Concatenation(List(["( ",LeftActingDomain(M),"^",
                                DimensionOfVectors(M)," )"], String)) );


#############################################################################
##
#M  \in( <v>, <V> )
##
InstallMethod( \in,
    "for full row module",
    IsElmsColls,
    [ IsRowVector, IsFreeLeftModule and IsFullRowModule ],
    function( v, M )
    return     Length( v ) = DimensionOfVectors( M )
           and IsSubset( LeftActingDomain( M ), v );
    end );


#############################################################################
##
#M  BasisVectors( <B> ) . . . . .  for a canonical basis of a full row module
##
InstallMethod( BasisVectors,
    "for canonical basis of a full row module",
    [ IsBasis and IsCanonicalBasis and IsCanonicalBasisFullRowModule ],
    function( B )
    B:= UnderlyingLeftModule( B );
    return IdentityMat( DimensionOfVectors( B ), LeftActingDomain( B ) );
    end );


#############################################################################
##
#M  CanonicalBasis( <V> )
##
InstallMethod( CanonicalBasis,
    "for a full row module",
    [ IsFreeLeftModule and IsFullRowModule ],
    function( V )
    local B;
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsCanonicalBasis
                            and IsCanonicalBasisFullRowModule
                            and IsAttributeStoringRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    return B;
    end );


#############################################################################
##
#M  Basis( <M> )  . . . . . . . . . . . . . . . . . . . . for full row module
##
InstallMethod( Basis,
    "for full row module (delegate to `CanonicalBasis')",
    [ IsFreeLeftModule and IsFullRowModule ], CANONICAL_BASIS_FLAGS,
    CanonicalBasis );


#############################################################################
##
#M  Coefficients( <B>, <v> )  . .  for a canonical basis of a full row module
##
InstallMethod( Coefficients,
    "for canonical basis of a full row module",
    IsCollsElms,
    [ IsBasis and IsCanonicalBasisFullRowModule, IsRowVector ],
    function( B, v )
    local V, R;
    V:= UnderlyingLeftModule( B );
    R:= LeftActingDomain( V );
    if Length( v ) = DimensionOfVectors( V ) and IsSubset( R, v ) then
      return ShallowCopy( v );
    else
      return fail;
    fi;
    end );


#############################################################################
##
#M  IsCanonicalBasisFullRowModule( <B> )  . . . . . . . . . . . . for a basis
##
InstallMethod( IsCanonicalBasisFullRowModule,
    "for a basis",
    [ IsBasis ],
    B ->     IsFullRowModule( UnderlyingLeftModule( B ) )
         and IsCanonicalBasis( B ) );


#############################################################################
##
#M  EnumeratorByBasis( <B> )  . . . .  for canonical basis of full row module
##
BindGlobal( "NumberElement_FiniteFullRowModule", function( e, v )
    local len, n, i, pos;

    if not IsDenseList( v ) then
      return fail;
    fi;
    len:= Length( v );
    if len <> e!.dimension then
      return fail;
    fi;
    n:= 0;
    i:= 1;

    while i <= len and v[i] = e!.coeffszero do
      i:= i+1;
    od;

    while i <= len do
      pos:= Position( e!.coeffsenum, v[i], 0 );
      if pos = fail then
        return fail;
      fi;
      n:= e!.q * n + pos - 1;
      i:= i+1;
    od;

    return n + 1;
end );

BindGlobal( "PosVecEnumFF", function( enum, v )
    local i,l;

    if    not IsCollsElms( FamilyObj( enum ), FamilyObj( v ) )
       or not IsRowVector( v )
       or Length( v ) <> enum!.dimension then
      return fail;
    fi;

  # test whether the vector is indeed compact over a finite field
  if not IsDataObjectRep(v) then

    # the degree of the field extension q provides
    l:= LogInt( enum!.q, Characteristic(v) );
    for i in v do
      if not (IsFFE(i) and IsInt(l/DegreeFFE(i))) then
        # cannot convert, wrong type of object
	return NumberElement_FiniteFullRowModule( enum, v );
      fi;
    od;

    if ConvertToVectorRep( v, enum!.q ) = fail then
      # cannot convert, wrong type of object
      return NumberElement_FiniteFullRowModule( enum, v );
    fi;
  fi;
  # Problem with GF(4) vectors over GF(2)
  if ( IsGF2VectorRep(v) and enum!.q <> 2 )
     or ( Is8BitVectorRep(v) and enum!.q = 2 ) then
    return NumberElement_FiniteFullRowModule( enum, v );
  fi;

  # compute index via number
  v:= NumberFFVector( v, enum!.q );
  if v <> fail then
    v:= v+1;
  fi;
  return v;
end);

BindGlobal( "ElementNumber_FiniteFullRowModule", function( enum, n )
    local v, i;

    if Size( enum ) < n then
      Error( "<enum>[", n, "] must have an assigned value" );
    fi;
    v:= ShallowCopy( enum!.zerovector );
    i:= Length( v );
    n:= n-1;
    while 0 < n do
      v[i]:= enum!.coeffsenum[ RemInt( n, enum!.q ) + 1 ];
      n:= QuoInt( n, enum!.q );
      i:= i-1;
    od;
    if IsFFE( enum!.coeffszero ) then
      ConvertToVectorRep( v, enum!.q );
    fi;
    MakeImmutable( v );
    return v;
    end );


BindGlobal( "NumberElement_InfiniteFullRowModule", function( enum, vector )
    local n,
          i,
          max,
          maxpos,
          pos,
          len;

    if not IsCollsElms( FamilyObj( enum ), FamilyObj( vector ) )
       or not IsList( vector ) then
      return fail;
    fi;
    n:= Length( vector );
    if n <> enum!.dimension then
      return fail;
    fi;

    # Replace the entries of `vector' by their positions.
    vector:= List( vector, x -> Position( enum!.coeffsenum, x, 0 ) );
    if fail in vector then
      return fail;
    fi;
    vector:= vector - 1;

    # Find the maximal entry in the vector, and its number.
    max:= vector[1];
    for i in [ 2 .. n ] do
      if max < vector[i] then
        max:= vector[i];
      fi;
    od;
    if max = 0 then
      return 1;
    fi;

    # Compute the positions of `max' in `vector',
    maxpos:= [];
    for i in [ 1 .. n ] do
      if vector[i] = max then
        Add( maxpos, i-1 );
      fi;
    od;

    # Compute the number of those elements with same distribution
    # of `max' as in `vector' that come before `vector'.
    pos:= 0;
    for i in [ n, n-1 .. 1 ] do
      if vector[i] <> max then
        pos:= pos * max + vector[i];
      fi;
    od;
    pos:= pos + 1;

    # Compute the number of those elements with smaller distribution
    # of `max'.
    # Consider the following example.
    # 1   3 4     7
    # m ? m m ? ? m ? ... ?       (`vector', the `?' mean entries < `m')
    # * * * * * * ? ? ... ?       gives (m+1)^6 m^{n-6}
    # * * * ? ? ? m ? ... ?       gives (m+1)^3 m^{n-3-1}
    # * * ? m ? ? m ? ... ?       gives (m+1)^2 m^{n-2-2}
    # ? ? m m ? ? m ? ... ?       gives (m+1)^0 m^{n-0-3}

    len:= Length( maxpos );
    for i in [ len, len-1 .. 1 ] do
      pos:= pos + ( max + 1 )^maxpos[i] * max^( n - len - maxpos[i] + i );
    od;

    return pos;
    end );


BindGlobal( "ElementNumber_InfiniteFullRowModule", function( enum, N )
    local n,
          val,
          max,
          maxpos,
          pos,
          vector,
          i,
          quorem;

    # Catch the special case.
    n:= enum!.dimension;
    if N = 1 then
      val:= enum!.coeffsenum[1];
      return List( [ 1 .. n ], x -> val );
    fi;

    # Compute the maximal entry of the element.
    max:= 1;
    while max^n < N do
      max:= max + 1;
    od;

    # Compute the positions of the maximal entry.
    maxpos:= [];
    repeat
      pos:= 0;
      val:= (max-1)^( n - Length( maxpos ) );
      while val < N do
        pos:= pos + 1;
        val:= val * max / ( max - 1 );
      od;
      if 0 < pos then
        N:= N - val * ( max - 1 ) / max;
        Add( maxpos, pos );
      fi;
    until pos = 0;
    maxpos:= Reversed( maxpos );

    # Compute the values of the element that are strictly smaller than `max'.
    vector:= [];
    N:= N - 1;
    for i in [ 1 .. n ] do
      if i in maxpos then
        vector[i]:= max;
      else
        quorem:= QuotientRemainder( Integers, N, max-1 );
        vector[i]:= quorem[2] + 1;
        N:= quorem[1];
      fi;
    od;

    # Translate the positions to values.
    for i in [ 1 .. n ] do
      vector[i]:= enum!.coeffsenum[ vector[i] ];
    od;

    # Return the element.
    return Immutable( vector );
    end );


InstallMethod( EnumeratorByBasis,
    "for enumerator via canonical basis of a full row module",
    [ IsBasis and IsCanonicalBasis and IsCanonicalBasisFullRowModule ],
    function( B )
    local V, F, enum;

    V:= UnderlyingLeftModule( B );
    F:= LeftActingDomain( V );

    if IsFinite( F ) then

      enum:= EnumeratorByFunctions( V, rec(
                 ElementNumber := ElementNumber_FiniteFullRowModule,
                 NumberElement := NumberElement_FiniteFullRowModule,

                 coeffsenum    := Enumerator( F ),
                 q             := Size( F ),
                 coeffszero    := Zero( F ),
                 zerovector    := Zero( V ),
                 dimension     := Dimension( V ) ) );

      if IsField( F ) and Size( F ) < 256 and IsInternalRep( One( F ) ) then
        # Use a more efficient method for `Position'.
        enum!.NumberElement:= PosVecEnumFF;
        SetFilterObj( enum, IsQuickPositionList );
      fi;
      SetFilterObj( enum, IsSSortedList );

      return enum;

    elif IsFiniteDimensional( V ) then

      # The ring is infinite, use the canonical ordering of $\N_0^n$
      # as defined for the iterator.
      return EnumeratorByFunctions( V, rec(
                 ElementNumber := ElementNumber_InfiniteFullRowModule,
                 NumberElement := NumberElement_InfiniteFullRowModule,

                 dimension     := Dimension( V ),
                 coeffsenum    := Enumerator( F ) ) );

    else
      Error( "not implemented for infinite dimensional free modules" );
    fi;
    end );


#############################################################################
##
#M  IteratorByBasis( <B> )  . . . . . . for canon. basis of a full row module
##
BindGlobal( "NextIterator_FiniteFullRowModule", function( iter )
    local pos;

    # Increase the counter.
    pos:= iter!.dimension;
    while iter!.counter[ pos ] = iter!.q do
      iter!.counter[ pos ]:= 1;
      pos:= pos - 1;
    od;
    iter!.counter[ pos ]:= iter!.counter[ pos ] + 1;

    # Return the linear combination.
    return iter!.ringelements{ iter!.counter };
    end );

BindGlobal( "IsDoneIterator_FiniteFullRowModule",
    iter -> iter!.counter = iter!.limit );

BindGlobal( "ShallowCopy_FiniteFullRowModule",
    iter -> rec( dimension    := iter!.dimension,
                 counter      := ShallowCopy( iter!.counter ),
                 position     := iter!.position,
                 q            := iter!.q,
                 limit        := ShallowCopy( iter!.limit ),
                 ringelements := iter!.ringelements ) );

BindGlobal( "NextIterator_InfiniteFullRowModule", function( iter )
    local dim,        # dimension of the free module
          vector,     # positions of the coefficients in `iter!.coeffsenum'
                      # of the previous element
          result,     # coefficients of the previous element
          max1,       # one less than the maximal entry in `vector'
          max,        # maximal entry in `vector'
          firstval,   # first entry in `iter!.coeffsenum'
          i;          # loop variable

    # (Increase the counter.)

    dim      := iter!.dimension;
    vector   := iter!.vector;
    result   := iter!.result;
    max1     := iter!.maxentry - 1;
    firstval := iter!.firstval;

    # If not all entries in `vector' are `max1' or `max1 + 1' then
    # increase the counter formed by the positions with entry
    # different from `max1 + 1', and return the result.
    for i in [ 1 .. dim ] do
      if vector[i] < max1 then
        vector[i]:= vector[i] + 1;
        result[i]:= iter!.coeffsenum[ vector[i] ];
        return ShallowCopy( result );
      elif vector[i] = max1 then
        vector[i]:= 1;
        result[i]:= firstval;
      fi;
    od;

    # Otherwise if all entries are `max1 + 1', increase the maximum.
    max:= iter!.maxentry;
    if dim < PositionNot( vector, max ) then
      max:= max + 1;
      iter!.maxentry:= max;
      vector[1]:= max;
      iter!.maxval:= iter!.coeffsenum[ max ];
      result[1]:= iter!.maxval;
      for i in [ 2 .. dim ] do
        vector[i]:= 1;
        result[i]:= firstval;
      od;
      return ShallowCopy( result );
    fi;

    # Otherwise get the next start configuration with maximum `max'.
    # (The entries of `vector' are now either `1' or `max'.)
    for i in [ 1 .. dim ] do
      if vector[i] = max then
        vector[i]:= 1;
        result[i]:= firstval;
      else
        vector[i]:= max;
        result[i]:= iter!.maxval;
        return ShallowCopy( result );
      fi;
    od;

    Assert( 2, true,
            "there should be a position with value different from `max'" );
    end );

BindGlobal( "ShallowCopy_InfiniteFullRowModule",
    iter -> rec( dim        := iter!.dimension,
                 vector     := ShallowCopy( iter!.vector ),
                 result     := ShallowCopy( iter!.result ),
                 coeffsenum := iter!.coeffsenum,
                 maxentry   := iter!.maxentry,
                 firstval   := iter!.firstval,
                 maxval     := iter!.maxval ) );

InstallMethod( IteratorByBasis,
    "for canonical basis of a full row module",
    [ IsBasis and IsCanonicalBasisFullRowModule ],
    function( B )
    local V,
          F,
          dim,
          counter,
          q,
          enum,
          vector,
          firstval,
          result;

    V:= UnderlyingLeftModule( B );
    dim:= Dimension( V );

    if dim = 0 then

      return TrivialIterator( Zero( V ) );

    elif IsFinite( LeftActingDomain( V ) ) then

      F:= LeftActingDomain( V );
      counter := List( [ 1 .. dim ], x -> 1 );
      counter[ Length( counter ) ]:= 0;
      q:= Size( F );

      return IteratorByFunctions( rec(
                 IsDoneIterator := IsDoneIterator_FiniteFullRowModule,
                 NextIterator   := NextIterator_FiniteFullRowModule,
                 ShallowCopy    := ShallowCopy_FiniteFullRowModule,

                 dimension      := dim,
                 counter        := counter,
                 position       := 1,
                 q              := q,
                 limit          := List( [ 1 .. dim ], x -> q ),
                 ringelements   := EnumeratorSorted( F ) ) );

    else

      enum:= Enumerator( LeftActingDomain( V ) );
      vector:= List( [ 1 .. dim ], x -> 0 );
#     vector[1]:= -1;
      firstval:= enum[1];
      result:= List( [ 1 .. dim ], x -> firstval );

      return IteratorByFunctions( rec(
                 IsDoneIterator := ReturnFalse,
                 NextIterator   := NextIterator_InfiniteFullRowModule,
                 ShallowCopy    := ShallowCopy_InfiniteFullRowModule,

                 dimension      := dim,
                 vector         := vector,
                 result         := result,
                 coeffsenum     := enum,
                 maxentry       := 0,
                 firstval       := firstval,
                 maxval         := firstval ) );

    fi;
    end );


#############################################################################
##
#E