This file is indexed.

/usr/share/gap/lib/monofree.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#############################################################################
##
#W  monofree.gi                 GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the methods for free monoids.
##


#############################################################################
##
#M  IsWholeFamily( <M> )  . . . . . . . . . is a free monoid the whole family
##
##  <M> contains the whole family of its elements if and only if all
##  magma generators of the family are among the monoid generators of <M>.
##
InstallMethod( IsWholeFamily,
    "for a free monoid",
    [ IsAssocWordWithOneCollection and IsMonoid ],
    M -> IsSubset( MagmaGeneratorsOfFamily( FamilyObj( M ) ),
                   GeneratorsOfMagmaWithOne( M ) ) );


#############################################################################
##
#M  Iterator( <M> ) . . . . . . . . . . . . . . .  iterator for a free monoid
##
##  Iterator and enumerator of free monoids are implemented very similar
##  to iterator and enumerator for free semigroups.
##  The only difference is the existence of the empty word.
##
InstallMethod( Iterator,
    "for a free monoid",
    [ IsAssocWordWithOneCollection and IsWholeFamily ],
    function( M )

    # A free group needs another method.
    # A trivial group needs another method.
    if IsAssocWordWithInverseCollection( M ) or IsTrivial( M ) then
      TryNextMethod();
    fi;

    return IteratorByFunctions( rec(
               IsDoneIterator := ReturnFalse,
               NextIterator   := NextIterator_FreeSemigroup,
               ShallowCopy    := ShallowCopy_FreeSemigroup,

               family         := ElementsFamily( FamilyObj( M ) ),
               nrgenerators   := Length( GeneratorsOfMagmaWithOne( M ) ),
               exp            := 0,
               word           := [],
               counter        := [ 0, 0 ],
               length         := 0 ) );
    end );


#############################################################################
##
#M  Enumerator( <M> ) . . . . . . . . . . . . .  enumerator for a free monoid
##
InstallMethod( Enumerator,
    "for a free monoid",
    [ IsAssocWordWithOneCollection and IsWholeFamily and IsMonoid ],
    function( M )

    # A free group needs another method.
    # A trivial group needs another method.
    if IsAssocWordWithInverseCollection( M ) or IsTrivial( M ) then
      TryNextMethod();
    fi;

    return EnumeratorByFunctions( M, rec(
               ElementNumber := ElementNumber_FreeMonoid,
               NumberElement := NumberElement_FreeMonoid,

               family        := ElementsFamily( FamilyObj( M ) ),
               nrgenerators  := Length( ElementsFamily( 
                                            FamilyObj( M ) )!.names ) ) );
    end );


#############################################################################
##
#M  Random( <M> ) . . . . . . . . . . . . . . random element of a free monoid
##
#T use better method for the whole family, and for abelian monoids
##
InstallMethod( Random,
    "for a free monoid",
    [ IsMonoid and IsAssocWordWithOneCollection ],
    function( M )
    local len, result, gens, i;

    # Get a random length for the word.
    len:= Random( Integers );
    if 0 < len then
      len:= 2 * len;
    elif len < 0 then
      len:= -2 * len - 1;
    else
      return One( M );
    fi;

    # Multiply 'len' random generators.
    gens:= GeneratorsOfMagmaWithOne( M );
    result:= Random( gens );
    for i in [ 2 .. len ] do
      result:= result * Random( gens );
    od;

    # Return the result.
    return result;
    end );


#############################################################################
##
#M  Size( <M> ) . . . . . . . . . . . . . . . . . . . . size of a free monoid
##
InstallMethod( Size,
    "for a free monoid",
    [ IsMonoid and IsAssocWordWithOneCollection ],
    function( M )
    if IsTrivial( M ) then
      return 1;
    else
      return infinity;
    fi;
    end );


#############################################################################
##
#A  One( <Fam> )
##
InstallOtherMethod( One,
    "for a family of free monoid elements",
    [ IsAssocWordWithOneFamily ],
    F -> ObjByExtRep( F, 1, 1, [] ) );


#############################################################################
##
#A  MagmaGeneratorsOfFamily( <F> )
##
InstallMethod( MagmaGeneratorsOfFamily,
    "for a family of free monoid elements",
    [ IsAssocWordWithOneFamily ],
    function( F )
    local gens;

    # Make the generators.
    gens:= List( [ 1 .. Length( F!.names ) ],
                 i -> ObjByExtRep( F, 1, 1, [ i, 1 ] ) );
    Add( gens, One( F ) );

    # Return the magma generators.
    return gens;
    end );
    
# GeneratorsOfMonoid returns the generators in ascending order
    
InstallMethod( GeneratorsSmallest,
        "for a free monoid",
        [ IsFreeMonoid ],
        GeneratorsOfMonoid);

#############################################################################
##
#F  FreeMonoid( <rank> )
#F  FreeMonoid( <rank>, <name> )
#F  FreeMonoid( <name1>, <name2>, ... )
#F  FreeMonoid( <names> )
#F  FreeMonoid( infinity, <name>, <init> )
##
InstallGlobalFunction( FreeMonoid, function( arg )
    local names,      # list of generators names
          F,          # family of free monoid element objects
          zarg,
          lesy,       # filter for letter or syllable words family
          M;          # free monoid, result

  lesy:=IsLetterWordsFamily; # default
  if IsFilter(arg[1]) then
    lesy:=arg[1];
    zarg:=arg{[2..Length(arg)]};
  else
    zarg:=arg;
  fi;

    # Get and check the argument list, and construct names if necessary.
    if   Length( zarg ) = 1 and zarg[1] = infinity then
      names:= InfiniteListOfNames( "m" );
    elif Length( zarg ) = 2 and zarg[1] = infinity then
      names:= InfiniteListOfNames( zarg[2] );
    elif Length( zarg ) = 3 and zarg[1] = infinity then
      names:= InfiniteListOfNames( zarg[2], zarg[3] );
    elif Length( zarg ) = 1 and IsInt( zarg[1] ) and 0 <= zarg[1] then
      names:= List( [ 1 .. zarg[1] ],
                    i -> Concatenation( "m", String(i) ) );
      MakeImmutable( names );
    elif Length( zarg ) = 2 and IsInt( zarg[1] ) and 0 <= zarg[1] then
      names:= List( [ 1 .. zarg[1] ],
                    i -> Concatenation( zarg[2], String(i) ) );
      MakeImmutable( names );
    elif Length( zarg ) = 1 and IsList( zarg[1] ) and IsEmpty( zarg[1] ) then
      names:= zarg[1];
    elif 1 <= Length( zarg ) and ForAll( zarg, IsString ) then
      names:= zarg;
    elif Length( zarg ) = 1 and IsList( zarg[1] )
                            and ForAll( zarg[1], IsString ) then
      names:= zarg[1];
    else
      Error("usage: FreeMonoid(<name1>,<name2>..) or FreeMonoid(<rank>)");
    fi;

    # Handle the trivial case.
    if IsEmpty( names ) then
      M:=FreeGroup( 0 );
      # we still need to set some monoid specific entries to keep
      # the monoid code happy
      F:=ElementsFamily(FamilyObj(M));
      FamilyObj(M)!.wholeMonoid:= M;
      F!.freeMonoid:=M;
      return M;
    fi;

    # deal with letter words family types
    if lesy=IsLetterWordsFamily then
      if Length(names)>127 then
	lesy:=IsWLetterWordsFamily;
      else
	lesy:=IsBLetterWordsFamily;
      fi;
    elif lesy=IsBLetterWordsFamily and Length(names)>127 then
      lesy:=IsWLetterWordsFamily;
    fi;

    # Construct the family of element objects of our monoid.
    F:= NewFamily( "FreeMonoidElementsFamily", IsAssocWordWithOne,
			  CanEasilySortElements, # the free monoid can.
			  CanEasilySortElements # the free monoid can.
			  and lesy);

    # Install the data (names, no. of bits available for exponents, types).
    StoreInfoFreeMagma( F, names, IsAssocWordWithOne );

    # Make the monoid
    if IsFinite( names ) then
      M:= MonoidByGenerators( List( [ 1 .. Length( names ) ],
                              i -> ObjByExtRep( F, 1, 1, [ i, 1 ] ) ) );
    else
      M:= MonoidByGenerators( InfiniteListOfGenerators( F ) );
    fi;

    SetIsFreeMonoid(M,true);

    SetIsWholeFamily( M, true );
    SetIsTrivial( M, false );

		# store the whole monoid in the family
    FamilyObj(M)!.wholeMonoid:= M;
    F!.freeMonoid:=M;


    # Return the free monoid.
    return M;
end );


#############################################################################
##
#M  ViewObj( <M> )  . . . . . . . . . . . . . . . . . . . . for a free monoid
##
InstallMethod( ViewObj,
    "for a free monoid containing the whole family",
    [ IsMonoid and IsAssocWordCollection and IsWholeFamily ],
    function( M )
    if GAPInfo.ViewLength * 10 < Length( GeneratorsOfMagmaWithOne( M ) ) then
      Print( "<free monoid with ", Length( GeneratorsOfMagmaWithOne( M ) ),
             " generators>" );
    else
      Print( "<free monoid on the generators ",
             GeneratorsOfMagmaWithOne( M ), ">" );
    fi;
    end );


#############################################################################
##
#E