/usr/share/gap/lib/monoid.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | #############################################################################
##
#W monoid.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains generic methods for monoids.
##
#############################################################################
##
#M PrintObj( <M> ) . . . . . . . . . . . . . . . . . . . . . print a monoid
##
InstallMethod( String,
"for monoid",
true,
[ IsMonoid ], 0,
function( M )
return "Monoid( ... )";
end );
InstallMethod( PrintObj,
"for monoid with known generators",
true,
[ IsMonoid and HasGeneratorsOfMonoid ], 0,
function( M )
Print( "Monoid( ", GeneratorsOfMagmaWithOne( M ), " )" );
end );
InstallMethod( String,
"for monoid with known generators",
true,
[ IsMonoid and HasGeneratorsOfMonoid ], 0,
function( M )
return STRINGIFY( "Monoid( ", GeneratorsOfMagmaWithOne( M ), " )" );
end );
InstallMethod( PrintString,
"for monoid with known generators",
true,
[ IsMonoid and HasGeneratorsOfMonoid ], 0,
function( M )
return PRINT_STRINGIFY( "Monoid( ", GeneratorsOfMagmaWithOne( M ), " )" );
end );
#############################################################################
##
#M ViewObj( <M> ) . . . . . . . . . . . . . . . . . . . . . . view a monoid
##
InstallMethod( ViewString,
"for a monoid",
true,
[ IsMonoid ], 0,
function( M )
return "<monoid>" ;
end );
InstallMethod( ViewString,
"for a monoid with generators",
true,
[ IsMonoid and HasGeneratorsOfMagmaWithOne ], 0,
function( M )
if IsEmpty( GeneratorsOfMagmaWithOne( M ) ) then
return "<trivial monoid>" ;
elif Length(GeneratorsOfMagmaWithOne(M)) = 1 then
return STRINGIFY( "<monoid with ",
Length( GeneratorsOfMagmaWithOne( M ) ), " generator>" );
else
return STRINGIFY("<monoid with ",
Length( GeneratorsOfMagmaWithOne( M ) ), " generators>" );
fi;
end );
#############################################################################
##
#M MonoidByGenerators( <gens> ) . . . . . . . . monoid generated by <gens>
##
InstallOtherMethod( MonoidByGenerators,
"for a collection",
true,
[ IsCollection ] , 0,
function( gens )
local M;
M:= Objectify( NewType( FamilyObj( gens ),
IsMonoid and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfMagmaWithOne( M, AsList( gens ) );
return M;
end );
InstallOtherMethod( MonoidByGenerators,
"for collection and identity",
IsCollsElms,
[ IsCollection, IsMultiplicativeElementWithOne ], 0,
function( gens, id )
local M;
M:= Objectify( NewType( FamilyObj( gens ),
IsMonoid and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfMagmaWithOne( M, AsList( gens ) );
SetOne( M, Immutable( id ) );
return M;
end );
InstallOtherMethod( MonoidByGenerators,
"for empty collection and identity",
true,
[ IsEmpty, IsMultiplicativeElementWithOne ], 0,
function( gens, id )
local M;
M:= Objectify( NewType( CollectionsFamily( FamilyObj( id ) ),
IsMonoid
and IsTrivial
and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfMagmaWithOne( M, AsList( gens ) );
SetOne( M, Immutable( id ) );
return M;
end );
InstallImmediateMethod( GeneratorsOfSemigroup,
IsMonoid and HasGeneratorsOfMonoid and IsAttributeStoringRep, 0,
function(M)
if Length(GeneratorsOfMonoid(M)) = infinity then
TryNextMethod();
fi;
if CanEasilyCompareElements(One(M)) and One(M) in GeneratorsOfMonoid(M) then
return GeneratorsOfMonoid(M);
fi;
return Concatenation([One(M)], GeneratorsOfMonoid(M));
end);
#############################################################################
##
#M AsMonoid( <D> ) . . . . . . . . . . . . . . domain <D>, viewed as monoid
##
InstallMethod( AsMonoid,
"for a monoid",
true,
[ IsMonoid ], 100,
IdFunc );
#
InstallMethod(AsMonoid, "for a semigroup",
[IsSemigroup],
function(s)
local gens, pos;
if not One(s) in s then
return fail;
fi;
gens:=ShallowCopy(GeneratorsOfSemigroup(s));
pos:=Position(gens, One(s));
if pos<>fail then
Remove(gens, pos);
fi;
return Monoid(gens);
end);
#
InstallMethod( AsMonoid,
"generic method for a collection",
true,
[ IsCollection ], 0,
function ( D )
local M, L;
D := AsSSortedList( D );
L := ShallowCopy( D );
M := TrivialSubmagmaWithOne( MonoidByGenerators( D ) );
SubtractSet( L, AsSSortedList( M ) );
while not IsEmpty(L) do
M := ClosureMagmaDefault( M, L[1] );
SubtractSet( L, AsSSortedList( M ) );
od;
if Length( AsSSortedList( M ) ) <> Length( D ) then
return fail;
fi;
M := MonoidByGenerators( GeneratorsOfMonoid( M ), One( D[1] ) );
SetAsSSortedList( M, D );
SetIsFinite( M, true );
SetSize( M, Length( D ) );
# return the monoid
return M;
end );
#############################################################################
##
#M AsSubmonoid( <G>, <U> )
##
InstallMethod( AsSubmonoid,
"generic method for a domain and a collection",
IsIdenticalObj,
[ IsDomain, IsCollection ], 0,
function( G, U )
local S;
if not IsSubset( G, U ) then
return fail;
fi;
if IsMagmaWithOne( U ) then
if not IsAssociative( U ) then
return fail;
fi;
S:= SubmonoidNC( G, GeneratorsOfMagmaWithOne( U ) );
else
S:= SubmagmaWithOneNC( G, AsList( U ) );
if not IsAssociative( S ) then
return fail;
fi;
fi;
UseIsomorphismRelation( U, S );
UseSubsetRelation( U, S );
return S;
end );
#############################################################################
##
#M IsCommutative( <M> ) . . . . . . . . . . test if a monoid is commutative
##
InstallMethod( IsCommutative,
"for associative magma-with-one",
true,
[ IsMagmaWithOne and IsAssociative ], 0,
IsCommutativeFromGenerators( GeneratorsOfMagmaWithOne ) );
#############################################################################
##
#F Monoid( <gen>, ... )
#F Monoid( <obj> )
#F Monoid( <gens>, <id> )
##
InstallGlobalFunction( Monoid, function( arg )
local out, i;
if Length(arg)=0 or (Length(arg)=1 and HasIsEmpty(arg[1]) and IsEmpty(arg[1]))
then
Error("usage: cannot create a monoid with no generators,");
return;
# special case for matrices, because they may look like lists
elif Length( arg ) = 1 and IsMatrix( arg[1] ) then
return MonoidByGenerators( [ arg[1] ] );
# special case for matrices, because they look like lists
elif Length( arg ) = 2 and IsMatrix( arg[1] ) then
return MonoidByGenerators( arg );
# list of generators
elif Length( arg ) = 1 and IsList( arg[1] ) and 0 < Length( arg[1] ) then
return MonoidByGenerators( arg[1] );
# list of generators plus identity
elif Length( arg ) = 2 and IsList( arg[1] ) and not IsEmpty(arg[1]) then
return MonoidByGenerators( arg[1], arg[2] );
# generators and collections of generators
elif (IsMultiplicativeElementWithOne(arg[1])
and IsGeneratorsOfSemigroup([arg[1]]))
or (IsMultiplicativeElementWithOneCollection(arg[1])
and IsGeneratorsOfSemigroup(arg[1]))
or (HasIsEmpty(arg[1]) and IsEmpty(arg[1])) then
out:=[];
for i in [1..Length(arg)] do
#so that we can pass the options record in the Semigroups package
if i=Length(arg) and IsRecord(arg[i]) then
return MonoidByGenerators(out, arg[i]);
elif IsMultiplicativeElementWithOne(arg[i]) and IsGeneratorsOfSemigroup([arg[i]]) then
Add(out, arg[i]);
elif IsGeneratorsOfSemigroup(arg[i]) then
if HasGeneratorsOfSemigroup(arg[i]) then
Append(out, GeneratorsOfSemigroup(arg[i]));
elif IsList(arg[i]) then
Append(out, arg[i]);
else
Append(out, AsList(arg[i]));
fi;
else
if not IsEmpty(arg[i]) then
Error( "Usage: Monoid(<gen>,...), Monoid(<gens>), Monoid(<D>)," );
return;
fi;
fi;
od;
return MonoidByGenerators(out);
# generators
elif 0 < Length( arg ) then
return MonoidByGenerators( arg );
# no argument given, error
else
Error( "Usage: Monoid(<gen>,...), Monoid(<gens>), Monoid(<D>)," );
return;
fi;
end);
#############################################################################
##
#E
|