This file is indexed.

/usr/share/gap/lib/monoid.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#############################################################################
##
#W  monoid.gi                   GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains generic methods for monoids.
##


#############################################################################
##
#M  PrintObj( <M> ) . . . . . . . . . . . . . . . . . . . . .  print a monoid
##

InstallMethod( String,
    "for monoid",
    true,
    [ IsMonoid ], 0,
    function( M )
    return "Monoid( ... )";
    end );

InstallMethod( PrintObj,
    "for monoid with known generators",
    true,
    [ IsMonoid and HasGeneratorsOfMonoid ], 0,
    function( M )
    Print( "Monoid( ", GeneratorsOfMagmaWithOne( M ), " )" );
    end );

InstallMethod( String,
    "for monoid with known generators",
    true,
    [ IsMonoid and HasGeneratorsOfMonoid ], 0,
    function( M )
    return STRINGIFY( "Monoid( ", GeneratorsOfMagmaWithOne( M ), " )" );
    end );

InstallMethod( PrintString,
    "for monoid with known generators",
    true,
    [ IsMonoid and HasGeneratorsOfMonoid ], 0,
    function( M )
    return PRINT_STRINGIFY( "Monoid( ", GeneratorsOfMagmaWithOne( M ), " )" );
    end );

#############################################################################
##
#M  ViewObj( <M> )  . . . . . . . . . . . . . . . . . . . . . . view a monoid
##
InstallMethod( ViewString,
    "for a monoid",
    true,
    [ IsMonoid ], 0,
    function( M )
    return "<monoid>" ;
    end );

InstallMethod( ViewString,
    "for a monoid with generators",
    true,
    [ IsMonoid and HasGeneratorsOfMagmaWithOne ], 0,
    function( M )
    if IsEmpty( GeneratorsOfMagmaWithOne( M ) ) then
      return "<trivial monoid>" ;
    elif Length(GeneratorsOfMagmaWithOne(M)) = 1 then
      return STRINGIFY( "<monoid with ", 
       Length( GeneratorsOfMagmaWithOne( M ) ), " generator>" );
    else
       return STRINGIFY("<monoid with ", 
       Length( GeneratorsOfMagmaWithOne( M ) ), " generators>" );
    fi;
    end );


#############################################################################
##
#M  MonoidByGenerators( <gens> )  . . . . . . . .  monoid generated by <gens>
##
InstallOtherMethod( MonoidByGenerators,
    "for a collection",
    true,
    [ IsCollection ] , 0,
    function( gens )
    local M;
    M:= Objectify( NewType( FamilyObj( gens ),
                            IsMonoid and IsAttributeStoringRep ),
                   rec() );
    SetGeneratorsOfMagmaWithOne( M, AsList( gens ) );
    return M;
    end );

InstallOtherMethod( MonoidByGenerators,
    "for collection and identity",
    IsCollsElms,
    [ IsCollection, IsMultiplicativeElementWithOne ], 0,
    function( gens, id )
    local M;
    M:= Objectify( NewType( FamilyObj( gens ),
                            IsMonoid and IsAttributeStoringRep ),
                   rec() );
    SetGeneratorsOfMagmaWithOne( M, AsList( gens ) );
    SetOne( M, Immutable( id ) );
    return M;
    end );

InstallOtherMethod( MonoidByGenerators,
    "for empty collection and identity",
    true,
    [ IsEmpty, IsMultiplicativeElementWithOne ], 0,
    function( gens, id )
    local M;
    M:= Objectify( NewType( CollectionsFamily( FamilyObj( id ) ),
                                IsMonoid
                            and IsTrivial
                            and IsAttributeStoringRep ),
                   rec() );
    SetGeneratorsOfMagmaWithOne( M, AsList( gens ) );
    SetOne( M, Immutable( id ) );
    return M;
    end );

InstallImmediateMethod( GeneratorsOfSemigroup,
IsMonoid and HasGeneratorsOfMonoid and IsAttributeStoringRep, 0,
function(M)

  if Length(GeneratorsOfMonoid(M)) = infinity then 
    TryNextMethod();
  fi;

  if CanEasilyCompareElements(One(M)) and One(M) in GeneratorsOfMonoid(M) then 
    return GeneratorsOfMonoid(M);
  fi;
  return Concatenation([One(M)], GeneratorsOfMonoid(M));
end);

#############################################################################
##
#M  AsMonoid( <D> ) . . . . . . . . . . . . . .  domain <D>, viewed as monoid
##
InstallMethod( AsMonoid,
    "for a monoid",
    true,
    [ IsMonoid ], 100,
    IdFunc );

#

InstallMethod(AsMonoid, "for a semigroup",
[IsSemigroup],
function(s)
  local gens, pos;

  if not One(s) in s then
    return fail;
  fi;

  gens:=ShallowCopy(GeneratorsOfSemigroup(s));
  pos:=Position(gens, One(s));
  if pos<>fail then 
    Remove(gens, pos);
  fi;
  return Monoid(gens);
end);

#

InstallMethod( AsMonoid,
    "generic method for a collection",
    true,
    [ IsCollection ], 0,
    function ( D )
    local   M,  L;

    D := AsSSortedList( D );
    L := ShallowCopy( D );
    M := TrivialSubmagmaWithOne( MonoidByGenerators( D ) );
    SubtractSet( L, AsSSortedList( M ) );
    while not IsEmpty(L)  do
        M := ClosureMagmaDefault( M, L[1] );
        SubtractSet( L, AsSSortedList( M ) );
    od;
    if Length( AsSSortedList( M ) ) <> Length( D )  then
        return fail;
    fi;
    M := MonoidByGenerators( GeneratorsOfMonoid( M ), One( D[1] ) );
    SetAsSSortedList( M, D );
    SetIsFinite( M, true );
    SetSize( M, Length( D ) );

    # return the monoid
    return M;
    end );


#############################################################################
##
#M  AsSubmonoid( <G>, <U> )
##
InstallMethod( AsSubmonoid,
    "generic method for a domain and a collection",
    IsIdenticalObj,
    [ IsDomain, IsCollection ], 0,
    function( G, U )
    local S;
    if not IsSubset( G, U ) then
      return fail;
    fi;
    if IsMagmaWithOne( U ) then
      if not IsAssociative( U ) then
        return fail;
      fi;
      S:= SubmonoidNC( G, GeneratorsOfMagmaWithOne( U ) );
    else
      S:= SubmagmaWithOneNC( G, AsList( U ) );
      if not IsAssociative( S ) then
        return fail;
      fi;
    fi;
    UseIsomorphismRelation( U, S );
    UseSubsetRelation( U, S );
    return S;
    end );


#############################################################################
##
#M  IsCommutative( <M> ) . . . . . . . . . .  test if a monoid is commutative
##
InstallMethod( IsCommutative,
    "for associative magma-with-one",
    true,
    [ IsMagmaWithOne and IsAssociative ], 0,
    IsCommutativeFromGenerators( GeneratorsOfMagmaWithOne ) );


#############################################################################
##
#F  Monoid( <gen>, ... )
#F  Monoid( <obj> )
#F  Monoid( <gens>, <id> )
##

InstallGlobalFunction( Monoid, function( arg )
  local out, i;
  
  if Length(arg)=0 or (Length(arg)=1 and HasIsEmpty(arg[1]) and IsEmpty(arg[1]))
   then 
    Error("usage: cannot create a monoid with no generators,");
    return;

  # special case for matrices, because they may look like lists
  elif Length( arg ) = 1 and IsMatrix( arg[1] )  then
    return MonoidByGenerators( [ arg[1] ] );

  # special case for matrices, because they look like lists
  elif Length( arg ) = 2 and IsMatrix( arg[1] )  then
    return MonoidByGenerators( arg );

  # list of generators
  elif Length( arg ) = 1 and IsList( arg[1] ) and 0 < Length( arg[1] )  then
    return MonoidByGenerators( arg[1] );

  # list of generators plus identity
  elif Length( arg ) = 2 and IsList( arg[1] ) and not IsEmpty(arg[1]) then
    return MonoidByGenerators( arg[1], arg[2] );

  # generators and collections of generators 
  elif (IsMultiplicativeElementWithOne(arg[1]) 
        and IsGeneratorsOfSemigroup([arg[1]]))
    or (IsMultiplicativeElementWithOneCollection(arg[1])
        and IsGeneratorsOfSemigroup(arg[1])) 
    or (HasIsEmpty(arg[1]) and IsEmpty(arg[1])) then
    out:=[];
    for i in [1..Length(arg)] do
      #so that we can pass the options record in the Semigroups package 
      if i=Length(arg) and IsRecord(arg[i]) then
        return MonoidByGenerators(out, arg[i]);
      elif IsMultiplicativeElementWithOne(arg[i]) and IsGeneratorsOfSemigroup([arg[i]]) then
        Add(out, arg[i]);
      elif IsGeneratorsOfSemigroup(arg[i]) then
        if HasGeneratorsOfSemigroup(arg[i]) then
          Append(out, GeneratorsOfSemigroup(arg[i]));
        elif IsList(arg[i]) then 
          Append(out, arg[i]);
        else 
          Append(out, AsList(arg[i]));
        fi;
      else
        if not IsEmpty(arg[i]) then 
          Error( "Usage: Monoid(<gen>,...), Monoid(<gens>), Monoid(<D>)," );
          return;
        fi;
      fi;
    od;
    return MonoidByGenerators(out);

  # generators
  elif 0 < Length( arg )  then
    return MonoidByGenerators( arg );
  # no argument given, error
  else
    Error( "Usage: Monoid(<gen>,...), Monoid(<gens>), Monoid(<D>)," );
    return;
  fi;
end);

#############################################################################
##
#E