/usr/share/gap/lib/morpheus.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 | #############################################################################
##
#W morpheus.gd GAP library Alexander Hulpke
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains declarations for Morpheus
##
DeclareInfoClass("InfoMorph");
#############################################################################
##
#A AutomorphismGroup(<obj>)
##
## <#GAPDoc Label="AutomorphismGroup">
## <ManSection>
## <Attr Name="AutomorphismGroup" Arg='G'/>
##
## <Description>
## returns the full automorphism group of the group <A>G</A>.
## The automorphisms act on <A>G</A> by the caret operator <C>^</C>.
## The automorphism group often stores a <Ref Func="NiceMonomorphism"/>
## value whose image is a permutation group,
## obtained by the action on a subset of <A>G</A>.
## <P/>
## Note that current methods for the calculation of the automorphism group
## of a group <M>G</M> require <M>G</M> to be a permutation group or
## a pc group to be efficient. For groups in other representations the
## calculation is likely very slow.
## <P/>
## Also, the <Package>AutPGrp</Package> package installs enhanced methods
## for <Ref Oper="AutomorphismGroup"/> for finite <M>p</M>-groups, and
## the <Package>FGA</Package> package - for finitely generated subgroups
## of free groups.
## <P/>
## Methods may be installed for <Ref Oper="AutomorphismGroup"/>
## for other domains, such as e.g. for linear codes in the
## <Package>GUAVA</Package> package, loops in the <Package>loops</Package>
## package and nilpotent Lie algebras in the <Package>Sophus</Package>
## package (see package manuals for their descriptions).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("AutomorphismGroup",IsDomain);
#############################################################################
##
#P IsGroupOfAutomorphisms(<G>)
##
## <#GAPDoc Label="IsGroupOfAutomorphisms">
## <ManSection>
## <Prop Name="IsGroupOfAutomorphisms" Arg='G'/>
##
## <Description>
## indicates whether <A>G</A> consists of automorphisms of another group
## <M>H</M>, say.
## The group <M>H</M> can be obtained from <A>G</A> via the attribute
## <Ref Func="AutomorphismDomain"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsGroupOfAutomorphisms", IsGroup );
#############################################################################
##
#P IsGroupOfAutomorphismsFiniteGroup(<G>)
##
## <ManSection>
## <Prop Name="IsGroupOfAutomorphismsFiniteGroup" Arg='G'/>
##
## <Description>
## indicates whether <A>G</A> consists of automorphisms of another finite group <A>H</A>.
## The group <A>H</A> can be obtained from <A>G</A> via the attribute
## <C>AutomorphismDomain</C>.
## </Description>
## </ManSection>
##
DeclareProperty( "IsGroupOfAutomorphismsFiniteGroup", IsGroup );
InstallTrueMethod( IsGroupOfAutomorphisms,IsGroupOfAutomorphismsFiniteGroup);
InstallTrueMethod( IsFinite,IsGroupOfAutomorphismsFiniteGroup);
InstallTrueMethod( IsHandledByNiceMonomorphism,
IsGroupOfAutomorphismsFiniteGroup);
InstallSubsetMaintenance( IsGroupOfAutomorphisms,
IsGroup and IsGroupOfAutomorphisms, IsGroup );
InstallSubsetMaintenance( IsGroupOfAutomorphismsFiniteGroup,
IsGroup and IsGroupOfAutomorphismsFiniteGroup, IsGroup );
#############################################################################
##
#A AutomorphismDomain(<G>)
##
## <#GAPDoc Label="AutomorphismDomain">
## <ManSection>
## <Attr Name="AutomorphismDomain" Arg='G'/>
##
## <Description>
## If <A>G</A> consists of automorphisms of <M>H</M>,
## this attribute returns <M>H</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AutomorphismDomain", IsGroupOfAutomorphisms );
#############################################################################
##
#P IsAutomorphismGroup(<G>)
##
## <#GAPDoc Label="IsAutomorphismGroup">
## <ManSection>
## <Prop Name="IsAutomorphismGroup" Arg='G'/>
##
## <Description>
## indicates whether <A>G</A> is the full automorphism group of another
## group <M>H</M>, this group is given as <Ref Func="AutomorphismDomain"/>
## value of <A>G</A>.
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,3));
## Group([ (1,2,3,4), (1,3) ])
## gap> au:=AutomorphismGroup(g);
## <group of size 8 with 3 generators>
## gap> GeneratorsOfGroup(au);
## [ Pcgs([ (2,4), (1,2,3,4), (1,3)(2,4) ]) ->
## [ (1,2)(3,4), (1,2,3,4), (1,3)(2,4) ],
## Pcgs([ (2,4), (1,2,3,4), (1,3)(2,4) ]) ->
## [ (1,3), (1,2,3,4), (1,3)(2,4) ],
## Pcgs([ (2,4), (1,2,3,4), (1,3)(2,4) ]) ->
## [ (2,4), (1,4,3,2), (1,3)(2,4) ] ]
## gap> NiceObject(au);
## Group([ (1,2,3,4), (1,3)(2,4), (2,4) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsAutomorphismGroup", IsGroupOfAutomorphisms );
InstallTrueMethod( IsGroupOfAutomorphisms,IsAutomorphismGroup );
#############################################################################
##
#A InnerAutomorphismsAutomorphismGroup(<autgroup>)
##
## <#GAPDoc Label="InnerAutomorphismsAutomorphismGroup">
## <ManSection>
## <Attr Name="InnerAutomorphismsAutomorphismGroup" Arg='autgroup'/>
##
## <Description>
## For an automorphism group <A>autgroup</A> of a group
## this attribute stores the subgroup of inner automorphisms
## (automorphisms induced by conjugation) of the original group.
## <Example><![CDATA[
## gap> InnerAutomorphismsAutomorphismGroup(au);
## <group with 2 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("InnerAutomorphismsAutomorphismGroup",IsGroup);
#############################################################################
##
#F AssignNiceMonomorphismAutomorphismGroup(<autgrp>,<group>) local
##
## <#GAPDoc Label="AssignNiceMonomorphismAutomorphismGroup">
## <ManSection>
## <Func Name="AssignNiceMonomorphismAutomorphismGroup" Arg='autgrp, group'/>
##
## <Description>
## computes a nice monomorphism for <A>autgroup</A> acting on <A>group</A>
## and stores it as <Ref Attr="NiceMonomorphism"/> value of <A>autgrp</A>.
## <P/>
## If the centre of <Ref Func="AutomorphismDomain"/> of <A>autgrp</A> is
## trivial, the operation will first try to represent all automorphisms by
## conjugation (in <A>group</A> or in a natural parent of <A>group</A>).
## <P/>
## If this fails the operation tries to find a small subset of <A>group</A>
## on which the action will be faithful.
## <P/>
## The operation sets the attribute <Ref Attr="NiceMonomorphism"/>
## and does not return a value.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("AssignNiceMonomorphismAutomorphismGroup");
#############################################################################
##
#F NiceMonomorphismAutomGroup(<autgrp>,<elms>,<elmsgens>)
##
## <#GAPDoc Label="NiceMonomorphismAutomGroup">
## <ManSection>
## <Func Name="NiceMonomorphismAutomGroup" Arg='autgrp, elms, elmsgens'/>
##
## <Description>
## This function creates a monomorphism for an automorphism group
## <A>autgrp</A> of a group by permuting the group elements in the list
## <A>elms</A>.
## This list must be chosen to yield a faithful representation.
## <A>elmsgens</A> is a list of generators which are a subset of
## <A>elms</A>.
## (They can differ from the group's original generators.)
## It does not yet assign it as <Ref Func="NiceMonomorphism"/> value.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("NiceMonomorphismAutomGroup");
#############################################################################
##
#F MorFroWords(<gens>) . . . . . . create some pseudo-random words in <gens>
##
## <ManSection>
## <Func Name="MorFroWords" Arg='gens'/>
##
## <Description>
## This function takes a generator list <A>gens</A> and creates a list of
## pseudo-random words in them. These words can be used for example to test
## quickly whether generator mappings extend to a homomorphism. The words
## are taken from the MeatAxe FRO routine.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("MorFroWords");
#############################################################################
##
#F MorRatClasses(<G>) . . . . . . . . . . . local
##
## <ManSection>
## <Func Name="MorRatClasses" Arg='G'/>
##
## <Description>
## yields a list of rational classes as a collection of ordinary classes.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("MorRatClasses");
#############################################################################
##
#F MorMaxFusClasses(<l>) . . maximal possible morphism fusion of classlists
##
## <ManSection>
## <Func Name="MorMaxFusClasses" Arg='l'/>
##
## <Description>
## computes a list of classes (as unions of rational classes) which will be
## respected by any automorphism. This is used to determine potential
## automorphism images of elements.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("MorMaxFusClasses");
#############################################################################
##
#F MorClassLoop(<range>,<classes>,<params>,<action>) class loop
##
## <#GAPDoc Label="MorClassLoop">
## <ManSection>
## <Func Name="MorClassLoop" Arg='range, classes, params, action'/>
##
## <Description>
## This function loops over element tuples taken from <A>classes</A> and
## checks these for properties such as generating a given group,
## or fulfilling relations.
## This can be used to find small generating sets or all types of Morphisms.
## The element tuples are used only up to up to inner automorphisms as
## all images can be obtained easily from them by conjugation while
## running through all of them usually would take too long.
## <P/>
## <A>range</A> is a group from which these elements are taken.
## The classes are given in a list <A>classes</A> which is a list of records
## with the following components.
## <List>
## <Mark><C>classes</C></Mark>
## <Item>
## list of conjugacy classes
## </Item>
## <Mark><C>representative</C></Mark>
## <Item>
## One element in the union of these classes
## </Item>
## <Mark><C>size</C></Mark>
## <Item>
## The sum of the sizes of these classes
## </Item>
## </List>
## <P/>
## <A>params</A> is a record containing the following optional components.
## <List>
## <Mark><C>gens</C></Mark>
## <Item>
## generators that are to be mapped (for testing morphisms). The length
## of this list determines the length of element tuples considered.
## </Item>
## <Mark><C>from</C></Mark>
## <Item>
## a preimage group (that contains <C>gens</C>)
## </Item>
## <Mark><C>to</C></Mark>
## <Item>
## image group (which might be smaller than <C>range</C>)
## </Item>
## <Mark><C>free</C></Mark>
## <Item>
## free generators, a list of the same length than the
## generators <C>gens</C>.
## </Item>
## <Mark><C>rels</C></Mark>
## <Item>
## some relations that hold among the generators <C>gens</C>.
## They are given as a list <C>[ word, order ]</C>
## where <C>word</C> is a word in the free generators <C>free</C>.
## </Item>
## <Mark><C>dom</C></Mark>
## <Item>
## a set of elements on which automorphisms act faithfully (used to do
## element tests in partial automorphism groups).
## </Item>
## <Mark><C>aut</C></Mark>
## <Item>
## Subgroup of already known automorphisms.
## </Item>
## <Mark><C>condition</C></Mark>
## <Item>
## A function that will be applied to the homomorphism and must return
## <C>true</C> for the homomorphism to be accepted.
## </Item>
## </List>
## <P/>
## <A>action</A> is a number whose bit-representation indicates
## the requirements which are enforced on the element tuples found,
## as follows.
## <List>
## <Mark>1</Mark>
## <Item>
## homomorphism
## </Item>
## <Mark>2</Mark>
## <Item>
## injective
## </Item>
## <Mark>4</Mark>
## <Item>
## surjective
## </Item>
## <Mark>8</Mark>
## <Item>
## find all (otherwise stops after the first find)
## </Item>
## </List>
## If the search is for homomorphisms, the function returns homomorphisms
## obtained by mapping the given generators <C>gens</C>
## instead of element tuples.
## <P/>
## The <Q>Morpheus</Q> algorithm used to find homomorphisms is described in
## <Cite Key="Hulpke96" Where="Section V.5"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("MorClassLoop");
#############################################################################
##
#F MorFindGeneratingSystem(<G>,<cl>) . . local
##
## <ManSection>
## <Func Name="MorFindGeneratingSystem" Arg='G,cl'/>
##
## <Description>
## tries to find generating system with as few as possible generators
## which will be taken preferraby from the first classes in <A>cl</A>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("MorFindGeneratingSystem");
#############################################################################
##
#F Morphium(<G>,<H>,<DoAuto>) . . . . . . . . local
##
## <ManSection>
## <Func Name="Morphium" Arg='G,H,DoAuto'/>
##
## <Description>
## This function is a frontend to <C>MorClassLoop</C> and is used to find
## isomorphisms between <A>G</A> and <A>H</A> or the automorphism group of <A>G</A> (in which
## case <A>G</A> must equal <A>H</A>). The boolean flag <A>DoAuto</A> indicates if all
## automorphisms should be found.
## The function requires, that both groups are not cyclic!
## </Description>
## </ManSection>
##
DeclareGlobalFunction("Morphium");
#############################################################################
##
#F AutomorphismGroupAbelianGroup(<G>)
##
## <ManSection>
## <Func Name="AutomorphismGroupAbelianGroup" Arg='G'/>
##
## <Description>
## computes the automorphism group of an abelian group <A>G</A>, using the theorem
## of Shoda.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("AutomorphismGroupAbelianGroup");
DeclareGlobalFunction("AutomorphismGroupFittingFree");
#############################################################################
##
#F IsomorphismAbelianGroups(<G>,<H>)
##
## <ManSection>
## <Func Name="IsomorphismAbelianGroups" Arg='G,H'/>
##
## <Description>
## computes an isomorphism between the abelian groups <A>G</A> and <A>H</A>
## if they are isomorphic and returns <K>fail</K> otherwise.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("IsomorphismAbelianGroups");
#############################################################################
##
#F IsomorphismGroups(<G>,<H>)
##
## <#GAPDoc Label="IsomorphismGroups">
## <ManSection>
## <Func Name="IsomorphismGroups" Arg='G,H'/>
##
## <Description>
## computes an isomorphism between the groups <A>G</A> and <A>H</A>
## if they are isomorphic and returns <K>fail</K> otherwise.
## <P/>
## With the existing methods the amount of time needed grows with
## the size of a generating system of <A>G</A>. (Thus in particular for
## <M>p</M>-groups calculations can be slow.) If you do only need to know
## whether groups are isomorphic, you might want to consider
## <Ref Func="IdSmallGroup"/> or the random isomorphism test
## (see <Ref Func="RandomIsomorphismTest"/>).
## <P/>
## <Index Subkey="find all">isomorphisms</Index>
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,3));;
## gap> h:=Group((1,4,6,7)(2,3,5,8), (1,5)(2,6)(3,4)(7,8));;
## gap> IsomorphismGroups(g,h);
## [ (1,2,3,4), (1,3) ] -> [ (1,4,6,7)(2,3,5,8), (1,2)(3,7)(4,8)(5,6) ]
## gap> IsomorphismGroups(g,Group((1,2,3,4),(1,2)));
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("IsomorphismGroups");
#############################################################################
##
#O GQuotients(<F>,<G>) . . . . . epimorphisms from F onto G up to conjugacy
##
## <#GAPDoc Label="GQuotients">
## <ManSection>
## <Oper Name="GQuotients" Arg='F, G'/>
##
## <Description>
## computes all epimorphisms from <A>F</A> onto <A>G</A> up to automorphisms
## of <A>G</A>.
## This classifies all factor groups of <A>F</A> which are isomorphic to
## <A>G</A>.
## <P/>
## With the existing methods the amount of time needed grows with
## the size of a generating system of <A>G</A>. (Thus in particular for
## <M>p</M>-groups calculations can be slow.)
## <P/>
## If the <C>findall</C> option is set to <K>false</K>,
## the algorithm will stop once one homomorphism has been found
## (this can be faster and might be sufficient if not all homomorphisms
## are needed).
## <P/>
## <Index Subkey="find all">epimorphisms</Index>
## <Index Subkey="find all">projections</Index>
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));
## Group([ (1,2,3,4), (1,2) ])
## gap> h:=Group((1,2,3),(1,2));
## Group([ (1,2,3), (1,2) ])
## gap> quo:=GQuotients(g,h);
## [ [ (1,2,4,3), (1,2,3) ] -> [ (2,3), (1,2,3) ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("GQuotients",[IsGroup,IsGroup]);
#############################################################################
##
#O IsomorphicSubgroups(<G>,<H>) monomorphisms from H onto G up to conjugacy
##
## <#GAPDoc Label="IsomorphicSubgroups">
## <ManSection>
## <Oper Name="IsomorphicSubgroups" Arg='G,H'/>
##
## <Description>
## computes all monomorphisms from <A>H</A> into <A>G</A> up to
## <A>G</A>-conjugacy of the image groups.
## This classifies all <A>G</A>-classes of subgroups of <A>G</A> which
## are isomorphic to <A>H</A>.
## <P/>
## With the existing methods, the amount of time needed grows with
## the size of a generating system of <A>G</A>. (Thus in particular for
## <M>p</M>-groups calculations can be slow.) A main use of
## <Ref Func="IsomorphicSubgroups"/> therefore is to find nonsolvable
## subgroups (which often can be generated by 2 elements).
## <P/>
## (To find <M>p</M>-subgroups it is often faster to compute the subgroup
## lattice of the Sylow subgroup and to use <Ref Func="IdGroup"/>
## to identify the type of the subgroups.)
## <P/>
## If the <C>findall</C> option is set to <K>false</K>,
## the algorithm will stop once one homomorphism has been found
## (this can be faster and might be sufficient if not all homomorphisms are
## needed).
## <P/>
## <Index Subkey="find all">embeddings</Index>
## <Index Subkey="find all">monomorphisms</Index>
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));
## Group([ (1,2,3,4), (1,2) ])
## gap> h:=Group((3,4),(1,2));;
## gap> emb:=IsomorphicSubgroups(g,h);
## [ [ (3,4), (1,2) ] -> [ (1,2), (3,4) ],
## [ (3,4), (1,2) ] -> [ (1,3)(2,4), (1,2)(3,4) ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("IsomorphicSubgroups",[IsGroup,IsGroup]);
#############################################################################
##
#E
|