/usr/share/gap/lib/numtheor.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 | #############################################################################
##
#W numtheor.gd GAP library Martin Schönert
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares operations for integer primes.
## <#GAPDoc Label="[1]{numtheor}">
## &GAP; provides a couple of elementary number theoretic functions.
## Most of these deal with the group of integers coprime to <M>m</M>,
## called the <E>prime residue group</E>.
## The order of this group is <M>\phi(m)</M> (see <Ref Func="Phi"/>),
## and <M>\lambda(m)</M> (see <Ref Func="Lambda"/>) is its exponent.
## This group is cyclic if and only if <M>m</M> is 2, 4,
## an odd prime power <M>p^n</M>, or twice an odd prime power <M>2 p^n</M>.
## In this case the generators of the group, i.e., elements of order
## <M>\phi(m)</M>,
## are called <E>primitive roots</E>
## (see <Ref Func="PrimitiveRootMod"/>).
## <P/>
## Note that neither the arguments nor the return values of the functions
## listed below are groups or group elements in the sense of &GAP;.
## The arguments are simply integers.
## <#/GAPDoc>
##
##########################################################################
##
#V InfoNumtheor
##
## <#GAPDoc Label="InfoNumtheor">
## <ManSection>
## <InfoClass Name="InfoNumtheor"/>
##
## <Description>
## <Ref InfoClass="InfoNumtheor"/> is the info class
## (see <Ref Sect="Info Functions"/>)
## for the functions in the number theory chapter.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareInfoClass( "InfoNumtheor" );
#############################################################################
##
#F PrimeResidues( <m> ) . . . . . . . integers relative prime to an integer
##
## <#GAPDoc Label="PrimeResidues">
## <ManSection>
## <Func Name="PrimeResidues" Arg='m'/>
##
## <Description>
## <Ref Func="PrimeResidues"/> returns the set of integers from the range
## <C>[ 0 .. Abs( <A>m</A> )-1 ]</C>
## that are coprime to the integer <A>m</A>.
## <P/>
## <C>Abs(<A>m</A>)</C> must be less than <M>2^{28}</M>,
## otherwise the set would probably be too large anyhow.
## <P/>
## <Example><![CDATA[
## gap> PrimeResidues( 0 ); PrimeResidues( 1 ); PrimeResidues( 20 );
## [ ]
## [ 0 ]
## [ 1, 3, 7, 9, 11, 13, 17, 19 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PrimeResidues" );
#############################################################################
##
#O Phi( <m> ) . . . . . . . . . . . . . . . . . . Euler's totient function
##
## <#GAPDoc Label="Phi">
## <ManSection>
## <Oper Name="Phi" Arg='m'/>
##
## <Description>
## <Index Subkey="of the prime residue group">order</Index>
## <Index Subkey="order">prime residue group</Index>
## <Index>Euler's totient function</Index>
## <Ref Oper="Phi"/> returns the number <M>\phi(<A>m</A>)</M> of positive
## integers less than the positive integer <A>m</A>
## that are coprime to <A>m</A>.
## <P/>
## Suppose that <M>m = p_1^{{e_1}} p_2^{{e_2}} \cdots p_k^{{e_k}}</M>.
## Then <M>\phi(m)</M> is
## <M>p_1^{{e_1-1}} (p_1-1) p_2^{{e_2-1}} (p_2-1) \cdots p_k^{{e_k-1}} (p_k-1)</M>.
## <Example><![CDATA[
## gap> Phi( 12 );
## 4
## gap> Phi( 2^13-1 ); # this proves that 2^(13)-1 is a prime
## 8190
## gap> Phi( 2^15-1 );
## 27000
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Phi", [ IsObject ] );
#############################################################################
##
#O Lambda( <m> ) . . . . . . . . . . . . . . . . . . . Carmichaels function
##
## <#GAPDoc Label="Lambda">
## <ManSection>
## <Oper Name="Lambda" Arg='m'/>
##
## <Description>
## <Index>Carmichael's lambda function</Index>
## <Index Subkey="exponent">prime residue group</Index>
## <Index Subkey="of the prime residue group">exponent</Index>
## <Ref Oper="Lambda"/> returns the exponent <M>\lambda(<A>m</A>)</M>
## of the group of prime residues modulo the integer <A>m</A>.
## <P/>
## <M>\lambda(<A>m</A>)</M> is the smallest positive integer <M>l</M> such that for every
## <M>a</M> relatively prime to <A>m</A> we have <M>a^l \equiv 1 \pmod{<A>m</A>}</M>.
## Fermat's theorem asserts
## <M>a^{{\phi(<A>m</A>)}} \equiv 1 \pmod{<A>m</A>}</M>;
## thus <M>\lambda(<A>m</A>)</M> divides <M>\phi(<A>m</A>)</M> (see <Ref Func="Phi"/>).
## <P/>
## Carmichael's theorem states that <M>\lambda</M> can be computed as follows:
## <M>\lambda(2) = 1</M>, <M>\lambda(4) = 2</M> and
## <M>\lambda(2^e) = 2^{{e-2}}</M>
## if <M>3 \leq e</M>,
## <M>\lambda(p^e) = (p-1) p^{{e-1}}</M> (i.e. <M>\phi(m)</M>) if <M>p</M>
## is an odd prime and
## <M>\lambda(m*n) = </M><C>Lcm</C><M>( \lambda(m), \lambda(n) )</M> if <M>m, n</M> are coprime.
## <P/>
## Composites for which <M>\lambda(m)</M> divides <M>m - 1</M> are called Carmichaels.
## If <M>6k+1</M>, <M>12k+1</M> and <M>18k+1</M> are primes their product is such a number.
## There are only 1547 Carmichaels below <M>10^{10}</M> but 455052511 primes.
## <Example><![CDATA[
## gap> Lambda( 10 );
## 4
## gap> Lambda( 30 );
## 4
## gap> Lambda( 561 ); # 561 is the smallest Carmichael number
## 80
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Lambda", [ IsObject ] );
#############################################################################
##
#F OrderMod( <n>, <m> ) . . . . . . . . multiplicative order of an integer
##
## <#GAPDoc Label="OrderMod">
## <ManSection>
## <Func Name="OrderMod" Arg='n, m'/>
##
## <Description>
## <Index>multiplicative order of an integer</Index>
## <Ref Func="OrderMod"/> returns the multiplicative order of the integer
## <A>n</A> modulo the positive integer <A>m</A>.
## If <A>n</A> and <A>m</A> are not coprime the order of <A>n</A> is not
## defined and <Ref Func="OrderMod"/> will return <C>0</C>.
## <P/>
## If <A>n</A> and <A>m</A> are relatively prime the multiplicative order of
## <A>n</A> modulo <A>m</A> is the smallest positive integer <M>i</M>
## such that <M><A>n</A>^i \equiv 1 \pmod{<A>m</A>}</M>.
## If the group of prime residues modulo <A>m</A> is cyclic then
## each element of maximal order is called a primitive root modulo <A>m</A>
## (see <Ref Func="IsPrimitiveRootMod"/>).
## <P/>
## <Ref Func="OrderMod"/> usually spends most of its time factoring <A>m</A>
## and <M>\phi(<A>m</A>)</M> (see <Ref Func="FactorsInt"/>).
## <Example><![CDATA[
## gap> OrderMod( 2, 7 );
## 3
## gap> OrderMod( 3, 7 ); # 3 is a primitive root modulo 7
## 6
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "OrderMod" );
#############################################################################
##
#F IsPrimitiveRootMod( <r>, <m> ) . . . . . . . . test for a primitive root
##
## <#GAPDoc Label="IsPrimitiveRootMod">
## <ManSection>
## <Func Name="IsPrimitiveRootMod" Arg='r, m'/>
##
## <Description>
## <Index Subkey="for a primitive root">test</Index>
## <Index Subkey="generator">prime residue group</Index>
## <Index Subkey="of the prime residue group">generator</Index>
## <Ref Func="IsPrimitiveRootMod"/> returns <K>true</K> if the integer
## <A>r</A> is a primitive root modulo the positive integer <A>m</A>,
## and <K>false</K> otherwise.
## If <A>r</A> is less than 0 or larger than <A>m</A> it is replaced by its
## remainder.
## <Example><![CDATA[
## gap> IsPrimitiveRootMod( 2, 541 );
## true
## gap> IsPrimitiveRootMod( -539, 541 ); # same computation as above;
## true
## gap> IsPrimitiveRootMod( 4, 541 );
## false
## gap> ForAny( [1..29], r -> IsPrimitiveRootMod( r, 30 ) );
## false
## gap> # there is no a primitive root modulo 30
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "IsPrimitiveRootMod" );
#############################################################################
##
#F PrimitiveRootMod( <m>[, <start>] ) . . primitive root modulo an integer
##
## <#GAPDoc Label="PrimitiveRootMod">
## <ManSection>
## <Func Name="PrimitiveRootMod" Arg='m[, start]'/>
##
## <Description>
## <Index>primitive root modulo an integer</Index>
## <Index Subkey="generator">prime residue group</Index>
## <Index Subkey="of the prime residue group">generator</Index>
## <Ref Func="PrimitiveRootMod"/> returns the smallest primitive root modulo
## the positive integer <A>m</A> and <K>fail</K> if no such primitive root
## exists.
## If the optional second integer argument <A>start</A> is given
## <Ref Func="PrimitiveRootMod"/> returns the smallest primitive root that
## is strictly larger than <A>start</A>.
## <Example><![CDATA[
## gap> # largest primitive root for a prime less than 2000:
## gap> PrimitiveRootMod( 409 );
## 21
## gap> PrimitiveRootMod( 541, 2 );
## 10
## gap> # 327 is the largest primitive root mod 337:
## gap> PrimitiveRootMod( 337, 327 );
## fail
## gap> # there exists no primitive root modulo 30:
## gap> PrimitiveRootMod( 30 );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PrimitiveRootMod" );
#############################################################################
##
#F GeneratorsPrimeResidues( <n> ) . . . . . . generators of the Galois group
##
## <#GAPDoc Label="GeneratorsPrimeResidues">
## <ManSection>
## <Func Name="GeneratorsPrimeResidues" Arg='n'/>
##
## <Description>
## Let <A>n</A> be a positive integer.
## <Ref Func="GeneratorsPrimeResidues"/> returns a description of generators
## of the group of prime residues modulo <A>n</A>.
## The return value is a record with components
## <List>
## <Mark><C>primes</C>: </Mark>
## <Item>
## a list of the prime factors of <A>n</A>,
## </Item>
## <Mark><C>exponents</C>: </Mark>
## <Item>
## a list of the exponents of these primes in the factorization of <A>n</A>,
## and
## </Item>
## <Mark><C>generators</C>: </Mark>
## <Item>
## a list describing generators of the group of prime residues;
## for the prime factor <M>2</M>, either a primitive root or a list of two
## generators is stored,
## for each other prime factor of <A>n</A>, a primitive root is stored.
## </Item>
## </List>
## <Example><![CDATA[
## gap> GeneratorsPrimeResidues( 1 );
## rec( exponents := [ ], generators := [ ], primes := [ ] )
## gap> GeneratorsPrimeResidues( 4*3 );
## rec( exponents := [ 2, 1 ], generators := [ 7, 5 ],
## primes := [ 2, 3 ] )
## gap> GeneratorsPrimeResidues( 8*9*5 );
## rec( exponents := [ 3, 2, 1 ],
## generators := [ [ 271, 181 ], 281, 217 ], primes := [ 2, 3, 5 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "GeneratorsPrimeResidues" );
#############################################################################
##
#F Jacobi( <n>, <m> ) . . . . . . . . . . . . . . . . . . . . Jacobi symbol
##
## <#GAPDoc Label="Jacobi">
## <ManSection>
## <Func Name="Jacobi" Arg='n, m'/>
##
## <Description>
## <Index>quadratic residue</Index>
## <Index Subkey="quadratic">residue</Index>
## <Ref Func="Jacobi"/> returns the value of the
## <E>Kronecker-Jacobi symbol</E> <M>J(<A>n</A>,<A>m</A>)</M> of the integer
## <A>n</A> modulo the integer <A>m</A>.
## It is defined as follows:
## <P/>
## If <M>n</M> and <M>m</M> are not coprime then <M>J(n,m) = 0</M>.
## Furthermore, <M>J(n,1) = 1</M> and <M>J(n,-1) = -1</M> if <M>m < 0</M>
## and <M>+1</M> otherwise.
## And for odd <M>n</M> it is <M>J(n,2) = (-1)^k</M> with
## <M>k = (n^2-1)/8</M>.
## For odd primes <M>m</M> which are coprime to <M>n</M> the
## Kronecker-Jacobi symbol has the same value as the Legendre symbol
## (see <Ref Func="Legendre"/>).
## <P/>
## For the general case suppose that <M>m = p_1 \cdot p_2 \cdots p_k</M>
## is a product of <M>-1</M> and of primes, not necessarily distinct,
## and that <M>n</M> is coprime to <M>m</M>.
## Then <M>J(n,m) = J(n,p_1) \cdot J(n,p_2) \cdots J(n,p_k)</M>.
## <P/>
## Note that the Kronecker-Jacobi symbol coincides with the Jacobi symbol
## that is defined for odd <M>m</M> in many number theory books.
## For odd primes <M>m</M> and <M>n</M> coprime to <M>m</M> it coincides
## with the Legendre symbol.
## <P/>
## <Ref Func="Jacobi"/> is very efficient, even for large values of
## <A>n</A> and <A>m</A>, it is about as fast as the Euclidean algorithm
## (see <Ref Func="Gcd" Label="for (a ring and) several elements"/>).
##
## <Example><![CDATA[
## gap> Jacobi( 11, 35 ); # 9^2 = 11 mod 35
## 1
## gap> # this is -1, thus there is no r such that r^2 = 6 mod 35
## gap> Jacobi( 6, 35 );
## -1
## gap> # this is 1 even though there is no r with r^2 = 3 mod 35
## gap> Jacobi( 3, 35 );
## 1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Jacobi" );
#############################################################################
##
#F Legendre( <n>, <m> ) . . . . . . . . . . . . . . . . . . Legendre symbol
##
## <#GAPDoc Label="Legendre">
## <ManSection>
## <Func Name="Legendre" Arg='n, m'/>
##
## <Description>
## <Index>quadratic residue</Index>
## <Index Subkey="quadratic">residue</Index>
## <Ref Func="Legendre"/> returns the value of the <E>Legendre symbol</E>
## of the integer <A>n</A> modulo the positive integer <A>m</A>.
## <P/>
## The value of the Legendre symbol <M>L(n/m)</M> is 1 if <M>n</M> is a
## <E>quadratic residue</E> modulo <M>m</M>, i.e., if there exists an integer <M>r</M> such
## that <M>r^2 \equiv n \pmod{m}</M> and <M>-1</M> otherwise.
## <P/>
## If a root of <A>n</A> exists it can be found by <Ref Func="RootMod"/>.
## <P/>
## While the value of the Legendre symbol usually is only defined for <A>m</A> a
## prime, we have extended the definition to include composite moduli too.
## The Jacobi symbol (see <Ref Func="Jacobi"/>) is another generalization of the
## Legendre symbol for composite moduli that is much cheaper to compute,
## because it does not need the factorization of <A>m</A> (see <Ref Func="FactorsInt"/>).
## <P/>
## A description of the Jacobi symbol, the Legendre symbol, and related
## topics can be found in <Cite Key="Baker84"/>.
##
## <Example><![CDATA[
## gap> Legendre( 5, 11 ); # 4^2 = 5 mod 11
## 1
## gap> # this is -1, thus there is no r such that r^2 = 6 mod 11
## gap> Legendre( 6, 11 );
## -1
## gap> # this is -1, thus there is no r such that r^2 = 3 mod 35
## gap> Legendre( 3, 35 );
## -1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Legendre" );
#############################################################################
##
#F RootMod( <n>[, <k>], <m> ) . . . . . . . . . . . root modulo an integer
##
## <#GAPDoc Label="RootMod">
## <ManSection>
## <Func Name="RootMod" Arg='n[, k], m'/>
##
## <Description>
## <Index>quadratic residue</Index>
## <Index Subkey="quadratic">residue</Index>
## <Index Subkey="of an integer modulo another">root</Index>
## <Ref Func="RootMod"/> computes a <A>k</A>th root of the integer <A>n</A>
## modulo the positive integer <A>m</A>,
## i.e., a <M>r</M> such that
## <M>r^{<A>k</A>} \equiv <A>n</A> \pmod{<A>m</A>}</M>.
## If no such root exists <Ref Func="RootMod"/> returns <K>fail</K>.
## If only the arguments <A>n</A> and <A>m</A> are given,
## the default value for <A>k</A> is <M>2</M>.
## <P/>
## A square root of <A>n</A> exists only if <C>Legendre(<A>n</A>,<A>m</A>) = 1</C>
## (see <Ref Func="Legendre"/>).
## If <A>m</A> has <M>r</M> different prime factors then there are <M>2^r</M> different
## roots of <A>n</A> mod <A>m</A>.
## It is unspecified which one <Ref Func="RootMod"/> returns.
## You can, however, use <Ref Func="RootsMod"/> to compute the full set
## of roots.
## <P/>
## <Ref Func="RootMod"/> is efficient even for large values of <A>m</A>,
## in fact the most time is usually spent factoring <A>m</A>
## (see <Ref Func="FactorsInt"/>).
##
## <Example><![CDATA[
## gap> # note 'RootMod' does not return 8 in this case but -8:
## gap> RootMod( 64, 1009 );
## 1001
## gap> RootMod( 64, 3, 1009 );
## 518
## gap> RootMod( 64, 5, 1009 );
## 656
## gap> List( RootMod( 64, 1009 ) * RootsUnityMod( 1009 ),
## > x -> x mod 1009 ); # set of all square roots of 64 mod 1009
## [ 1001, 8 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "RootMod" );
#############################################################################
##
#F RootsMod( <n>[, <k>], <m> ) . . . . . . . . . . . roots modulo an integer
##
## <#GAPDoc Label="RootsMod">
## <ManSection>
## <Func Name="RootsMod" Arg='n[, k], m'/>
##
## <Description>
## <Ref Func="RootsMod"/> computes the set of <A>k</A>th roots of the
## integer <A>n</A> modulo the positive integer <A>m</A>, i.e., the list of
## all <M>r</M> such that <M>r^{<A>k</A>} \equiv <A>n</A> \pmod{<A>m</A>}</M>.
## If only the arguments <A>n</A> and <A>m</A> are given,
## the default value for <A>k</A> is <M>2</M>.
## <Example><![CDATA[
## gap> RootsMod( 1, 7*31 ); # the same as `RootsUnityMod( 7*31 )'
## [ 1, 92, 125, 216 ]
## gap> RootsMod( 7, 7*31 );
## [ 21, 196 ]
## gap> RootsMod( 5, 7*31 );
## [ ]
## gap> RootsMod( 1, 5, 7*31 );
## [ 1, 8, 64, 78, 190 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "RootsMod" );
#############################################################################
##
#F RootsUnityMod( [<k>,] <m> ) . . . . . . roots of unity modulo an integer
##
## <#GAPDoc Label="RootsUnityMod">
## <ManSection>
## <Func Name="RootsUnityMod" Arg='[k,] m'/>
##
## <Description>
## <Index>modular roots</Index>
## <Index Subkey="of 1 modulo an integer">root</Index>
## <Ref Func="RootsUnityMod"/> returns the set of <A>k</A>-th roots of unity
## modulo the positive integer <A>m</A>, i.e.,
## the list of all solutions <M>r</M> of
## <M>r^{<A>k</A>} \equiv <A>n</A> \pmod{<A>m</A>}</M>.
## If only the argument <A>m</A> is given,
## the default value for <A>k</A> is <M>2</M>.
## <P/>
## In general there are <M><A>k</A>^n</M> such roots if the modulus <A>m</A>
## has <M>n</M> different prime factors <M>p</M> such that
## <M>p \equiv 1 \pmod{<A>k</A>}</M>.
## If <M><A>k</A>^2</M> divides <A>m</A> then there are
## <M><A>k</A>^{{n+1}}</M> such roots;
## and especially if <M><A>k</A> = 2</M> and 8 divides <A>m</A>
## there are <M>2^{{n+2}}</M> such roots.
## <P/>
## In the current implementation <A>k</A> must be a prime.
## <Example><![CDATA[
## gap> RootsUnityMod( 7*31 ); RootsUnityMod( 3, 7*31 );
## [ 1, 92, 125, 216 ]
## [ 1, 25, 32, 36, 67, 149, 156, 191, 211 ]
## gap> RootsUnityMod( 5, 7*31 );
## [ 1, 8, 64, 78, 190 ]
## gap> List( RootMod( 64, 1009 ) * RootsUnityMod( 1009 ),
## > x -> x mod 1009 ); # set of all square roots of 64 mod 1009
## [ 1001, 8 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "RootsUnityMod" );
#############################################################################
##
#F LogMod( <n>, <r>, <m> ) . . . . . . discrete logarithm modulo an integer
#F LogModShanks( <n>, <r>, <m> )
##
## <#GAPDoc Label="LogMod">
## <ManSection>
## <Func Name="LogMod" Arg='n, r, m'/>
## <Func Name="LogModShanks" Arg='n, r, m'/>
##
## <Description>
## <Index Subkey="discrete">logarithm</Index>
## computes the discrete <A>r</A>-logarithm of the integer <A>n</A>
## modulo the integer <A>m</A>.
## It returns a number <A>l</A> such that
## <M><A>r</A>^{<A>l</A>} \equiv <A>n</A> \pmod{<A>m</A>}</M>
## if such a number exists.
## Otherwise <K>fail</K> is returned.
## <P/>
## <Ref Func="LogModShanks"/> uses the Baby Step - Giant Step Method
## of Shanks (see for example <Cite Key="Coh93" Where="section 5.4.1"/>)
## and in general requires more memory than a call to <Ref Func="LogMod"/>.
## <Example><![CDATA[
## gap> l:= LogMod( 2, 5, 7 ); 5^l mod 7 = 2;
## 4
## true
## gap> LogMod( 1, 3, 3 ); LogMod( 2, 3, 3 );
## 0
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "LogMod" );
DeclareGlobalFunction( "LogModShanks" );
DeclareGlobalFunction( "DoLogModRho" );
#############################################################################
##
#O Sigma( <n> ) . . . . . . . . . . . . . . . sum of divisors of an integer
##
## <#GAPDoc Label="Sigma">
## <ManSection>
## <Oper Name="Sigma" Arg='n'/>
##
## <Description>
## <Ref Func="Sigma"/> returns the sum of the positive divisors of the
## nonzero integer <A>n</A>.
## <P/>
## <Ref Func="Sigma"/> is a multiplicative arithmetic function, i.e.,
## if <M>n</M> and <M>m</M> are relatively prime we have that
## <M>\sigma(n \cdot m) = \sigma(n) \sigma(m)</M>.
## <P/>
## Together with the formula <M>\sigma(p^k) = (p^{{k+1}}-1) / (p-1)</M>
## this allows us to compute <M>\sigma(<A>n</A>)</M>.
## <P/>
## Integers <A>n</A> for which <M>\sigma(<A>n</A>) = 2 <A>n</A></M>
## are called perfect.
## Even perfect integers are exactly of the form
## <M>2^{{<A>n</A>-1}}(2^{<A>n</A>}-1)</M>
## where <M>2^{<A>n</A>}-1</M> is prime.
## Primes of the form <M>2^{<A>n</A>}-1</M> are called
## <E>Mersenne primes</E>, and
## 42 among the known Mersenne primes are obtained for <A>n</A> <M>=</M> 2, 3, 5, 7, 13, 17, 19,
## 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689,
## 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091,
## 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917,
## 20996011, 24036583 and 25964951. Please find more up to date information
## about Mersenne primes at <URL>http://www.mersenne.org</URL>.
## It is not known whether odd perfect integers exist,
## however <Cite Key="BC89"/> show that any such integer must have
## at least 300 decimal digits.
## <P/>
## <Ref Func="Sigma"/> usually spends most of its time factoring <A>n</A>
## (see <Ref Func="FactorsInt"/>).
## <P/>
## <Example><![CDATA[
## gap> Sigma( 1 );
## 1
## gap> Sigma( 1009 ); # 1009 is a prime
## 1010
## gap> Sigma( 8128 ) = 2*8128; # 8128 is a perfect number
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Sigma", [ IsObject ] );
#############################################################################
##
#O Tau( <n> ) . . . . . . . . . . . . . . number of divisors of an integer
##
## <#GAPDoc Label="Tau">
## <ManSection>
## <Oper Name="Tau" Arg='n'/>
##
## <Description>
## <Ref Func="Tau"/> returns the number of the positive divisors of the
## nonzero integer <A>n</A>.
## <P/>
## <Ref Func="Tau"/> is a multiplicative arithmetic function, i.e.,
## if <M>n</M> and <M>m</M> are relative prime we have
## <M>\tau(n \cdot m) = \tau(n) \tau(m)</M>.
## Together with the formula <M>\tau(p^k) = k+1</M> this allows us
## to compute <M>\tau(<A>n</A>)</M>.
## <P/>
## <Ref Func="Tau"/> usually spends most of its time factoring <A>n</A>
## (see <Ref Func="FactorsInt"/>).
## <Example><![CDATA[
## gap> Tau( 1 );
## 1
## gap> Tau( 1013 ); # thus 1013 is a prime
## 2
## gap> Tau( 8128 );
## 14
## gap> # result is odd if and only if argument is a perfect square:
## gap> Tau( 36 );
## 9
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Tau", [ IsObject ] );
#############################################################################
##
#F MoebiusMu( <n> ) . . . . . . . . . . . . . . Moebius inversion function
##
## <#GAPDoc Label="MoebiusMu">
## <ManSection>
## <Func Name="MoebiusMu" Arg='n'/>
##
## <Description>
## <Ref Func="MoebiusMu"/> computes the value of Moebius inversion function
## for the nonzero integer <A>n</A>.
## This is 0 for integers which are not squarefree, i.e.,
## which are divided by a square <M>r^2</M>.
## Otherwise it is 1 if <A>n</A> has a even number and <M>-1</M> if <A>n</A>
## has an odd number of prime factors.
## <P/>
## The importance of <M>\mu</M> stems from the so called inversion formula.
## Suppose <M>f</M> is a multiplicative arithmetic function
## defined on the positive integers and let
## <M>g(n) = \sum_{{d \mid n}} f(d)</M>.
## Then <M>f(n) = \sum_{{d \mid n}} \mu(d) g(n/d)</M>.
## As a special case we have
## <M>\phi(n) = \sum_{{d \mid n}} \mu(d) n/d</M>
## since <M>n = \sum_{{d \mid n}} \phi(d)</M>
## (see <Ref Func="Phi"/>).
## <P/>
## <Ref Func="MoebiusMu"/> usually spends all of its time factoring <A>n</A>
## (see <Ref Func="FactorsInt"/>).
## <Example><![CDATA[
## gap> MoebiusMu( 60 ); MoebiusMu( 61 ); MoebiusMu( 62 );
## 0
## -1
## 1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "MoebiusMu" );
#############################################################################
##
#F TwoSquares( <n> ) . . . . . repres. of an integer as a sum of two squares
##
## <#GAPDoc Label="TwoSquares">
## <ManSection>
## <Func Name="TwoSquares" Arg='n'/>
##
## <Description>
## <Index Subkey="as a sum of two squares">representation</Index>
## <Ref Func="TwoSquares"/> returns a list of two integers <M>x \leq y</M>
## such that the sum of the squares of <M>x</M> and <M>y</M> is equal to the
## nonnegative integer <A>n</A>, i.e., <M>n = x^2 + y^2</M>.
## If no such representation exists
## <Ref Func="TwoSquares"/> will return <K>fail</K>.
## <Ref Func="TwoSquares"/> will return a representation for which the gcd
## of <M>x</M> and <M>y</M> is as small as possible.
## It is not specified which representation <Ref Func="TwoSquares"/> returns
## if there is more than one.
## <P/>
## Let <M>a</M> be the product of all maximal powers of primes of the form
## <M>4k+3</M> dividing <A>n</A>.
## A representation of <A>n</A> as a sum of two squares exists
## if and only if <M>a</M> is a perfect square.
## Let <M>b</M> be the maximal power of <M>2</M> dividing <A>n</A> or its
## half, whichever is a perfect square.
## Then the minimal possible gcd of <M>x</M> and <M>y</M> is the square root
## <M>c</M> of <M>a \cdot b</M>.
## The number of different minimal representation with <M>x \leq y</M> is
## <M>2^{{l-1}}</M>, where <M>l</M> is the number of different prime factors
## of the form <M>4k+1</M> of <A>n</A>.
## <P/>
## The algorithm first finds a square root <M>r</M> of <M>-1</M> modulo
## <M><A>n</A> / (a \cdot b)</M>, which must exist,
## and applies the Euclidean algorithm to <M>r</M> and <A>n</A>.
## The first residues in the sequence that are smaller than
## <M>\sqrt{{<A>n</A>/(a \cdot b)}}</M> times <M>c</M> are a possible pair
## <M>x</M> and <M>y</M>.
## <P/>
## Better descriptions of the algorithm and related topics can be found in
## <Cite Key="Wagon90"/> and <Cite Key="Zagier90"/>.
##
## <Example><![CDATA[
## gap> TwoSquares( 5 );
## [ 1, 2 ]
## gap> TwoSquares( 11 ); # there is no representation
## fail
## gap> TwoSquares( 16 );
## [ 0, 4 ]
## gap> # 3 is the minimal possible gcd because 9 divides 45:
## gap> TwoSquares( 45 );
## [ 3, 6 ]
## gap> # it is not [5,10] because their gcd is not minimal:
## gap> TwoSquares( 125 );
## [ 2, 11 ]
## gap> # [10,11] would be the other possible representation:
## gap> TwoSquares( 13*17 );
## [ 5, 14 ]
## gap> TwoSquares( 848654483879497562821 ); # argument is prime
## [ 6305894639, 28440994650 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "TwoSquares" );
#############################################################################
##
#E
|