/usr/share/gap/lib/obsolete.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 | #############################################################################
##
#W obsolete.gi GAP library Steve Linton
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## See the comments in `lib/obsolete.gd'.
##
#############################################################################
##
#F DiagonalizeIntMatNormDriven(<mat>) . . . . diagonalize an integer matrix
##
#T Should this test for mutability? SL
##
InstallGlobalFunction( DiagonalizeIntMatNormDriven, function ( mat )
local nrrows, # number of rows (length of <mat>)
nrcols, # number of columns (length of <mat>[1])
rownorms, # norms of rows
colnorms, # norms of columns
d, # diagonal position
pivk, pivl, # position of a pivot
norm, # product of row and column norms of the pivot
clear, # are the row and column cleared
row, # one row
col, # one column
ent, # one entry of matrix
quo, # quotient
h, # gap width in shell sort
k, l, # loop variables
max, omax; # maximal entry and overall maximal entry
# give some information
Info( InfoMatrix, 1, "DiagonalizeMat called" );
omax := 0;
# get the number of rows and columns
nrrows := Length( mat );
if nrrows <> 0 then
nrcols := Length( mat[1] );
else
nrcols := 0;
fi;
rownorms := [];
colnorms := [];
# loop over the diagonal positions
d := 1;
Info( InfoMatrix, 2, " divisors:" );
while d <= nrrows and d <= nrcols do
# find the maximal entry
Info( InfoMatrix, 3, " d=", d );
if 3 <= InfoLevel( InfoMatrix ) then
max := 0;
for k in [ d .. nrrows ] do
for l in [ d .. nrcols ] do
ent := mat[k][l];
if 0 < ent and max < ent then
max := ent;
elif ent < 0 and max < -ent then
max := -ent;
fi;
od;
od;
Info( InfoMatrix, 3, " max=", max );
if omax < max then omax := max; fi;
fi;
# compute the Euclidean norms of the rows and columns
for k in [ d .. nrrows ] do
row := mat[k];
rownorms[k] := row * row;
od;
for l in [ d .. nrcols ] do
col := mat{[d..nrrows]}[l];
colnorms[l] := col * col;
od;
Info( InfoMatrix, 3, " n" );
# push rows containing only zeroes down and forget about them
for k in [ nrrows, nrrows-1 .. d ] do
if k < nrrows and rownorms[k] = 0 then
row := mat[k];
mat[k] := mat[nrrows];
mat[nrrows] := row;
norm := rownorms[k];
rownorms[k] := rownorms[nrrows];
rownorms[nrrows] := norm;
fi;
if rownorms[nrrows] = 0 then
nrrows := nrrows - 1;
fi;
od;
# quit if there are no more nonzero entries
if nrrows < d then
#N 1996/04/30 mschoene should 'break'
Info( InfoMatrix, 3, " overall maximal entry ", omax );
Info( InfoMatrix, 1, "DiagonalizeMat returns" );
return;
fi;
# push columns containing only zeroes right and forget about them
for l in [ nrcols, nrcols-1 .. d ] do
if l < nrcols and colnorms[l] = 0 then
col := mat{[d..nrrows]}[l];
mat{[d..nrrows]}[l] := mat{[d..nrrows]}[nrcols];
mat{[d..nrrows]}[nrcols] := col;
norm := colnorms[l];
colnorms[l] := colnorms[nrcols];
colnorms[nrcols] := norm;
fi;
if colnorms[nrcols] = 0 then
nrcols := nrcols - 1;
fi;
od;
# sort the rows with respect to their norms
h := 1; while 9 * h + 4 < nrrows-(d-1) do h := 3 * h + 1; od;
while 0 < h do
for l in [ h+1 .. nrrows-(d-1) ] do
norm := rownorms[l+(d-1)];
row := mat[l+(d-1)];
k := l;
while h+1 <= k and norm < rownorms[k-h+(d-1)] do
rownorms[k+(d-1)] := rownorms[k-h+(d-1)];
mat[k+(d-1)] := mat[k-h+(d-1)];
k := k - h;
od;
rownorms[k+(d-1)] := norm;
mat[k+(d-1)] := row;
od;
h := QuoInt( h, 3 );
od;
# choose a pivot in the '<mat>{[<d>..]}{[<d>..]}' submatrix
# the pivot must be the topmost nonzero entry in its column,
# now that the rows are sorted with respect to their norm
pivk := 0; pivl := 0;
norm := Maximum(rownorms) * Maximum(colnorms) + 1;
for l in [ d .. nrcols ] do
k := d;
while mat[k][l] = 0 do
k := k + 1;
od;
if rownorms[k] * colnorms[l] < norm then
pivk := k; pivl := l;
norm := rownorms[k] * colnorms[l];
fi;
od;
Info( InfoMatrix, 3, " p" );
# move the pivot to the diagonal and make it positive
if d <> pivk then
row := mat[d];
mat[d] := mat[pivk];
mat[pivk] := row;
fi;
if d <> pivl then
col := mat{[d..nrrows]}[d];
mat{[d..nrrows]}[d] := mat{[d..nrrows]}[pivl];
mat{[d..nrrows]}[pivl] := col;
fi;
if mat[d][d] < 0 then
MultRowVector(mat[d],-1);
fi;
# now perform row operations so that the entries in the
# <d>-th column have absolute value at most pivot/2
clear := true;
row := mat[d];
for k in [ d+1 .. nrrows ] do
quo := BestQuoInt( mat[k][d], mat[d][d] );
if quo = 1 then
AddRowVector(mat[k], row, -1);
elif quo = -1 then
AddRowVector(mat[k], row);
elif quo <> 0 then
AddRowVector(mat[k], row, -quo);
fi;
clear := clear and mat[k][d] = 0;
od;
Info( InfoMatrix, 3, " c" );
# now perform column operations so that the entries in
# the <d>-th row have absolute value at most pivot/2
col := mat{[d..nrrows]}[d];
for l in [ d+1 .. nrcols ] do
quo := BestQuoInt( mat[d][l], mat[d][d] );
if quo = 1 then
mat{[d..nrrows]}[l] := mat{[d..nrrows]}[l] - col;
elif quo = -1 then
mat{[d..nrrows]}[l] := mat{[d..nrrows]}[l] + col;
elif quo <> 0 then
mat{[d..nrrows]}[l] := mat{[d..nrrows]}[l] - quo * col;
fi;
clear := clear and mat[d][l] = 0;
od;
Info( InfoMatrix, 3, " r" );
# repeat until the <d>-th row and column are totally cleared
while not clear do
# compute the Euclidean norms of the rows and columns
# that have a nonzero entry in the <d>-th column resp. row
for k in [ d .. nrrows ] do
if mat[k][d] <> 0 then
row := mat[k];
rownorms[k] := row * row;
fi;
od;
for l in [ d .. nrcols ] do
if mat[d][l] <> 0 then
col := mat{[d..nrrows]}[l];
colnorms[l] := col * col;
fi;
od;
Info( InfoMatrix, 3, " n" );
# choose a pivot in the <d>-th row or <d>-th column
pivk := 0; pivl := 0;
norm := Maximum(rownorms) * Maximum(colnorms) + 1;
for l in [ d+1 .. nrcols ] do
if 0 <> mat[d][l] and rownorms[d] * colnorms[l] < norm then
pivk := d; pivl := l;
norm := rownorms[d] * colnorms[l];
fi;
od;
for k in [ d+1 .. nrrows ] do
if 0 <> mat[k][d] and rownorms[k] * colnorms[d] < norm then
pivk := k; pivl := d;
norm := rownorms[k] * colnorms[d];
fi;
od;
Info( InfoMatrix, 3, " p" );
# move the pivot to the diagonal and make it positive
if d <> pivk then
row := mat[d];
mat[d] := mat[pivk];
mat[pivk] := row;
fi;
if d <> pivl then
col := mat{[d..nrrows]}[d];
mat{[d..nrrows]}[d] := mat{[d..nrrows]}[pivl];
mat{[d..nrrows]}[pivl] := col;
fi;
if mat[d][d] < 0 then
MultRowVector(mat[d],-1);
fi;
# now perform row operations so that the entries in the
# <d>-th column have absolute value at most pivot/2
clear := true;
row := mat[d];
for k in [ d+1 .. nrrows ] do
quo := BestQuoInt( mat[k][d], mat[d][d] );
if quo = 1 then
AddRowVector(mat[k],row,-1);
elif quo = -1 then
AddRowVector(mat[k],row);
elif quo <> 0 then
AddRowVector(mat[k], row, -quo);
fi;
clear := clear and mat[k][d] = 0;
od;
Info( InfoMatrix, 3, " c" );
# now perform column operations so that the entries in
# the <d>-th row have absolute value at most pivot/2
col := mat{[d..nrrows]}[d];
for l in [ d+1.. nrcols ] do
quo := BestQuoInt( mat[d][l], mat[d][d] );
if quo = 1 then
mat{[d..nrrows]}[l] := mat{[d..nrrows]}[l] - col;
elif quo = -1 then
mat{[d..nrrows]}[l] := mat{[d..nrrows]}[l] + col;
elif quo <> 0 then
mat{[d..nrrows]}[l] := mat{[d..nrrows]}[l] - quo * col;
fi;
clear := clear and mat[d][l] = 0;
od;
Info( InfoMatrix, 3, " r" );
od;
# print the diagonal entry (for information only)
Info( InfoMatrix, 3, " div=" );
Info( InfoMatrix, 2, " ", mat[d][d] );
# go on to the next diagonal position
d := d + 1;
od;
# close with some more information
Info( InfoMatrix, 3, " overall maximal entry ", omax );
Info( InfoMatrix, 1, "DiagonalizeMat returns" );
end );
#############################################################################
##
#M CharacteristicPolynomial( <F>, <mat> )
#M CharacteristicPolynomial( <field>, <matrix>, <indnum> )
##
## The documentation of these usages of CharacteristicPolynomial was
## ambiguous, leading to surprising results if mat was over F but
## DefaultField (mat) properly contained F.
## Now there is a four argument version which allows to specify the field
## which specifies the linear action of mat, and another which specifies
## the vector space which mat acts upon.
##
## In the future, the versions above could be given a differnt meaning,
## where the first argument simply specifies both fields in the case
## when they are the same.
##
## The following provides backwards compatibility with {\GAP}~4.4. in the
## cases where there is no ambiguity.
##
InstallOtherMethod( CharacteristicPolynomial,
"supply indeterminate 1",
[ IsField, IsMatrix ],
function( F, mat )
return CharacteristicPolynomial (F, mat, 1);
end );
InstallOtherMethod( CharacteristicPolynomial,
"check default field, print error if ambiguous",
IsElmsCollsX,
[ IsField, IsOrdinaryMatrix, IsPosInt ],
function( F, mat, inum )
if IsSubset (F, DefaultFieldOfMatrix (mat)) then
Info (InfoWarning, 1, "This usage of `CharacteristicPolynomial' is no longer supported. ",
"Please specify two fields instead.");
return CharacteristicPolynomial (F, F, mat, inum);
else
Error ("this usage of `CharacteristicPolynomial' is no longer supported, ",
"please specify two fields instead.");
fi;
end );
#############################################################################
##
#M ShrinkCoeffs( <list> )
##
InstallMethod( ShrinkCoeffs,"call `ShrinkRowVector'",
[ IsList and IsMutable ],
function( l1 )
Info( InfoWarning, 1,
"the operation `ShrinkCoeffs' is not supported anymore,\n",
"#I use `ShrinkRowVector' instead" );
ShrinkRowVector(l1);
return Length(l1);
end );
InstallOtherMethod( ShrinkCoeffs,"error if immutable",
[ IsList ],
L1_IMMUTABLE_ERROR);
#############################################################################
##
#M ShrinkCoeffs( <vec> )
##
InstallMethod( ShrinkCoeffs, "8 bit vector",
[IsMutable and IsRowVector and Is8BitVectorRep ],
function(vec)
local r;
Info( InfoWarning, 1,
"the operation `ShrinkCoeffs' is not supported anymore,\n",
"#I use `ShrinkRowVector' instead" );
r := RIGHTMOST_NONZERO_VEC8BIT(vec);
RESIZE_VEC8BIT(vec, r);
return r;
end);
#############################################################################
##
#M ShrinkCoeffs( <gf2vec> ) . . . . . . . . . . . . . . shrink a GF2 vector
##
InstallMethod( ShrinkCoeffs,
"for GF2 vector",
[ IsMutable and IsRowVector and IsGF2VectorRep ],
function( l1 )
Info( InfoWarning, 1,
"the operation `ShrinkCoeffs' is not supported anymore,\n",
"#I use `ShrinkRowVector' instead" );
return SHRINKCOEFFS_GF2VEC(l1);
end );
#############################################################################
##
#F TeX( <obj1>, ... ) . . . . . . . . . . . . . . . . . . . . . TeX objects
##
## <ManSection>
## <Func Name="TeX" Arg='obj1, ...'/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "TeX", function( arg )
local str, res, obj;
str := "";
for obj in arg do
res := TeXObj(obj);
APPEND_LIST_INTR( str, res );
APPEND_LIST_INTR( str, "%\n" );
od;
CONV_STRING(str);
return str;
end );
#############################################################################
##
#F LaTeX( <obj1>, ... ) . . . . . . . . . . . . . . . . . . . LaTeX objects
##
## <#GAPDoc Label="LaTeX">
##
## <ManSection>
## <Func Name="LaTeX" Arg='obj1, obj2, ...'/>
##
## <Description>
## Returns a LaTeX string describing the objects <A>obj1</A>, <A>obj2</A>, ... .
## This string can for example be pasted to a &LaTeX; file, or one can use
## it in composing a temporary &LaTeX; file,
## which is intended for being &LaTeX;'ed afterwards from within &GAP;.
## <P/>
## <Example><![CDATA[
## gap> LaTeX(355/113);
## "\\frac{355}{113}%\n"
## gap> LaTeX(Z(9)^5);
## "Z(3^{2})^{5}%\n"
## gap> Print(LaTeX([[1,2,3],[4,5,6],[7,8,9]]));
## \left(\begin{array}{rrr}%
## 1&2&3\\%
## 4&5&6\\%
## 7&8&9\\%
## \end{array}\right)%
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "LaTeX", function( arg )
local str, res, obj;
str := "";
for obj in arg do
res := LaTeXObj(obj);
APPEND_LIST_INTR( str, res );
APPEND_LIST_INTR( str, "%\n" );
od;
CONV_STRING(str);
return str;
end );
#############################################################################
##
#M LaTeXObj( <ffe> ) . . . . . . convert a finite field element into a string
##
InstallMethod(LaTeXObj,"for an internal FFE",true,[IsFFE and IsInternalRep],0,
function ( ffe )
local str, log,deg,char;
char:=Characteristic(ffe);
if IsZero( ffe ) then
str := Concatenation("0\*Z(",String(char),")");
else
str := Concatenation("Z(",String(char));
deg:=DegreeFFE(ffe);
if deg <> 1 then
str := Concatenation(str,"^{",String(deg),"}");
fi;
str := Concatenation(str,")");
log:= LogFFE(ffe,Z( char ^ deg ));
if log <> 1 then
str := Concatenation(str,"^{",String(log),"}");
fi;
fi;
ConvertToStringRep( str );
return str;
end );
#############################################################################
##
#M LaTeXObj( <elm> ) . . . . . . . for packed word in default representation
##
InstallMethod( LaTeXObj,"for an element of an f.p. group (default repres.)",
true, [ IsElementOfFpGroup and IsPackedElementDefaultRep ],0,
function( obj )
return LaTeXObj( obj![1] );
end );
#############################################################################
##
#M LaTeXObj
##
InstallMethod(LaTeXObj,"matrix",
[IsMatrix],
function(m)
local i,j,l,n,s;
l:=Length(m);
n:=Length(m[1]);
s:="\\left(\\begin{array}{";
for i in [1..n] do
Add(s,'r');
od;
Append(s,"}%\n");
for i in [1..l] do
for j in [1..n] do
Append(s,LaTeXObj(m[i][j]));
if j<n then
Add(s,'&');
fi;
od;
Append(s,"\\\\%\n");
od;
Append(s,"\\end{array}\\right)");
return s;
end);
InstallMethod( LaTeXObj,"polynomial",true, [ IsPolynomial ],0,function(pol)
local fam, ext, str, zero, one, mone, le, c, s, b, ind, i, j;
fam:=FamilyObj(pol);
ext:=ExtRepPolynomialRatFun(pol);
str:="";
zero := fam!.zeroCoefficient;
one := fam!.oneCoefficient;
mone := -one;
le:=Length(ext);
if le=0 then
return String(zero);
fi;
for i in [ le-1,le-3..1] do
if i<le-1 then
# this is the second summand, so arithmetic will occur
fi;
if ext[i+1]=one then
if i<le-1 then
Add(str,'+');
fi;
c:=false;
elif ext[i+1]=mone then
Add(str,'-');
c:=false;
else
if IsRat(ext[i+1]) and ext[i+1]<0 then
s:=Concatenation("-",LaTeXObj(-ext[i+1]));
else
s:=LaTeXObj(ext[i+1]);
fi;
b:=false;
if '+' in s and s[1]<>'(' then
s:=Concatenation("(",s,")");
fi;
if i<le-1 and s[1]<>'-' then
Add(str,'+');
fi;
Append(str,s);
c:=true;
fi;
if Length(ext[i])<2 then
# trivial monomial. Do we have to add a '1'?
if c=false then
Append(str,String(one));
fi;
else
#if c then
# Add(str,'*');
# fi;
for j in [ 1, 3 .. Length(ext[i])-1 ] do
# if 1 < j then
# Add(str,'*');
# fi;
ind:=ext[i][j];
if HasIndeterminateName(fam,ind) then
Append(str,IndeterminateName(fam,ind));
else
Append(str,"x_{");
Append(str,String(ind));
Add(str,'}');
fi;
if 1 <> ext[i][j+1] then
Append(str,"^{");
Append(str,String(ext[i][j+1]));
Add(str,'}');
fi;
od;
fi;
od;
return str;
end);
#############################################################################
##
#M LaTeXObj
##
InstallMethod(LaTeXObj,"rational",
[IsRat],
function(r)
local n,d;
if IsInt(r) then
return String(r);
fi;
n:=NumeratorRat(r);
d:=DenominatorRat(r);
if AbsInt(n)<5 and AbsInt(d)<5 then
return Concatenation(String(n),"/",String(d));
else
return Concatenation("\\frac{",String(n),"}{",String(d),"}");
fi;
end);
InstallMethod(LaTeXObj,"assoc word in letter rep",true,
[IsAssocWord and IsLetterAssocWordRep],0,
function(elm)
local names,len,i,g,h,e,a,s;
names:= ShallowCopy(FamilyObj( elm )!.names);
for i in [1..Length(names)] do
s:=names[i];
e:=Length(s);
while e>0 and s[e] in CHARS_DIGITS do
e:=e-1;
od;
if e<Length(s) then
if e=Length(s)-1 then
s:=Concatenation(s{[1..e]},"_",s{[e+1..Length(s)]});
else
s:=Concatenation(s{[1..e]},"_{",s{[e+1..Length(s)]},"}");
fi;
names[i]:=s;
fi;
od;
s:="";
elm:=LetterRepAssocWord(elm);
len:= Length( elm );
i:= 2;
if len = 0 then
return( "id" );
else
g:=AbsInt(elm[1]);
e:=SignInt(elm[1]);
while i <= len do
h:=AbsInt(elm[i]);
if h=g then
e:=e+SignInt(elm[i]);
else
Append(s, names[g] );
if e<>1 then
Append(s,"^{");
Append(s,String(e));
Append(s,"}");
fi;
g:=h;
e:=SignInt(elm[i]);
fi;
i:=i+1;
od;
Append(s, names[g] );
if e<>1 then
Append(s,"^{");
Append(s,String(e));
Append(s,"}");
fi;
fi;
return s;
end);
#############################################################################
##
#F CharacterTableDisplayPrintLegendDefault( <data> )
##
## for backwards compatibility only ...
##
BindGlobal( "CharacterTableDisplayPrintLegendDefault",
function( data )
Info( InfoWarning, 1,
"the function `CharacterTableDisplayPrintLegendDefault' is no longer\n",
"#I supported and may be removed from future versions of GAP" );
Print( CharacterTableDisplayLegendDefault( data ) );
end );
#############################################################################
##
#F ConnectGroupAndCharacterTable( <G>, <tbl>[, <arec>] )
#F ConnectGroupAndCharacterTable( <G>, <tbl>, <bijection> )
##
InstallGlobalFunction( ConnectGroupAndCharacterTable, function( arg )
local G, tbl, arec, ccl, compat;
Info( InfoWarning, 1,
"the function `ConnectGroupAndCharacterTable' is not supported anymore,\n",
"#I use `CharacterTableWithStoredGroup' instead" );
# Get and check the arguments.
if Length( arg ) = 2 and IsGroup( arg[1] )
and IsOrdinaryTable( arg[2] ) then
arec:= rec();
elif Length( arg ) = 3 and IsGroup( arg[1] )
and IsOrdinaryTable( arg[2] )
and ( IsRecord( arg[3] ) or IsList(arg[3]) ) then
arec:= arg[3];
else
Error( "usage: ConnectGroupAndCharacterTable(<G>,<tbl>[,<arec>])" );
fi;
G := arg[1];
tbl := arg[2];
if HasUnderlyingGroup( tbl ) then
Error( "<tbl> has already underlying group" );
elif HasOrdinaryCharacterTable( G ) then
Error( "<G> has already a character table" );
fi;
ccl:= ConjugacyClasses( G );
#T How to exploit the known character table
#T if the conjugacy classes of <G> are not yet computed?
if IsList( arec ) then
compat:= arec;
else
compat:= CompatibleConjugacyClasses( G, ccl, tbl, arec );
fi;
if IsList( compat ) then
# Permute the classes if necessary.
if compat <> [ 1 .. Length( compat ) ] then
ccl:= ccl{ compat };
fi;
# The identification is unique, store attribute values.
SetUnderlyingGroup( tbl, G );
SetOrdinaryCharacterTable( G, tbl );
SetConjugacyClasses( tbl, ccl );
SetIdentificationOfConjugacyClasses( tbl, compat );
return true;
else
return false;
fi;
end );
#############################################################################
##
#F ViewLength( <len> )
##
## <Ref Func="View"/> will usually display objects in short form if they
## would need more than <A>len</A> lines. The default is 3.
## This function was moved to obsoletes before GAP 4.7 beta release,
## since there is now a user preference mechanism to specify it:
## GAPInfo.ViewLength:= UserPreference( "ViewLength" ) is the maximal
## number of lines that are reasonably printed in `ViewObj' methods.
##
BIND_GLOBAL( "ViewLength", function(arg)
Info (InfoWarning, 1, "The function `ViewLength' is no longer supported. ",
"Please use user preference `ViewLength' instead.");
if LEN_LIST( arg ) = 0 then
return GAPInfo.ViewLength;
else
GAPInfo.ViewLength:= arg[1];
fi;
end );
#############################################################################
##
#E
|