This file is indexed.

/usr/share/gap/lib/oprtglat.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
#############################################################################
##
#W  oprtglat.gi                GAP library                   Alexander Hulpke
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This  file  contains methods for orbits on subgroups
##

#############################################################################
##
#M  GroupOnSubgroupsOrbit(G,H) . . . . . . . . . . . . . . orbit of H under G
##
InstallGlobalFunction( GroupOnSubgroupsOrbit, function(G,H)
  return Enumerator(ConjugacyClassSubgroups(G,H));
end );

#############################################################################
##
#M  MinimumGroupOnSubgroupsOrbit(G,H [,N_G(H)]) minimum of orbit of H under G
##
InstallGlobalFunction( MinimumGroupOnSubgroupsOrbit, function(arg)
local cont,lim,s,i,j,m,Hc,o,og;
  # try some orbit calculation first (at most orbit of length 20) to avoid
  # normalizer calculations.
  cont:=true;
  lim:=QuoInt(Size(arg[1]),Size(arg[2]));
  if lim>20 then
    cont:=lim<200000; # otherwise give up at once
    lim:=20;
  fi;

  if cont then
    o:=[arg[2]];
  else
    o:=[];
  fi;
  m:=arg[2];
  i:=1;
  while cont and i<=Length(o) do
    for j in GeneratorsOfGroup(arg[1]) do
      if not ForAny(o,x->ForAll(GeneratorsOfGroup(o[i]),y->y^j in x)) then
	Hc:=o[i]^j;
	Add(o,Hc);
	if Hc<m then
	  m:=Hc;
	fi;
	cont:=Length(o)<lim;
      fi;
    od;
    i:=i+1;
  od;

  if not cont then
    # orbit is longer -- have to work
    s:=ConjugacyClassSubgroups(arg[1],arg[2]);
    if Length(arg)>2 then
      SetStabilizerOfExternalSet(s,arg[3]);
    fi;
    s:=Enumerator(s);
    if Length(s)>2*lim then
      o:=[]; # the orbit is not worth keeping -- test would be too expensive
    fi;
    for i in [1..Length(s)] do
      Hc:=s[i];
      if not ForAny(o,x->ForAll(GeneratorsOfGroup(Hc),y-> y in x)) then
	if Hc<m then
	  m:=Hc;
	fi;
      fi;
    od;
  fi;
  return m;
end );

InstallMethod(SubgroupsOrbitsAndNormalizers,"generic on list",true,
  [IsGroup,IsList,IsBool],0,
function(G,dom,all)
local  n,l,o,b,r,p,cl,i,sel,selz,gens,ti,t,tl;

  n:=Length(dom);
  l:=n;
  o:=[];
  b:=BlistList([1..l],[1..n]);
  while n>0 do
    p:=Position(b,true);
    b[p]:=false;
    n:=n-1;
    r:=rec(representative:=dom[p],pos:=p);
    cl:=ConjugacyClassSubgroups(G,r.representative);
    gens:=GeneratorsOfGroup(r.representative);
    r.normalizer:=StabilizerOfExternalSet(cl);
    t:=RightTransversal(G,r.normalizer);
    tl:=Length(t);
    sel:=Filtered([1..l],i->b[i]);
    selz:=Filtered(sel,i->Size(dom[i])=Size(r.representative));
    if Length(selz)>0 then
      i:=1;
      while Length(sel)>0 and i<=tl do;
	ti:=t[i];
	p:=PositionProperty(sel,
			    j->j in selz and ForAll(gens,k->k^ti in dom[j]));
	if p<>fail then
	  p:=sel[p];
	  b[p]:=false;
	  n:=n-1;
	  RemoveSet(sel,p);
	fi;
	i:=i+1;
      od;
    fi;
    if all then
      cl:=Enumerator(cl);
      r.elements:=cl;
    fi;
    Add(o,r);
  od;
  return o;
end);

InstallMethod(SubgroupsOrbitsAndNormalizers,"perm group on list",true,
  [IsPermGroup,IsList,IsBool],0,
function(G,dom,all)
  local savemem, n, l, o, pts, pbas, ptbas, un, domo, p, b, allo, ll, gp, t,
  sel, r, i, gens, rorbs, tl, selz, fcnt, rem, sely, j, torbs, torb, iinv,
  ti, cl,lsd,domoj,startn;

  if Length(dom)=0 then
    return dom;
  fi;
  savemem:=ValueOption("savemem");
  n:=Length(dom);
  l:=n;
  o:=[];
  # determine some points that distinguish groups
  pts:=MovedPoints(G);
  pbas:=[pts[1]];
  ptbas:=[pts[1]];
  un:=ShallowCopy(Orbit(dom[1],ptbas[1]));
  domo:=List(dom,x->[Set(Orbit(x,ptbas[1]))]);
  while Length(pbas)<15 and Length(un)<Length(pts) do
    p:=First(pts,x->not x in un);
    Add(ptbas,p);
    b:=Set(Orbit(dom[1],p));
    un:=Union(un,b);
    if ForAny([1..Length(dom)],x->Set(Orbit(dom[x],p))<>b 
      and ForAll([1..Length(pbas)],z->domo[x][z]=domo[1][z]))
       then
      Add(pbas,p);
      for i in [1..Length(dom)] do
	Add(domo[i],Set(Orbit(dom[i],p)));
      od;
    fi;
  od;
  allo:=Union(domo);
  MakeImmutable(allo);
  IsSSortedList(allo);
  domo:=List(domo,x->List(x,y->Position(allo,y)));
  lsd:=Length(Set(domo));
  Info(InfoLattice,5,Length(pbas)," out of ",Length(ptbas)," yields ",
       lsd," domo types");

  #domoj:=List([1..Length(pbas)],x->domo{[1..Length(domo)]}[x]);
  domoj:=List([1..Length(pbas)],x->List([1..Length(allo)],
	  y->Filtered([1..Length(dom)],z->domo[z][x]=y)));
              

  b:=BlistList([1..l],[1..n]);
  ll:=QuoInt(Size(G),Minimum(List(dom,Size)));
  while n>0 do
    p:=Position(b,true);
    b[p]:=false;
    startn:=n;
    n:=n-1;
    gp:=dom[p];
    t:=Length(GeneratorsOfGroup(gp));
    if HasSize(gp) and not HasStabChainMutable(gp) and t>4 then
      sel:=GeneratorsOfGroup(gp);
      t:=Group(sel{Set(List([1,2],i->Random([1..t])))},One(gp));
      while Size(t)<Size(gp) do
	t:=ClosureGroup(t,Random(sel));
      od;
      Info(InfoLattice,5,"reduced ",Length(sel)," -> ",
			  Length(GeneratorsOfGroup(t)));
      if IsBound(gp!.comgens) then
	t!.comgens:=gp!.comgens;
      fi;
      gp:=t;
    fi;
    r:=rec(representative:=gp,pos:=p);
    if ll<20 and IndexNC(G,gp)<10000 and lsd*20<Length(dom) then 
      t:=OrbitStabilizer(G,gp);
      ll:=Length(t.orbit);
      Info(InfoLattice,5,"orblen=",ll);
      r.normalizer:=t.stabilizer;
      if all then r.orbit:=t.orbit; fi;
      if IsIdenticalObj(t.orbit[1],gp) then
	t:=t.orbit{[2..Length(t.orbit)]};
	ll:=ll-1;
      else
	t:=ShallowCopy(t.orbit);
      fi;
      if Length(t)>0 and Length(t)*Size(t[1])<10000 and n>40000 then
	List(t,Elements); # faster in test
      fi;
      i:=1;
      while i<=Length(dom) and ll>0 do
	if b[i] and Size(dom[i])=Size(r.representative) then
	  p:=PositionProperty(t,j->ForAll(GeneratorsOfGroup(dom[i]),k->k in j));
	  if p<>fail then
	    b[i]:=false;
	    n:=n-1;
	    ll:=ll-1;
	    t:=t{Difference([1..Length(t)],[p])};
	  fi;
	fi;
	i:=i+1;
      od;
    else
      gens:=GeneratorsOfGroup(r.representative);
      r.normalizer:=Normalizer(G,r.representative);
      rorbs:=List(Orbits(r.representative,pts),i->Immutable(Set(i)));
      tl:=Index(G,r.normalizer);
      ll:=tl;
      Info(InfoLattice,5,"Normalizerindex=",tl);
      sel:=Filtered([1..l],i->b[i]);
      selz:=Filtered(sel,
	      i->not HasSize(dom[i]) or Size(dom[i])=Size(r.representative));
      if tl<=50*Length(selz) then
	t:=RightTransversal(G,r.normalizer);
	if Length(selz)>0 then
	  rem:=[];
	  for i in t do
	    sely:=selz;
	    j:=1;
	    while j<=Length(pbas) and Length(sely)>0 do
	      #torb:=Set(List(Orbit(r.representative,pbas[j]/i),x->x^i));
	      torb:=pbas[j]/i;
	      torb:=First(rorbs,x->torb in x);
	      torb:=Set(List(torb,x->x^i));
	      MakeImmutable(torb);
	      torb:=Position(allo,torb);
	      if torb=fail then
		sely:=[];
	      else
		sely:=Intersection(sely,domoj[j][torb]);
	      fi;
	      j:=j+1;
	    od;
	    if Length(sely)>0 then
	      iinv:=i^-1;
	      p:=First(sely,z->ForAll(GeneratorsOfGroup(dom[z]),
				  x->x^iinv in r.representative));
	      if p<>fail then
		AddSet(rem,p);
		b[p]:=false;
		n:=n-1;
	      fi;
	    fi;
	  od;

	  sel:=Difference(sel,rem);
	  selz:=Difference(selz,rem);

	fi;
      else
	for i in selz do
	  p:=RepresentativeAction(G,dom[i],r.representative,OnPoints);
	  if p<>fail then
	    b[i]:=false;
	    n:=n-1;
	    RemoveSet(sel,i);
	  fi;
	od;
      fi;
      if all then
	cl:=ConjugacyClassSubgroups(G,r.representative);
	SetStabilizerOfExternalSet(cl,r.normalizer);
	cl:=Enumerator(cl);
	r.elements:=cl;
      fi;
Info(InfoLattice,5,startn-n," conjugates");
    fi;
    if not all and savemem<>fail then
      p:=Size(r.representative);
      r.representative:=Group(GeneratorsOfGroup(r.representative));
      SetSize(r.representative,p);
      p:=Size(r.normalizer);
      r.normalizer:=Group(GeneratorsOfGroup(r.normalizer));
      SetSize(r.normalizer,p);
    fi;
    Add(o,r);
  od;
  return o;
end);

InstallMethod(SubgroupsOrbitsAndNormalizers,"pc group on list",true,
  [IsPcGroup,IsList,IsBool],0,
function(G,dom,all)
local  n,l,o,b,r,p,cl,i,sel,selz,allcano,cano,can2,p1;

  allcano:=[];
  n:=Length(dom);
  l:=n;
  o:=[];
  b:=BlistList([1..l],[1..n]);
  while n>0 do
    p:=Position(b,true);
    p1:=p;
    b[p]:=false;
    n:=n-1;
    r:=rec(representative:=dom[p],pos:=p);

    sel:=Filtered([1..l],i->b[i]);
    selz:=Filtered(sel,i->Size(dom[i])=Size(r.representative));

    if Length(selz)>0 then

      if IsBound(allcano[p1]) then
	cano:=allcano[p1];
      else
	cano:=CanonicalSubgroupRepresentativePcGroup(G,r.representative);
      fi;
      r.normalizer:=ConjugateSubgroup(cano[2],cano[3]^-1);

      cano:=cano[1];

      for i in selz do
	if IsBound(allcano[i]) then
	  can2:=allcano[i];
	else
	  can2:=CanonicalSubgroupRepresentativePcGroup(G,dom[i]);
	fi;
	if can2[1]=cano then
	  b[i]:=false;
	  n:=n-1;
	  RemoveSet(sel,i);
	  Unbind(allcano[i]);
	else
	  allcano[i]:=can2;
	fi;
      od;
    else
      r.normalizer:=Normalizer(G,r.representative);
    fi;

    if all then
      cl:=ConjugacyClassSubgroups(G,r.representative);
      SetStabilizerOfExternalSet(cl,r.normalizer);
      r.elements:=Enumerator(cl);
    fi;

    Add(o,r);
    Unbind(allcano[p1]);
  od;
  return o;
end);

# destructive version
# this method takes the component 'list' from the record and shrinks the
# list to save memory
InstallMethod(SubgroupsOrbitsAndNormalizers,"generic on record with list",true,
  [IsGroup,IsRecord,IsBool],0,
function(G,r,all)
local  n,o,dom,cl,i,s,j,t,ti,tl,gens;

  dom:=r.list;
  Unbind(r.list);

  n:=Length(dom);
  o:=[];
  while n>0 do
    r:=rec(representative:=dom[1]);
    gens:=GeneratorsOfGroup(dom[1]);
    s:=Size(dom[1]);
    cl:=ConjugacyClassSubgroups(G,r.representative);
    r.normalizer:=StabilizerOfExternalSet(cl);
    cl:=Enumerator(cl);
    t:=RightTransversal(G,r.normalizer);
    tl:=Length(t);

    i:=1;
    while i<=tl and Length(dom)>0 do
      ti:=t[i];
      j:=2;
      while j<=Length(dom) do
	if Size(dom[j])=s and ForAll(gens,k->k^ti in dom[j]) then
	  # hit
	  dom[j]:=dom[Length(dom)];
	  Unbind(dom[Length(dom)]);
	else
	  j:=j+1;
	fi;
      od;
      i:=i+1;
    od;

    if all then
      r.elements:=cl;
    fi;
    Add(o,r);
  od;
  return o;
end);

#############################################################################
##
#M  StabilizerOp( <G>, <D>, <subgroup>, <U>, <V>, <OnPoints> )
##
##  subgroup stabilizer
InstallMethod( StabilizerOp, "with domain, use normalizer", true,
    [ IsGroup, IsList, IsGroup, IsList, IsList, IsFunction ], 
    # raise over special methods for pcgs et. al.
    200,
function( G, D, sub, U, V, op )
    if not U=V or op<>OnPoints then
      TryNextMethod();
    fi;
    return Normalizer(G,sub);
end );

InstallOtherMethod( StabilizerOp, "use normalizer", true,
    [ IsGroup, IsGroup, IsList, IsList, IsFunction ], 
    # raise over special methods for pcgs et. al.
    200,
function( G, sub, U, V, op )
    if not U=V or op<>OnPoints then
      TryNextMethod();
    fi;
    return Normalizer(G,sub);
end );

InstallGlobalFunction(PermPreConjtestGroups,function(G,l)
local pats,spats,lpats,result,pa,lp,dom,lens,h,orbs,p,rep,cln,allorbs,
      allco,panu,gpcl,i,j,k,Gm,a,corbs,orbun,dict,norb,m,ornums,sornums,
      ssornums,sel,sela,statra,lrep,gpcl2,je,lrep1,partimg,nobail,cnt,hpos;

  if not IsPermGroup(G) then
    return [[G,l]];
  fi;

  dom:=MovedPoints(G);
  pats:=List(l,x->Collected(List(Orbits(x,MovedPoints(x)),Length)));
  spats:=Set(pats);
  Info(InfoLattice,2,Length(spats)," patterns");
  result:=[];
  for pa in [1..Length(spats)] do
    lp:=Filtered([1..Length(pats)],x->pats[x]=spats[pa]);
    lp:=l{lp};
    Info(InfoLattice,3,"Pattern ",pa,": ",Length(lp)," groups");
    lens:=List(spats[pa],x->x[1]);

    # now try to move the orbits always to the same
    allorbs:=[];
    allco:=[];
    panu:=0;
    gpcl:=[];

    for h in lp do
      orbs:=Orbits(h,MovedPoints(h));
      orbs:=List(lens,x->Union(Filtered(orbs,y->Length(y)=x)));
      p:=Position(allorbs,orbs);
      if p<>fail then
	rep:=allco[p][1];
	cln:=allco[p][2];
      else
	Add(allorbs,orbs);
	# try to map to a known one
	j:=1;
	while j<>fail and j<Length(allorbs) do
	  if orbs=allorbs[j] then
	    rep:=One(G);
	  else
	    Gm:=G;
	    rep:=One(G);
	    corbs:=List(orbs,ShallowCopy);
	    for k in [1..Length(orbs)] do
	      if rep<>fail then
		a:=RepresentativeAction(Gm,corbs[k],allorbs[j][k],OnSets);
		if a<>fail then
		  rep:=rep*a;
		  corbs:=List(corbs,x->OnSets(x,a));
		  Gm:=Stabilizer(Gm,allorbs[j][k],OnSets);
		else
		  rep:=fail;
		fi;
	      fi;
	    od;
	  fi;
	  if rep<>fail then
	    # found a conjugator -- join to class
	    cln:=allco[j][2];
	    Add(allco,[rep,cln]);
	    j:=fail;
	  else
	    j:=j+1;
	  fi;

	od;
	if j<>fail then
	  # none found -- new class
	  panu:=panu+1;
	  Add(allco,[One(G),panu]);
	  Gm:=G;
	  for k in orbs do
	    Gm:=Stabilizer(Gm,k,OnSets);
	  od;
	  Add(gpcl,[Gm,[]]);
	  cln:=panu;
	  rep:=One(G);
	fi;
      fi;
      #if rep<>() then Error("hee"); fi;
      #if not IsOne(rep) and Set(List(orbs,x->OnSets(x,rep)))<>allorbs[cln] then

      h:=h^rep;
      Add(gpcl[cln][2],h);
      #a:=Set(List(Orbits(h,MovedPoints(h)),Set));
      #p:=Position(allorbs,List(Set(List(a,Length)),x->Union(Filtered(a,y->Length(y)=x))));
      #if allco[p][2]<>cln then
#	Error("GGG");
#      fi;

    od;
    Info(InfoLattice,3,Length(gpcl)," orbit lengths classes ");
    Info(InfoLattice,5,List(gpcl,x->Length(x[2])));

    # split according to orbits. First orbits as they are orbits under j[1],
    # then as partitions.
    panu:=[];
    for j in gpcl do
      if Length(j[2])=1 then
	Add(panu,j);
      else
	allorbs:=[];
	lpats:=[];
	cnt:=Minimum(1000,Binomial(Length(j[2]),2)); # pairs
	nobail:=true;
	dict:=NewDictionary(MovedPoints(j[1]),true);
	norb:=0;
	hpos:=1;
	while nobail and hpos<=Length(j[2]) do
	  h:=j[2][hpos];
	  orbs:=Set(List(Orbits(h,MovedPoints(h)),Set));
	  MakeImmutable(orbs);List(orbs,IsSet);IsSet(orbs);
	  lp:=[];
	  for k in orbs do
	    rep:=LookupDictionary(dict,k);
	    if nobail and rep=fail then
	      a:=Orbit(j[1],k,OnSets);
	      cnt:=cnt-Length(a);
	      if cnt<0 then
		nobail:=false; # stop this orbit listing as too expensive.
	      else
      #Print("orblen=",Length(a),"\n");
		MakeImmutable(a);List(a,IsSet);
		norb:=norb+1;
		rep:=norb;
		for m in a do
		  AddDictionary(dict,m,norb);
		od;
	      fi;
	    fi;
	    Add(lp,rep);
	  od;
	  Sort(lp); # orbit pattern as numbers
	  rep:=Position(allorbs,lp);
	  if rep=fail then
	    Add(allorbs,lp);
	    Add(lpats,[j[1],[h]]);
	  else
	    Add(lpats[rep][2],h);
	  fi;
	  hpos:=hpos+1;
	od;

	if nobail then
#Print("nobail\n");
	  # now lpats are local patterns, but we still have the dictionary to
	  # make the orbit conjugation tests cheaper.
	  gpcl2:=lpats;

	  for je in gpcl2 do
	    if Length(je[2])=1 then
	      Add(panu,je);
	    else
	      allorbs:=[];
	      lpats:=[];
	      for h in je[2] do
		orbs:=Set(List(Orbits(h,MovedPoints(h)),Set));
		MakeImmutable(orbs);List(orbs,IsSet);IsSet(orbs);
		ornums:=List(orbs,x->LookupDictionary(dict,x));
		sornums:=ShallowCopy(ornums);Sort(sornums);
		ssornums:=Set(sornums);
		a:=Filtered([1..Length(allorbs)],x->allorbs[x][2]=sornums);
		rep:=fail;
		k:=0;
		while rep=fail and k<Length(a) do
		  k:=k+1;
		  lrep:=One(je[1]);
		  m:=1;
		  while lrep<>fail and m<=Length(ssornums) do
		    sel:=Filtered([1..Length(ornums)],x->ornums[x]=ssornums[m]);
		    sela:=Filtered([1..Length(ornums)],
		      x->allorbs[k][4][x]=ssornums[m]);
		    partimg:=OnSetsSets(orbs{sel},lrep^-1);
		    # only try to map these indexed orbits
		    if allorbs[k][1]{sela}=partimg then
		      lrep1:=One(je[1]);
		    elif Size(allorbs[k][5][m][1])/
			  Size(allorbs[k][5][m+1][1])>50 then
		      if allorbs[k][5][m][2]=0 then
			# delayed transversal
			allorbs[k][5][m][2]:=
			  RightTransversal(allorbs[k][5][m][1],
			    allorbs[k][5][m+1][1]);
		      fi;
		      lrep1:=First(allorbs[k][5][m][2],
			x->OnSetsSets(allorbs[k][1]{sela},x)=partimg);
		    else
		      lrep1:=RepresentativeAction(allorbs[k][5][m][1],
			allorbs[k][1]{sela},partimg,OnSetsSets);
		    fi;
		    if lrep1=fail then 
  #if RepresentativeAction(je[1],allorbs[k][1],orbs,OnSetsSets)<>fail then Error("HEH");fi;
		      lrep:=fail;
		    else
		      lrep:=lrep1*lrep;
		    fi;

		    m:=m+1;
		  od;

		  rep:=lrep;
		od;
		if rep=fail then

		  a:=je[1];
		  statra:=[];
		  for m in ssornums do
		    sel:=Filtered([1..Length(ornums)],x->ornums[x]=m);
		    Add(statra,[a,0]); # 0 is delayed transversal
		    a:=Stabilizer(a,orbs{sel},OnSetsSets);
		  od;
		  Add(statra,[a,0]);
  #if a<>Stabilizer(je[1],orbs,OnSetsSets) then Error("STB");fi;

		  Add(allorbs,[orbs,sornums,a,ornums,statra]);
		  Add(lpats,[a,[h]]);
		else
		  Add(lpats[k][2],h^(rep^-1));
		fi;
	      od;
	      Append(panu,lpats);
	    fi;
	  od;
	else
	  # if bailed
#Print("bailed\n");
	  Add(panu,j);
	fi;
      fi;
    od;
    gpcl:=panu;
    Info(InfoLattice,3,Length(gpcl)," orbit classes ");
    Info(InfoLattice,5,List(gpcl,x->Length(x[2])));

# this is redundant now
#    # now split according to actual orbit partition
#    panu:=[];
#    for j in gpcl do
#      if Length(j[2])=1 then
#	Add(panu,j);
#      else
#	allorbs:=[];
#	lpats:=[];
#	for h in j[2] do
#	  orbs:=Set(List(Orbits(h,MovedPoints(h)),Set));
#	  MakeImmutable(orbs);List(orbs,IsSet);IsSet(orbs);
#	  lp:=Collected(List(orbs,Length));
#	  a:=Filtered([1..Length(allorbs)],x->allorbs[x][2]=lp);
#	  rep:=fail;
#	  k:=0;
#	  while rep=fail and k<Length(a) do
#	    k:=k+1;
#	    # there isn't yet a good method for RepresentativeAction, but
#	    # short orbit is quick
#	    if allorbs[k][1]=orbs then
#	      rep:=One(j[1]);
#	    elif Size(j[1])/Size(allorbs[k][3])>50 then
#	      if allorbs[k][4]=0 then
#		# delayed transversal
##		allorbs[k][4]:=RightTransversal(j[1],allorbs[k][3]);
#	      fi;
#	      rep:=First(allorbs[k][4],x->OnSetsSets(allorbs[k][1],x)=orbs);
#	    else
#	      rep:=RepresentativeAction(j[1],allorbs[k][1],orbs,OnSetsSets);
#	    fi;
#	  od;
#	  if rep=fail then
#	    a:=Stabilizer(j[1],orbs,OnSetsSets);
#	    Add(allorbs,[orbs,lp,a,0]);
#	    Add(lpats,[a,[h]]);
#	  else
#	    Add(lpats[k][2],h^(rep^-1));
#	  fi;
#	od;
#	Append(panu,lpats);
#      fi;
#    od;
#    gpcl:=panu;
#
#    Info(InfoLattice,3,Length(gpcl)," orbit partition classes ");
#    Info(InfoLattice,5,List(gpcl,x->Length(x[2])));

    # now split by cycle structures
    panu:=[];
    for j in gpcl do
      if Size(j[2][1])<1000 then
	if Size(j[2][1])<=100 or IsAbelian(j[2][1]) then
	  allorbs:=List(j[2],x->Collected(List(Enumerator(x),CycleStructurePerm)));
	else
	  allorbs:=List(j[2],x->Collected(List(ConjugacyClasses(x),
	    y->Concatenation([Size(y)],
	           CycleStructurePerm(Representative(y))))));
        fi;

	allco:=Set(allorbs);
	for k in allco do
	  a:=Filtered([1..Length(allorbs)],x->allorbs[x]=k);
	  orbs:=[];
	  for i in j[2]{a} do
	    if not ForAny(orbs,x->ForAll(GeneratorsOfGroup(i),y->y in x)) then
	      Add(orbs,i);
	    #else Print("duplicate\n");
	    fi;
	  od;
	  Add(result,[j[1],orbs]);
	  Add(panu,Length(orbs));
	od;

      else
	Add(result,j);
	Add(panu,1);
      fi;

    od;
    Info(InfoLattice,3," to ",Length(panu)," cyclestruct classes ");

    #Append(result,gpcl);

  od;
  return result;

end);

#############################################################################
##
#E  oprtglat.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##