This file is indexed.

/usr/share/gap/lib/oprtperm.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
#############################################################################
##
#W  oprtperm.gi                 GAP library                    Heiko Theißen
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##


#############################################################################
##
#M  Orbit( <G>, <pnt>, <gens>, <acts>, <OnPoints> ) . . . . . . . on integers
##
InstallOtherMethod( OrbitOp,
        "G, int, gens, perms, act = `OnPoints'", true,
        [ IsPermGroup, IsInt,
          IsList,
          IsList,
          IsFunction ], 0,
    function( G, pnt, gens, acts, act )
    if gens <> acts  or  act <> OnPoints  then
        TryNextMethod();
    fi;
    if HasStabChainMutable( G )
       and IsInBasicOrbit( StabChainMutable( G ), pnt ) then
        return Immutable(StabChainMutable( G ).orbit);
    else
        return Immutable( OrbitPerms( acts, pnt ) );
    fi;
end );

#############################################################################
##
#M  OrbitStabilizer( <G>, <pnt>, <gens>, <acts>, <OnPoints> ) . . on integers
##
InstallOtherMethod( OrbitStabilizerOp, "permgroup", true,
        [ IsPermGroup, IsInt,
          IsList,
          IsList,
          IsFunction ], 0,
    function( G, pnt, gens, acts, act )
    local   S;

    if gens <> acts  or  act <> OnPoints  then
        TryNextMethod();
    fi;
    S := StabChainOp( G, [ pnt ] );
    if BasePoint( S ) = pnt  then
        return Immutable( rec( orbit := S.orbit,
                          stabilizer := GroupStabChain
                                        ( G, S.stabilizer, true ) ) );
    else
        return Immutable( rec( orbit := [ pnt ],
                          stabilizer := G ) );
    fi;
end );


#############################################################################
##
#M  Orbits( <G>, <D>, <gens>, <acts>, <OnPoints> )  . . . . . . . on integers
##
ORBS_PERMGP_PTS:=function( G, D, gens, acts, act )
  if act <> OnPoints  then
      TryNextMethod();
  fi;
  return Immutable( OrbitsPerms( acts, D ) );
end;

InstallMethod( Orbits, "permgroup on points", true,
    [ IsGroup, IsList and IsCyclotomicCollection, IsList,
      IsList and IsPermCollection, IsFunction ], 0,ORBS_PERMGP_PTS);

InstallMethod( OrbitsDomain, "permgroup on points", true,
    [ IsGroup, IsList and IsCyclotomicCollection, IsList,
      IsList and IsPermCollection, IsFunction ], 0,ORBS_PERMGP_PTS);


#############################################################################
##
#M  Cycle( <g>, <pnt>, <OnPoints> ) . . . . . . . . . . . . . . . on integers
##
InstallOtherMethod( CycleOp,"perm, int, act", true,
  [ IsPerm, IsInt, IsFunction ], 0,
    function( g, pnt, act )
    if act <> OnPoints  then
        TryNextMethod();
    fi;
    return CycleOp( g, pnt );
end );

InstallOtherMethod( CycleOp,"perm, int", true,
  [ IsPerm and IsInternalRep, IsInt ], 0,
    function( g, pnt )
    return Immutable( CYCLE_PERM_INT( g, pnt ) );
end );

#############################################################################
##
#M  CycleLength( <g>, <pnt>, <OnPoints> ) . . . . . . . . . . . . on integers
##
InstallOtherMethod( CycleLengthOp, "perm, int, act", true,
        [ IsPerm, IsInt, IsFunction ], 0,
    function( g, pnt, act )
    if act <> OnPoints  then
        TryNextMethod();
    fi;
    return CycleLengthOp( g, pnt );
end );

InstallOtherMethod( CycleLengthOp, "perm, int", true,
  [ IsPerm and IsInternalRep, IsInt ],0, CYCLE_LENGTH_PERM_INT);

#############################################################################
##
#M  Blocks( <G>, <D>, <gens>, <acts>, <OnPoints> )  . . . . find block system
##
InstallMethod( BlocksOp, "permgroup on integers",
        [ IsGroup, IsList and IsCyclotomicCollection, IsList and IsEmpty,
          IsList,
          IsList and IsPermCollection,
          IsFunction ],
    function( G, D, noseed, gens, acts, act )
    local   one,        # identity of `G'
            blocks,     # block system of <G>, result
            orbit,      # orbit of 1 under <G>
            trans,      # factored inverse transversal for <orbit>
            eql,        # '<i> = <eql>[<k>]' means $\beta(i)  = \beta(k)$,
            next,       # the points that are equivalent are linked
            last,       # last point on the list linked through 'next'
            leq,        # '<i> = <leq>[<k>]' means $\beta(i) <= \beta(k)$
            gen,        # one generator of <G> or 'Stab(<G>,1)'
            rnd,        # random element of <G>
            pnt,        # one point in an orbit
            img,        # the image of <pnt> under <gen>
            cur,        # the current representative of an orbit
            rep,        # the representative of a block in the block system
            block,      # the block, result
            changed,    # number of random Schreier generators
            nrorbs,     # number of orbits of subgroup $H$ of $G_1$
	    d1g,	# D[1]^gen
	    tr,		# transversal element
            i;          # loop variable

    if act <> OnPoints  then
        TryNextMethod();
    fi;

    # handle trivial group
    if Length( acts ) = 0 and Length(D)>1  then
        Error("<G> must operate transitively on <D>");
    fi;

    # handle trivial domain
    if Length( D ) = 1  or IsPrimeInt( Length( D ) )  then
        return Immutable( [ D ] );
    fi;

    # compute the orbit of $G$ and a factored transversal
    one:= One( G );
    orbit := [ D[1] ];
    trans := [];
    trans[ D[1] ] := one;
    for pnt  in orbit  do
        for gen  in acts  do
            if not IsBound( trans[ pnt / gen ] )  then
                Add( orbit, pnt / gen );
                trans[ pnt / gen ] := gen;
            fi;
        od;
    od;

    # check that the group is transitive
    if Length( orbit ) <> Length( D )  then
        Error("<G> must operate transitively on <D>");
    fi;
    Info( InfoAction, 1, "BlocksNoSeed transversal computed" );
    nrorbs := Length( orbit );

    # since $i \in k^{G_1}$ implies $\beta(i)=\beta(k)$,  we initialize <eql>
    # so that the connected components are orbits of some subgroup  $H < G_1$
    eql := [];
    leq := [];
    next := [];
    last := [];
    for pnt  in orbit  do
        eql[pnt]  := pnt;
        leq[pnt]  := pnt;
        next[pnt] := 0;
        last[pnt] := pnt;
    od;

    # repeat until we have a block system
    changed := 0;
    cur := orbit[2];
    rnd := one;
    repeat

        # compute such an $H$ by taking random  Schreier generators  of $G_1$
        # and stop if 2 successive generators dont change the orbits any more
        while changed < 2  do

            # compute a random Schreier generator of $G_1$
            i := Length( orbit );
            while 1 <= i  do
                rnd := rnd * Random( acts );
                i   := QuoInt( i, 2 );
            od;
            gen := rnd;
	    d1g:=D[1]^gen;
            while d1g <> D[1]  do
                tr:=trans[ d1g ];
                gen := gen * tr;
		d1g:=d1g^tr;
            od;
            changed := changed + 1;
	    Info( InfoAction, 3, "Changed: ",changed );

            # compute the image of every point under <gen>
            for pnt  in orbit  do
                img := pnt ^ gen;

                # find the representative of the orbit of <pnt>
                while eql[pnt] <> pnt  do
                    pnt := eql[pnt];
                od;

                # find the representative of the orbit of <img>
                while eql[img] <> img  do
                    img := eql[img];
                od;

                # if the don't agree merge their orbits
                if   pnt < img  then
                    eql[img] := pnt;
                    next[ last[pnt] ] := img;
                    last[pnt] := last[img];
                    nrorbs := nrorbs - 1;
                    changed := 0;
                elif img < pnt  then
                    eql[pnt] := img;
                    next[ last[img] ] := pnt;
                    last[img] := last[pnt];
                    nrorbs := nrorbs - 1;
                    changed := 0;
                fi;

            od;

        od;
        Info( InfoAction, 1, "BlocksNoSeed ",
                       "number of orbits of <H> < <G>_1 is ",nrorbs );

        # take arbitrary point <cur>,  and an element <gen> taking 1 to <cur>
        while eql[cur] <> cur  do
            cur := eql[cur];
        od;
        gen := [];
        img := cur;
        while img <> D[1]  do
            Add( gen, trans[img] );
            img := img ^ trans[img];
        od;
        gen := Reversed( gen );

        # compute an alleged block as orbit of 1 under $< H, gen >$
        pnt := cur;
        while pnt <> 0  do

            # compute the representative of the block containing the image
            img := pnt;
            for i  in gen  do
                img := img / i;
            od;
            while eql[img] <> img  do
                img := eql[img];
            od;

            # if its not our current block but a minimal block
            if   img <> D[1]  and img <> cur  and leq[img] = img  then

                # then try <img> as a new start
                leq[cur] := img;
                cur := img;
                gen := [];
                img := cur;
                while img <> D[1]  do
                    Add( gen, trans[img] );
                    img := img ^ trans[img];
                od;
                gen := Reversed( gen );
                pnt := cur;

            # otherwise if its not our current block but contains it
            # by construction a nonminimal block contains the current block
            elif img <> D[1]  and img <> cur  and leq[img] <> img  then

                # then merge all blocks it contains with <cur>
                while img <> cur  do
                    eql[img] := cur;
                    next[ last[cur] ] := img;
                    last[ cur ] := last[ img ];
                    img := leq[img];
                    while img <> eql[img]  do
                        img := eql[img];
                    od;
                od;
                pnt := next[pnt];

            # go on to the next point in the orbit
            else

                pnt := next[pnt];

            fi;

        od;

        # make the alleged block
        block := [ D[1] ];
        pnt := cur;
        while pnt <> 0  do
            Add( block, pnt );
            pnt := next[pnt];
        od;
        block := Set( block );
        blocks := [ block ];
        Info( InfoAction, 1, "BlocksNoSeed ",
                       "length of alleged block is ",Length(block) );

        # quick test to see if the group is primitive
        if Length( block ) = Length( orbit )  then
            Info( InfoAction, 1, "BlocksNoSeed <G> is primitive" );
            return Immutable( [ D ] );
        fi;

        # quick test to see if the orbit can be a block
        if Length( orbit ) mod Length( block ) <> 0  then
            Info( InfoAction, 1, "BlocksNoSeed ",
                           "alleged block is clearly not a block" );
            changed := -1000;
        fi;

        # '<rep>[<i>]' is the representative of the block containing <i>
        rep := [];
        for pnt  in orbit  do
            rep[pnt] := 0;
        od;
        for pnt  in block  do
            rep[pnt] := 1;
        od;

        # compute the block system with an orbit algorithm
        i := 1;
        while 0 <= changed  and i <= Length( blocks )  do

            # loop over the generators
            for gen  in acts  do

                # compute the image of the block under the generator
                img := OnSets( blocks[i], gen );

                # if this block is new
                if rep[ img[1] ] = 0  then

                    # add the new block to the list of blocks
                    Add( blocks, img );

                    # check that all points in the image are new
                    for pnt  in img  do
                        if rep[pnt] <> 0  then
                            Info( InfoAction, 1, "BlocksNoSeed ",
                                           "alleged block is not a block" );
                            changed := -1000;
                        fi;
                        rep[pnt] := img[1];
                    od;

                # if this block is old
                else

                    # check that all points in the image lie in the block
                    for pnt  in img  do
                        if rep[pnt] <> rep[img[1]]  then
                           Info( InfoAction, 1, "BlocksNoSeed ",
                                           "alleged block is not a block" );
                            changed := -1000;
                        fi;
                    od;

                fi;

            od;

            # on to the next block in the orbit
            i := i + 1;
        od;

    until 0 <= changed;

    # force sortedness
    if Length(blocks[1])>0 and CanEasilySortElements(blocks[1][1]) then
      blocks:=AsSSortedList(List(blocks,i->Immutable(Set(i))));
      IsSSortedList(blocks);
    fi;
    # return the block system
    return Immutable( blocks );
end );

#############################################################################
##
#M  Blocks( <G>, <D>, <seed>, <gens>, <acts>, <OnPoints> )   blocks with seed
##
InstallMethod( BlocksOp, "integers, with seed", true,
        [ IsGroup, IsList and IsCyclotomicCollection,
          IsList and IsCyclotomicCollection,
          IsList,
          IsList and IsPermCollection,
          IsFunction ], 0,
    function( G, D, seed, gens, acts, act )
    local   blks,       # list of blocks, result
            rep,        # representative of a point
            siz,        # siz[a] of the size of the block with rep <a>
            fst,        # first point still to be merged into another block
            nxt,        # next  point still to be merged into another block
            lst,        # last  point still to be merged into another block
            gen,        # generator of the group <G>
            nrb,        # number of blocks so far
            a, b, c, d; # loop variables for points

    if act <> OnPoints  then
        TryNextMethod();
    fi;

    nrb := Length(D) - Length(seed) + 1;

    # in the beginning each point <d> is in a block by itself
    rep := [];
    siz := [];
    for d  in D  do
        rep[d] := d;
        siz[d] := 1;
    od;

    # except the points in <seed>, which form one block with rep <seed>[1]
    fst := 0;
    nxt := siz;
    lst := 0;
    c   := seed[1];
    for d  in seed  do
        if d <> c  then
            rep[d] := c;
            siz[c] := siz[c] + siz[d];
            if fst = 0  then
                fst      := d;
            else
                nxt[lst] := d;
            fi;
            lst      := d;
            nxt[lst] := 0;
        fi;
    od;

    # while there are points still to be merged into another block
    while fst <> 0  do

        # get this point <a> and its repesentative <b>
        a := fst;
        b := rep[fst];

        # for each generator <gen> merge the blocks of <a>^<gen>, <b>^<gen>
        for gen  in acts  do
            c := a^gen;
            while rep[c] <> c  do
                c := rep[c];
            od;
            d := b^gen;
            while rep[d] <> d  do
                d := rep[d];
            od;
            if c <> d  then
                if Length(D) < 2*(siz[c] + siz[d])  then
                    return Immutable( [ D ] );
                fi;
                nrb := nrb - 1;
                if siz[d] <= siz[c]  then
                    rep[d]   := c;
                    siz[c]   := siz[c] + siz[d];
                    nxt[lst] := d;
                    lst      := d;
                    nxt[lst] := 0;
                else
                    rep[c]   := d;
                    siz[d]   := siz[d] + siz[c];
                    nxt[lst] := c;
                    lst      := c;
                    nxt[lst] := 0;
                fi;
            fi;
        od;

        # on to the next point still to be merged into another block
        fst := nxt[fst];
    od;

    # turn the list of representatives <rep> into a list of blocks <blks>
    blks := [];
    for d  in D  do
        c := d;
        while rep[c] <> c  do
           c := rep[c];
        od;
        if IsInt( nxt[c] )  then
            nxt[c] := [ d ];
            Add( blks, nxt[c] );
        else
            AddSet( nxt[c], d );
        fi;
    od;

    # return the set of blocks <blks>
    # force sortedness
    if Length(blks[1])>0 and CanEasilySortElements(blks[1][1]) then
      blks:=AsSSortedList(List(blks,i->Immutable(Set(i))));
      IsSSortedList(blks);
    fi;
    return Immutable( Set( blks ) );
end );

#############################################################################
##
#M  RepresentativesMinimalBlocks( <G>, <D>, <gens>, <acts>, <OnPoints> )
## Adaptation of the code for BlocksNoSeed to return _all_ minimal blocks
## containing D[1].
## By Graham Sharp (Oxford), August 1997
##
InstallOtherMethod( RepresentativesMinimalBlocksOp,
        "permgrp on points", true,
        [ IsGroup, IsList and IsCyclotomicCollection,
          IsList,
          IsList and IsPermCollection,
          IsFunction ], 0,
function( G, D, gens, acts, act )
local   blocks,   # block system of <G>, result
      orbit,    # orbit of 1 under <G>
      trans,    # factored inverse transversal for <orbit>
      eql,    # '<i> = <eql>[<k>]' means $\beta(i)  = \beta(k)$,
      next,     # the points that are equivalent are linked
      last,     # last point on the list linked through 'next'
      leq,    # '<i> = <leq>[<k>]' means $\beta(i) <= \beta(k)$
      gen,    # one generator of <G> or 'Stab(<G>,1)'
      rnd,    # random element of <G>
      pnt,    # one point in an orbit
      img,    # the image of <pnt> under <gen>
      cur,    # the current representative of an orbit
      rep,    # the representative of a block in the block system
      block,    # the block, result
      changed,  # number of random Schreier generators
      nrorbs,   # number of orbits of subgroup $H$ of $G_1$
      i,      # loop variable
      minblocks,  # set of minimal blocks, result
      poss,     # flag to indicate whether we might have a block
      iter,     # which points we've checked when
      start;    # index of first cur for this iteration (non-dec)

  if act<>OnPoints then
    TryNextMethod();
  fi;

  # handle trivial domain
  if Length( D ) = 1  or IsPrime( Length( D ) )  then
    return Immutable([ D ]);
  fi;

  # handle trivial group
  if Length( acts )=0  then
    Error( "<G> must act transitively on <D>" );
  fi;

  # compute the orbit of $G$ and a factored transversal
  orbit := [ D[1] ];
  trans := [];
  trans[ D[1] ] := One( acts[1] );  # note that `acts' is nonempty
  for pnt  in orbit  do
    for gen  in acts  do
      if not IsBound( trans[ pnt / gen ] )  then
        Add( orbit, pnt / gen );
        trans[ pnt / gen ] := gen;
      fi;
    od;
  od;

  # check that the group is transitive
  if Length( orbit ) <> Length( D )  then
    Error( "<G> must act transitively on <D>" );
  fi;
  Info(InfoAction,1,"RepresentativesMinimalBlocks transversal computed");
  nrorbs := Length( orbit );

  # since $i \in k^{G_1}$ implies $\beta(i)=\beta(k)$,  we initialize <eql>
  # so that the connected components are orbits of some subgroup  $H < G_1$
  eql := [];
  leq := [];
  next := [];
  last := [];
  iter := [];
  for pnt  in orbit  do
    eql[pnt]  := pnt;
    leq[pnt]  := pnt;
    next[pnt] := 0;
    last[pnt] := pnt;
    iter[pnt] := 0;
  od;

  # repeat until we run out of points
  minblocks := [];
  changed := 0;
  rnd := One( acts[1] );

  for start in orbit{[2..Length(D)]} do

    # repeat until we have a block system
    cur := start;
    # unless this is a new point, ignore and go on to the next
    # -we could do this by a linked list to avoid these checks but the
    #  O(n) overheads involved in setting it up are greater than those saved
    if iter[cur] = 0 then

    repeat

      # compute such an $H$ by taking random Schreier generators of $G_1$
      # and stop if 2 successive generators dont change the orbits any
      # more
      while changed < 2  do

        # compute a random Schreier generator of $G_1$
        i := Length( orbit );
        while 1 <= i  do
          rnd := rnd * Random( acts );
          i   := QuoInt( i, 2 );
        od;
        gen := rnd;
        while D[1] ^ gen <> D[1]  do
          gen := gen * trans[ D[1] ^ gen ];
        od;
        changed := changed + 1;

        # compute the image of every point under <gen>
        for pnt  in orbit  do
          img := pnt ^ gen;

          # find the representative of the orbit of <pnt>
          while eql[pnt] <> pnt  do
            pnt := eql[pnt];
          od;

          # find the representative of the orbit of <img>
          while eql[img] <> img  do
            img := eql[img];
          od;

          # if the don't agree merge their orbits
          if   pnt < img  then
            eql[img] := pnt;
            next[ last[pnt] ] := img;
            last[pnt] := last[img];
            nrorbs := nrorbs - 1;
            changed := 0;
          elif img < pnt  then
            eql[pnt] := img;
            next[ last[img] ] := pnt;
            last[img] := last[pnt];
            nrorbs := nrorbs - 1;
            changed := 0;
          fi;

        od;

      od;
      Info(InfoAction,1,"RepresentativesMinimalBlocks ",
               "number of orbits of <H> < <G>_1 is ",nrorbs);

      # take arbitrary point <cur>,  and an element <gen> taking 1 to <cur>
      while eql[cur] <> cur  do
        cur := eql[cur];
      od;
      # Mark the points in this new H-orbit as visited
      if iter[cur] <> start then
        img := cur;
        while img <> 0 do
        iter[img] := start;
        img := next[img];
        od;
      fi;
      gen := [];
      img := cur;
      while img <> D[1]  do
        Add( gen, trans[img] );
        img := img ^ trans[img];
      od;
      gen := Reversed( gen );

      # compute an alleged block as orbit of 1 under $< H, gen >$
      pnt := cur;
      poss := true;
      while pnt <> 0  do

        # compute the representative of the block containing the image
        img := pnt;
        for i  in gen  do
          img := img / i;
        od;
        while eql[img] <> img  do
          img := eql[img];
        od;

        # if its not our current block but a new block
        if   img <> D[1]  and img <> cur and leq[img] = img
            and (iter[img] = 0 or iter[img] = start) then

          # then try <img> as a new start
          leq[cur] := img;
          cur := img;
          if iter[cur] <> start then
            img := cur;
            while img <> 0 do
            iter[img] := start;
            img := next[img];
            od;
          fi;
          gen := [];
          img := cur;
          while img <> D[1]  do
            Add( gen, trans[img] );
            img := img ^ trans[img];
          od;
          gen := Reversed( gen );
          pnt := cur;

        # otherwise if its not our current block but contains it
        # by construction a nonminimal block contains the current block
        # - not any more it doesn't! Now we also have to check whether
        # the block appeared this time or earlier.
        elif img <> D[1]  and img <> cur
               and leq[img] <> img  and iter[img] = start then

          # then merge all blocks it contains with <cur>
          while img <> cur  do
            eql[img] := cur;
            next[ last[cur] ] := img;
            last[ cur ] := last[ img ];
            img := leq[img];
            while img <> eql[img]  do
              img := eql[img];
            od;
          od;
          pnt := next[pnt];

        # else if the block appeared in a previous iteration
        elif iter[img] <> start and iter[img] <> 0 then

           # then end this iteration as this is not a minimal block
          pnt := 0;
          poss := false;

        # otherwise go on to the next point in the orbit
        else

          pnt := next[pnt];

        fi;

      od;

      # Skip this bit if we know we haven't got a block
      if poss = true then
      # make the alleged block
      block := [ D[1] ];
      pnt := cur;
      while pnt <> 0  do
        Add( block, pnt );
        pnt := next[pnt];
      od;
      block := Set( block );
      blocks := [ block ];
      Info(InfoAction,1,"RepresentativesMinimalBlocks ",
               "length of alleged block is ",Length(block));

      # quick test to see if the group is primitive
      if Length( block ) = Length( orbit )  then
        Info(InfoAction,1,"RepresentativesMinimalBlocks <G> is primitive");
        return Immutable([ D ]);
      fi;

      # quick test to see if the orbit can be a block
      if Length( orbit ) mod Length( block ) <> 0  then
        Info(InfoAction,1,"RepresentativesMinimalBlocks ",
                 "alleged block is clearly not a block");
        changed := -1000;
      fi;

      # '<rep>[<i>]' is the representative of the block containing <i>
      rep := [];
      for pnt  in orbit  do
        rep[pnt] := 0;
      od;
      for pnt  in block  do
        rep[pnt] := 1;
      od;

      # compute the block system with an orbit algorithm
      i := 1;
      while 0 <= changed  and i <= Length( blocks )  do

        # loop over the generators
        for gen  in acts  do

          # compute the image of the block under the generator
          img := OnSets( blocks[i], gen );

          # if this block is new
          if rep[ img[1] ] = 0  then

            # add the new block to the list of blocks
            Add( blocks, img );

            # check that all points in the image are new
            for pnt  in img  do
              if rep[pnt] <> 0  then
                Info(InfoAction,1,
                "RepresentativesMinimalBlocks, alleged block is not a block");
                changed := -1000;
              fi;
              rep[pnt] := img[1];
            od;

          # if this block is old
          else

            # check that all points in the image lie in the block
            for pnt  in img  do
              if rep[pnt] <> rep[img[1]]  then
                Info(InfoAction,1,
                 "RepresentativesMinimalBlocks , alleged block is not a block");
                changed := -1000;
              fi;
            od;

          fi;

        od;

        # on to the next block in the orbit
        i := i + 1;
      od;
      fi;

    until 0 <= changed;
    if poss = true then AddSet(minblocks, block); fi;

    # loop back to get another minimal block
    fi;
  od;

  # return the block system
  return Immutable(minblocks);
end);

InstallOtherMethod( RepresentativesMinimalBlocksOp,
        "G, domain, noseed, gens, perms, act", true,
        [ IsGroup, IsList and IsCyclotomicCollection,IsEmpty,
          IsList,
          IsList and IsPermCollection,
          IsFunction ], 0,
function(G,D,noseed,gens,acts,act)
  return RepresentativesMinimalBlocksOp(G,D,gens,acts,act);
end);

InstallOtherMethod( RepresentativesMinimalBlocksOp,
        "general case: translate", true,
        [ IsGroup, IsList,
          IsList,
          IsList,
          IsFunction ], 
	  # lower ranked than perm method
	  -1,
function( G, D, gens, acts, act )
local hom,r;
  hom:=ActionHomomorphism(G,D,gens,acts,act);
  G:=Image(hom,G);
  r:=RepresentativesMinimalBlocksOp(G,[1..Length(D)],
        GeneratorsOfGroup(G),GeneratorsOfGroup(G),OnPoints);
  return List(r,i->D{i});
end);

#############################################################################
##
#M  Earns( <G>, <D> ) . . . . . . . . . . . . earns of affine primitive group
##
InstallMethod( Earns, "G, ints, gens, perms, act", true,
    [ IsPermGroup, IsList,
      IsList,
      IsList,
      IsFunction ], 0,
    function( G, D, gens, acts, act )
    local   n,  fac,  p,  d,  alpha,  beta,  G1,  G2,  orb,
            Gamma,  M,  C,  f,  P,  Q,  Q0,  R,  R0,  pre,  gen,  g,
            ord,  pa,  a,  x,  y,  z;

    if gens <> acts  or  act <> OnPoints  then
        TryNextMethod();
    fi;

    n := Length( D );
    if not IsPrimePowerInt( n )  then
        return fail;
    elif not IsPrimitive( G, D )  then
        TryNextMethod();
    fi;

#    # Try a shortcut for solvable groups (or if a solvable normal subgroup is
#    # found).
#    if DefaultStabChainOptions.tryPcgs  then
#        pcgs := TryPcgsPermGroup( G, false, false, true );
#        if not IsPcgs( pcgs )  then
#            pcgs := pcgs[ 1 ];
#        fi;
#T why do we know, that this will give us the EARNS and not just a smaller
# one? AH
#        if not IsEmpty( pcgs )  then
#            return ElementaryAbelianSeries( pcgs )
#                   [ Length( ElementaryAbelianSeries( pcgs ) ) - 1 ];
#        fi;
#    fi;

    fac := FactorsInt( n );  p := fac[ 1 ];  d := Length( fac );
    alpha := BasePoint( StabChainMutable( G ) );
    G1 := Stabilizer( G, alpha );

    # If <G> is regular, it must be cyclic of prime order.
    if IsTrivial( G1 )  then
        return G;
    fi;

    # If <G> is not a Frobenius group ...
    for orb  in OrbitsDomain( G1, D )  do
        beta := orb[ 1 ];
        if beta <> alpha  then
            G2 := Stabilizer( G1, beta );
            if not IsTrivial( G2 )  then
                Gamma := Filtered( D, p -> ForAll( GeneratorsOfGroup( G2 ),
                                 g -> p ^ g = p ) );
                if Set( FactorsInt( Length( Gamma ) ) ) <> [ p ]  then
                    return fail;
                fi;
                C := Centralizer( G, G2 );
                f := ActionHomomorphism( C, Gamma,"surjective" );
                P := PCore( ImagesSource( f ), p );
                if not IsTransitive( P, [ 1 .. Length( Gamma ) ] )  then
                    return fail;
                fi;
                gens := [  ];
                for gen  in GeneratorsOfGroup( Centre( P ) )  do
                    pre := PreImagesRepresentative( f, gen );
                    ord := Order( pre );  pa := 1;
                    while ord mod p = 0  do
                        ord := ord / p;
                        pa := pa * p;
                    od;
                    pre := pre ^ ( ord * Gcdex( pa, ord ).coeff2 );
                    for g  in GeneratorsOfGroup( C )  do
                        z := Comm( g, pre );
                        if z <> One( C )  then
                            M := SolvableNormalClosurePermGroup( G, [ z ] );
                            if M <> fail  and  Size( M ) = n  then
                                return M;
                            else
                                return fail;
                            fi;
                        fi;
                    od;
                    Add( gens, pre );
                od;
                Q := SylowSubgroup( Centre( G2 ), p );

                # This is unnecessary  if   you trust the   classification of
                # finite simple groups.
                if Size( Q ) > p ^ ( d - 1 )  then
                    return fail;
                fi;

                R := ClosureGroup( Q, gens );
                R0 := OmegaOp( R, p, 1 );
                y := First( GeneratorsOfGroup( R0 ),
                            y -> not # y in Q = Centre(G2)_p
                            (     alpha ^ y = alpha
                              and beta  ^ y = beta
                              and ForAll( GeneratorsOfGroup( G2 ),
                                      gen -> gen ^ y = gen ) ) );
                Q0 := OmegaOp( Q, p, 1 );
                for z  in Q0  do
                    M := SolvableNormalClosurePermGroup( G, [ y * z ] );
                    if M <> fail  and  Size( M ) = n  then
                        return M;
                    fi;
                od;
                return fail;
            fi;
        fi;
    od;

    # <G> is a Frobenius group.
    a := GeneratorsOfGroup( Centre( G1 ) )[ 1 ];
    x := First( GeneratorsOfGroup( G ), gen -> alpha ^ gen <> alpha );
    z := Comm( a, a ^ x );
    M := SolvableNormalClosurePermGroup( G, [ z ] );
    return M;

end );


#############################################################################
##
#M  Transitivity( <G>, <D>, <gens>, <acts>, <act> ) . . . . . . . on integers
##
InstallMethod( Transitivity, "permgroup on numbers", true,
    [ IsPermGroup, IsList and IsCyclotomicCollection,
      IsList,
      IsList,
      IsFunction ], 0,
    function( G, D, gens, acts, act )
    if gens <> acts  or  act <> OnPoints  then
        TryNextMethod();

    elif not IsTransitive( G, D, gens, acts, act )  then
        return 0;
    else
        G := Stabilizer( G, D[ 1 ], act );
        gens := GeneratorsOfGroup( G );
        return Transitivity( G, D{ [ 2 .. Length( D ) ] },
                       gens, gens, act ) + 1;
    fi;
end );


#############################################################################
##
#M  IsTransitive( <G> )
#M  Transitivity( <G> )
##
##  For a group with known order, we use that the number of moved points
##  of a transitive permutation group divides the group order.
##  If this is not the case then this check avoids computing an orbit or of
##  a point stabilizer.
##  Note that the GAP library defines transitivity also on partial orbits.
##  (If this would be changed then also the five argument method that is
##  installed in the call of `OrbitsishOperation' could take advantage of
##  the divisibility criterion.)
##
InstallOtherMethod( IsTransitive,
    "for a permutation group (use shortcuts)",
    [ IsPermGroup ], 1,
    function( G )
    local n, gens;

    n:= NrMovedPoints( G );
    if n = 0 then
      return true;
    elif HasSize( G ) and Size( G ) mod n <> 0 then
      # Avoid computing an orbit if the (known) group order
      # is not divisible by the (known) number of points.
      return false;
    else
      # Avoid the `IsSubset' test that occurs in the generic method,
      # checking the orbit length suffices.
      # (And do not call `Orbit'!)
      gens:= GeneratorsOfGroup( G );
      return n = Length( OrbitOp( G, SmallestMovedPoint( G ), gens, gens,
                                  OnPoints ) );
    fi;
    end );

InstallOtherMethod( Transitivity,
    "for a permutation group with known size",
    [ IsPermGroup and HasSize ],
    function( G )
    local n, t, size;

    n:= NrMovedPoints( G );
    if n = 0 then
      # The trivial group is transitive on the empty set,
      # but has transitivity zero.
      return 0;
    fi;
    t:= 0;
    size:= Size( G );
    while IsTransitive( G ) do
      t:= t + 1;
      size:= size / n;
      n:= n-1;
      if size mod n <> 0 then
        break;
      fi;
      G:= Stabilizer( G, SmallestMovedPoint( G ) );
      if NrMovedPoints( G ) <> n then
        if n = 1 then
          # The trivial group is transitive on a singleton set,
          # with transitivity one.
          t:= t + 1;
        fi;
        break;
      fi;
    od;
    return t;
    end );


#############################################################################
##
#M  IsSemiRegular( <G>, <D>, <gens>, <acts>, <act> )  . . . . for perm groups
##
InstallMethod( IsSemiRegular, "permgroup on numbers", true,
    [ IsGroup, IsList and IsCyclotomicCollection,
      IsList,
      IsList and IsPermCollection,
      IsFunction ], 0,
    function( G, D, gens, acts, act )
    local   used,       #
            perm,       #
            orbs,       # orbits of <G> on <D>
            gen,        # one of the generators of <G>
            orb,        # orbit of '<D>[1]'
            pnt,        # one point in the orbit
            new,        # image of <pnt> under <gen>
            img,        # image of '<prm>[<i>][<pnt>]' under <gen>
            p, n,       # loop variables
            i, l;       # loop variables

    if act <> OnPoints  then
        TryNextMethod();
    fi;

    # compute the orbits and check that they all have the same length
    orbs := OrbitsDomain( G, D, gens, acts, OnPoints );
    if Length( Set( List( orbs, Length ) ) ) <> 1  then
        return false;
    fi;

    # initialize the permutations that act like the generators
    used := [];
    perm := [];
    for i  in [ 1 .. Length( acts ) ]  do
        used[i] := [];
        perm[i] := [];
        for pnt  in orbs[1]  do
            used[i][pnt] := false;
        od;
        perm[i][ orbs[1][1] ] := orbs[1][1] ^ acts[i];
        used[i][ orbs[1][1] ^ acts[i] ] := true;
    od;

    # initialize the permutation that permutes the orbits
    l := Length( acts ) + 1;
    used[l] := [];
    perm[l] := [];
    for orb  in orbs  do
        for pnt  in orb  do
            used[l][pnt] := false;
        od;
    od;
    for i  in [ 1 .. Length(orbs)-1 ]  do
        perm[l][orbs[i][1]] := orbs[i+1][1];
        used[l][orbs[i+1][1]] := true;
    od;
    perm[l][orbs[Length(orbs)][1]] := orbs[1][1];
    used[l][orbs[1][1]] := true;

    # compute the orbit of the first representative
    orb := [ orbs[1][1] ];
    for pnt  in orb  do
        for gen  in acts  do

            # if the image is new
            new := pnt ^ gen;
            if not new in orb  then

                # add the new element to the orbit
                Add( orb, new );

                # extend the permutations that act like the generators
                for i  in [ 1 .. Length( acts ) ]  do
                    img := perm[i][pnt] ^ gen;
                    if used[i][img]  then
                        return false;
                    else
                        perm[i][new] := img;
                        used[i][img] := true;
                    fi;
                od;

                # extend the permutation that permutates the orbits
                p := pnt;
                n := new;
                for i  in [ 1 .. Length( orbs ) ]  do
                    img := perm[l][p] ^ gen;
                    if used[l][img]  then
                        return false;
                    else
                        perm[l][n] := img;
                        used[l][img] := true;
                    fi;
                    p := perm[l][p];
                    n := img;
                od;

            fi;

        od;
    od;

    # check that the permutations commute with the generators
    for i  in [ 1 .. Length( acts ) ]  do
        for gen  in acts  do
            for pnt  in orb  do
                if perm[i][pnt] ^ gen <> perm[i][pnt ^ gen]  then
                    return false;
                fi;
            od;
        od;
    od;

    # check that the permutation commutes with the generators
    for gen  in acts  do
        for orb  in orbs  do
            for pnt  in orb  do
                if perm[l][pnt] ^ gen <> perm[l][pnt ^ gen]  then
                    return false;
                fi;
            od;
        od;
    od;

    # everything is ok, the representation is semiregular
    return true;

end );

#############################################################################
##
#F  IsRegular(permgp)
##
InstallOtherMethod( IsRegular,"permgroup",true,[IsPermGroup],0,
function(G)
  if IsTransitive(G) and IsSemiRegular(G) then
    SetSize(G,NrMovedPoints(G));
    return true;
  else
    return false;
  fi;
end);

InstallOtherMethod( IsRegular,"permgroup with known size",true,
  [IsPermGroup and HasSize],0,
  G->Size(G)=NrMovedPoints(G) and IsTransitive(G));

# implications with regularity for permgroups.
InstallTrueMethod(IsSemiRegular,IsPermGroup and IsRegular);
InstallTrueMethod(IsTransitive,IsPermGroup and IsRegular);
InstallTrueMethod(IsRegular,IsPermGroup and IsSemiRegular and IsTransitive);

#############################################################################
##
#M  RepresentativeAction( <G>, <d>, <e>, <act> ) . . . . . for perm groups
##
InstallOtherMethod( RepresentativeActionOp, "permgrp",true, [ IsPermGroup,
        IsObject, IsObject, IsFunction ], 
  # the objects might be group elements: rank up	
  2*RankFilter(IsMultiplicativeElementWithInverse),
    function ( G, d, e, act )
    local   rep,                # representative, result
            S,                  # stabilizer of <G>
            rep2,               # representative in <S>
	    sel,
	    dp,ep,		# point copies
            i,  f;              # loop variables

    # standard action on points, make a basechange and trace the rep
    if act = OnPoints and IsInt( d ) and IsInt( e )  then
        d := [ d ];  e := [ e ];
        S := true;
    elif     ( act = OnPairs or act = OnTuples )
         and IsPositionsList( d ) and IsPositionsList( e )  then
        S := true;
    fi;
    if IsBound( S )  then
        if d = e  then
            rep := One( G );
        elif Length( d ) <> Length( e ) then
            rep:= fail;
        else
	    # can we use the current stab chain? (try to avoid rebuilding
	    # one if called frequently)
	    S:=StabChainMutable(G);
	    # move the points already in the base in front
	    sel:=List(BaseStabChain(S),i->Position(d,i));
	    sel:=Filtered(sel,i->i<>fail);
	    if Length(sel)>0 then
	      # rearrange
	      sel:=Concatenation(sel,Difference([1..Length(d)],sel));
	      dp:=d{sel};
	      ep:=e{sel};
	      rep := S.identity;
	      for i  in [ 1 .. Length( dp ) ]  do
		  if BasePoint( S ) = dp[ i ]  then
		      f := ep[ i ] / rep;
		      if not IsInBasicOrbit( S, f )  then
			  rep := fail;
			  break;
		      else
			  rep := LeftQuotient( InverseRepresentative( S, f ),
					rep );
		      fi;
		      S := S.stabilizer;
		  elif ep[ i ] <> dp[ i ] ^ rep  then
		      rep := fail;
		      break;
		  fi;
	      od;
	    else
	      rep:=fail; # we did not yet get anything
	    fi;

	    if rep=fail then
	      # did not work with the existing stabchain - do again
	      S := StabChainOp( G, d );
	      rep := S.identity;
	      for i  in [ 1 .. Length( d ) ]  do
		  if BasePoint( S ) = d[ i ]  then
		      f := e[ i ] / rep;
		      if not IsInBasicOrbit( S, f )  then
			  rep := fail;
			  break;
		      else
			  rep := LeftQuotient( InverseRepresentative( S, f ),
					rep );
		      fi;
		      S := S.stabilizer;
		  elif e[ i ] <> d[ i ] ^ rep  then
		      rep := fail;
		      break;
		  fi;
	      od;
	    fi;

        fi;

    # action on (lists of) permutations, use backtrack
    elif act = OnPoints and IsPerm( d ) and IsPerm( e )  then
        rep := RepOpElmTuplesPermGroup( true, G, [ d ], [ e ],
                       TrivialSubgroup( G ), TrivialSubgroup( G ) );
    elif     ( act = OnPairs or act = OnTuples )
         and IsList( d ) and IsPermCollection( d )
         and IsList( e ) and IsPermCollection( e )  then
        rep := RepOpElmTuplesPermGroup( true, G, d, e,
                       TrivialSubgroup( G ), TrivialSubgroup( G ) );

    # action on permgroups, use backtrack
    elif act = OnPoints and IsPermGroup( d ) and IsPermGroup( e )  then
        rep := ConjugatorPermGroup( G, d, e );

    # action on pairs or tuples of other objects, iterate
    elif act = OnPairs  or act = OnTuples  then
        rep := One( G );
        S   := G;
        i   := 1;
        while i <= Length(d)  and rep <> fail  do
            if e[i] = fail  then
                rep := fail;
            else
                rep2 := RepresentativeActionOp( S, d[i], e[i]^(rep^-1),
                                OnPoints );
                if rep2 <> fail  then
                    rep := rep2 * rep;
                    S   := Stabilizer( S, d[i], OnPoints );
                else
                    rep := fail;
                fi;
            fi;
            i := i + 1;
        od;

    # action on sets of points, use backtrack
    elif act = OnSets and IsPositionsList( d ) and IsPositionsList( e )  then
      if Length(d)<>Length(e) then
	return fail;
      fi;
      if Length(d)=1 then
	rep:=RepresentativeActionOp(G,d[1],e[1],OnPoints);
      else
        rep := RepOpSetsPermGroup( G, d, e );
      fi;

    # other action, fall back on default representative
    else
        TryNextMethod();
    fi;

    # return the representative
    return rep;
end );

#############################################################################
##
#M  Stabilizer( <G>, <d>, <gens>, <gens>, <act> ) . . . . . . for perm groups
##

PermGroupStabilizerOp:=function(arg)
    local   K,          # stabilizer <K>, result
            S,  base,
	    G,d,gens,acts,act,dom;

 # get arguments, ignoring a given domain
 G:=arg[1];
 K:=Length(arg);
 act:=arg[K];
 acts:=arg[K-1];
 gens:=arg[K-2];
 d:=arg[K-3];

    if gens <> acts  then
	#TODO: Check whether  acts is permutations and one could work in the
	#permutation image (even if G is not permgroups)
        TryNextMethod();
    fi;

    # standard action on points, make a stabchain beginning with <d>
    if act = OnPoints and IsInt( d )  then
        base := [ d ];
    elif     ( act = OnPairs or act = OnTuples )
         and IsPositionsList( d )  then
        base := d;
    fi;
    if IsBound( base )  then
        K := StabChainOp( G, base );
        S := K;
        while IsBound( S.orbit )  and  S.orbit[ 1 ] in base  do
            S := S.stabilizer;
        od;
        if IsIdenticalObj( S, K )  then  K := G;
                                else  K := GroupStabChain( G, S, true );  fi;

    # standard action on (lists of) permutations, take the centralizer
    elif act = OnPoints  and IsPerm( d )  then
        K := Centralizer( G, d );
    elif     ( act = OnPairs or act = OnTuples )
         and IsList( d ) and IsPermCollection( d )  then
        K := RepOpElmTuplesPermGroup( false, G, d, d,
                     TrivialSubgroup( G ), TrivialSubgroup( G ) );

    # standard action on a permutation group, take the normalizer
    elif act = OnPoints  and IsPermGroup(d)  then
        K := Normalizer( G, d );

    # action on sets of points, use a backtrack
    elif act = OnSets  and ForAll( d, IsInt )  then
      if Length(d)=1 then
	K:=Stabilizer(G,d[1]);
      else
        K := RepOpSetsPermGroup( G, d );
      fi;

    # action on sets of pairwise disjoint sets
    elif     act = OnSetsDisjointSets
         and IsList(d) and ForAll(d,i->ForAll(i,IsInt)) then
        K := PartitionStabilizerPermGroup( G, d );

    #T OnSetTuples?

    # action on tuples of sets
    elif act = OnTuplesSets
      and IsList(d) and ForAll(d,i->ForAll(i,IsInt)) then
	K:=G;
	for S in d do
	  K:=Stabilizer(K,S,OnSets);
	od;

    # action on tuples of tuples
    elif act = OnTuplesTuples
      and IsList(d) and ForAll(d,i->ForAll(i,IsInt)) then
	K:=G;
	for S in d do
	  K:=Stabilizer(K,S,OnTuples);
	od;

    # other action
    else
        TryNextMethod();
    fi;

    # enforce size computation (unless the stabilizer did not cause a
    # StabChain to be computed.
    if HasStabChainMutable(K) then
      Size(K);
    fi;

    # return the stabilizer
    return K;
end;

InstallOtherMethod( StabilizerOp, "permutation group with generators list",
       true,
        [ IsPermGroup, IsObject,
          IsList,
          IsList,
          IsFunction ],
  # the objects might be a group element: rank up	
  RankFilter(IsMultiplicativeElementWithInverse)
  # and we are better even if the group is solvable
  +RankFilter(IsSolvableGroup),
  PermGroupStabilizerOp);

InstallOtherMethod( StabilizerOp, "permutation group with domain",true,
        [ IsPermGroup, IsObject,
	  IsObject,
          IsList,
          IsList,
          IsFunction ],
  # the objects might be a group element: rank up	
  RankFilter(IsMultiplicativeElementWithInverse)
  # and we are better even if the group is solvable
  +RankFilter(IsSolvableGroup),
  PermGroupStabilizerOp);

#############################################################################
##
#F  StabilizerOfBlockNC( <G>, <B> )  . . . . block stabilizer for perm groups
##
InstallGlobalFunction( StabilizerOfBlockNC, function(G,B)
local S,j;
  S:=StabChainOp(G,rec(base:=[B[1]],reduced:=false));
  S:=StructuralCopy(S);

  # Make <S> the stabilizer of the block <B>.
  InsertTrivialStabilizer(S.stabilizer,B[1]);
  j := 1;
  while                                j < Length( B )
	and Length( S.stabilizer.orbit ) < Length( B )  do
      j := j + 1;
      if IsBound( S.translabels[ B[ j ] ] )  then
	  AddGeneratorsExtendSchreierTree( S.stabilizer,
		  [ InverseRepresentative( S, B[ j ] ) ] );
      fi;
  od;
  return GroupStabChain(G,S.stabilizer,true);
end );


#############################################################################
##
#F  OnSetsSets( <set>, <g> )
##
InstallGlobalFunction( OnSetsSets, function( e, g )
    return Set( List( e, i -> OnSets( i, g ) ) );
end );


#############################################################################
##
#F  OnSetsDisjointSets( <set>, <g> )
##
##  `OnSetsDisjointSets' does the same as `OnSetsSets',
##  but since this special case is treated in a special way for example by
##  `StabilizerOp',
##  the function must be an object different from `OnSetsSets'.
##
InstallGlobalFunction( OnSetsDisjointSets, function( e, g )
    return Set( List( e, i -> OnSets( i, g ) ) );
end );


#############################################################################
##
#F  OnSetsTuples( <set>, <g> )
##
InstallGlobalFunction( OnSetsTuples, function(e,g)
  return Set(List(e,i->OnTuples(i,g)));
end );

#############################################################################
##
#F  OnTuplesSets( <set>, <g> )
##
InstallGlobalFunction( OnTuplesSets, function(e,g)
  return List(e,i->OnSets(i,g));
end );

#############################################################################
##
#F  OnTuplesTuples( <set>, <g> )
##
InstallGlobalFunction( OnTuplesTuples, function(e,g)
  return List(e,i->OnTuples(i,g));
end );


#############################################################################
##
#E