This file is indexed.

/usr/share/gap/lib/orders.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
#############################################################################
##
#W  orders.gd           GAP library                           Isabel Araújo
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  These file contains declarations for orderings.
##


##  <#GAPDoc Label="[1]{orders}">
##  In &GAP; an ordering is a relation defined on a family, which is
##  reflexive, anti-symmetric and transitive.
##  <#/GAPDoc>


#############################################################################
##
#C  IsOrdering( <ord> )
##
##  <#GAPDoc Label="IsOrdering">
##  <ManSection>
##  <Filt Name="IsOrdering" Arg='obj' Type='Category'/>
##
##  <Description>
##  returns <K>true</K> if and only if the object <A>ord</A> is an ordering.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsOrdering" ,IsObject);

#############################################################################
##
#A  OrderingsFamily( <fam> )  . . . . . . . . . . make an orderings  family
##
##  <#GAPDoc Label="OrderingsFamily">
##  <ManSection>
##  <Attr Name="OrderingsFamily" Arg='fam'/>
##
##  <Description>
##  for a family <A>fam</A>, returns the family of all
##  orderings on elements of <A>fam</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "OrderingsFamily", IsFamily );


#############################################################################
##
##  General Properties for orderings
##

#############################################################################
##
#P  IsWellFoundedOrdering( <ord>)
##
##  <#GAPDoc Label="IsWellFoundedOrdering">
##  <ManSection>
##  <Prop Name="IsWellFoundedOrdering" Arg='ord'/>
##
##  <Description>
##  for an ordering <A>ord</A>,
##  returns <K>true</K> if and only if the ordering is well founded.
##  An ordering <A>ord</A> is well founded if it admits no infinite descending
##  chains.
##  Normally this property is set at the time of creation of the ordering
##  and there is no general method to check whether a certain ordering
##  is well founded.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsWellFoundedOrdering" ,IsOrdering);

#############################################################################
##
#P  IsTotalOrdering( <ord> )
##
##  <#GAPDoc Label="IsTotalOrdering">
##  <ManSection>
##  <Prop Name="IsTotalOrdering" Arg='ord'/>
##
##  <Description>
##  for an ordering <A>ord</A>,
##  returns true if and only if the ordering is total.
##  An ordering <A>ord</A> is total if any two elements of the family
##  are comparable under <A>ord</A>.
##  Normally this property is set at the time of creation of the ordering
##  and there is no general method to check whether a certain ordering
##  is total.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsTotalOrdering" ,IsOrdering);


#############################################################################
##
##  General attributes and operations
##

#############################################################################
##
#A  FamilyForOrdering( <ord> )
##
##  <#GAPDoc Label="FamilyForOrdering">
##  <ManSection>
##  <Attr Name="FamilyForOrdering" Arg='ord'/>
##
##  <Description>
##  for an ordering <A>ord</A>,
##  returns the family of elements that the ordering <A>ord</A> compares.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FamilyForOrdering" ,IsOrdering);

#############################################################################
##
#A  LessThanFunction( <ord> )
##
##  <#GAPDoc Label="LessThanFunction">
##  <ManSection>
##  <Attr Name="LessThanFunction" Arg='ord'/>
##
##  <Description>
##  for an ordering <A>ord</A>,
##  returns a function <M>f</M> which takes two elements <M>el1</M>,
##  <M>el2</M> in <C>FamilyForOrdering</C>(<A>ord</A>) and returns
##  <K>true</K> if <M>el1</M> is strictly less than <M>el2</M>
##  (with respect to <A>ord</A>), and returns <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LessThanFunction" ,IsOrdering);

#############################################################################
##
#A  LessThanOrEqualFunction( <ord> )
##
##  <#GAPDoc Label="LessThanOrEqualFunction">
##  <ManSection>
##  <Attr Name="LessThanOrEqualFunction" Arg='ord'/>
##
##  <Description>
##  for an ordering <A>ord</A>,
##  returns a function that takes two elements <M>el1</M>, <M>el2</M> in
##  <C>FamilyForOrdering</C>(<A>ord</A>) and returns <K>true</K>
##  if <M>el1</M> is less than <E>or equal to</E> <M>el2</M>
##  (with respect to <A>ord</A>), and returns <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LessThanOrEqualFunction" ,IsOrdering);

#############################################################################
##
#O  IsLessThanUnder( <ord>, <el1>, <el2> )
##
##  <#GAPDoc Label="IsLessThanUnder">
##  <ManSection>
##  <Oper Name="IsLessThanUnder" Arg='ord, el1, el2'/>
##
##  <Description>
##  for an ordering <A>ord</A> on the elements of the family of <A>el1</A>
##  and <A>el2</A>, returns <K>true</K> if <A>el1</A> is (strictly) less than
##  <A>el2</A> with respect to <A>ord</A>, and <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsLessThanUnder" ,[IsOrdering,IsObject,IsObject]);

#############################################################################
##
#O  IsLessThanOrEqualUnder( <ord>, <el1>, <el2> )
##
##  <#GAPDoc Label="IsLessThanOrEqualUnder">
##  <ManSection>
##  <Oper Name="IsLessThanOrEqualUnder" Arg='ord, el1, el2'/>
##
##  <Description>
##  for an ordering <A>ord</A> on the elements of the family of <A>el1</A>
##  and <A>el2</A>, returns <K>true</K> if <A>el1</A> is less than or equal
##  to <A>el2</A> with respect to <A>ord</A>, and <K>false</K> otherwise.
##  <Example><![CDATA[
##  gap> IsLessThanUnder(ord,a,a*b);
##  true
##  gap> IsLessThanOrEqualUnder(ord,a*b,a*b);
##  true
##  gap> IsIncomparableUnder(ord,a,b);
##  true
##  gap> FamilyForOrdering(ord) = FamilyObj(a);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsLessThanOrEqualUnder" ,[IsOrdering,IsObject,IsObject]);

#############################################################################
##
#O  IsIncomparableUnder( <ord>, <el1>, <el2> )
##
##  <#GAPDoc Label="IsIncomparableUnder">
##  <ManSection>
##  <Oper Name="IsIncomparableUnder" Arg='ord, el1, el2'/>
##
##  <Description>
##  for an ordering <A>ord</A> on the elements of the family of <A>el1</A>
##  and <A>el2</A>, returns <K>true</K> if <A>el1</A> <M>\neq</M> <A>el2</A>
##  and <C>IsLessThanUnder</C>(<A>ord</A>,<A>el1</A>,<A>el2</A>),
##  <C>IsLessThanUnder</C>(<A>ord</A>,<A>el2</A>,<A>el1</A>) are both
##  <K>false</K>; and returns <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsIncomparableUnder" ,[IsOrdering,IsObject,IsObject]);

#############################################################################
##
##  Building new orderings
##

#############################################################################
##
#O  OrderingByLessThanFunctionNC( <fam>, <lt>[, <l>] )
##
##  <#GAPDoc Label="OrderingByLessThanFunctionNC">
##  <ManSection>
##  <Oper Name="OrderingByLessThanFunctionNC" Arg='fam, lt[, l]'/>
##
##  <Description>
##  Called with two arguments, <Ref Func="OrderingByLessThanFunctionNC"/>
##  returns the ordering on the elements of the elements of the family
##  <A>fam</A>, according to the <Ref Func="LessThanFunction"/> value given
##  by <A>lt</A>,
##  where <A>lt</A> is a function that takes two
##  arguments in <A>fam</A> and returns <K>true</K> or <K>false</K>.
##  <P/>
##  Called with three arguments, for a family <A>fam</A>,
##  a function <A>lt</A> that takes two arguments in <A>fam</A> and returns
##  <K>true</K> or <K>false</K>, and a list <A>l</A>
##  of properties of orderings, <Ref Func="OrderingByLessThanFunctionNC"/>
##  returns the ordering on the elements of <A>fam</A> with
##  <Ref Func="LessThanFunction"/> value given by <A>lt</A>
##  and with the properties from <A>l</A> set to <K>true</K>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "OrderingByLessThanFunctionNC" ,[IsFamily,IsFunction]);

#############################################################################
##
#O  OrderingByLessThanOrEqualFunctionNC( <fam>, <lteq>[, <l>] )
##
##  <#GAPDoc Label="OrderingByLessThanOrEqualFunctionNC">
##  <ManSection>
##  <Oper Name="OrderingByLessThanOrEqualFunctionNC" Arg='fam, lteq[, l]'/>
##
##  <Description>
##  Called with two arguments,
##  <Ref Func="OrderingByLessThanOrEqualFunctionNC"/> returns the ordering on
##  the elements of the elements of the family <A>fam</A> according to
##  the <Ref Func="LessThanOrEqualFunction"/> value given by <A>lteq</A>,
##  where <A>lteq</A> is a function that takes two arguments in <A>fam</A>
##  and returns <K>true</K> or <K>false</K>.
##  <P/>
##  Called with three arguments, for a family <A>fam</A>,
##  a function <A>lteq</A> that takes two arguments in <A>fam</A> and returns
##  <K>true</K> or <K>false</K>, and a list <A>l</A>
##  of properties of orderings,
##  <Ref Func="OrderingByLessThanOrEqualFunctionNC"/>
##  returns the ordering on the elements of <A>fam</A> with
##  <Ref Func="LessThanOrEqualFunction"/> value given by <A>lteq</A>
##  and with the properties from <A>l</A> set to <K>true</K>.
##  <P/>
##  Notice that these functions do not check whether <A>fam</A> and <A>lt</A>
##  or <A>lteq</A> are compatible,
##  and whether the properties listed in <A>l</A> are indeed satisfied.
##  <Example><![CDATA[
##  gap> f := FreeSemigroup("a","b");;
##  gap> a := GeneratorsOfSemigroup(f)[1];;
##  gap> b := GeneratorsOfSemigroup(f)[2];;
##  gap> lt := function(x,y) return Length(x)<Length(y); end;
##  function( x, y ) ... end
##  gap> fam := FamilyObj(a);;
##  gap> ord := OrderingByLessThanFunctionNC(fam,lt);
##  Ordering
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "OrderingByLessThanOrEqualFunctionNC" ,
    [IsFamily,IsFunction]);


############################################################################
##
##  Orderings on families of associative words
##
##  <#GAPDoc Label="[2]{orders}">
##  We now consider orderings on families of associative words.
##  <P/>
##  Examples of families of associative words are the families of elements
##  of a free semigroup or a free monoid;
##  these are the two cases that we consider mostly.
##  Associated with those families is
##  an alphabet, which is the semigroup (resp. monoid) generating set
##  of the correspondent free semigroup (resp. free monoid).
##  For definitions of the orderings considered,
##  see Sims <Cite Key="Sims94"/>.
##  <#/GAPDoc>
##
##  The ordering on the letters of the alphabet is important when
##  defining an order in such a family.
##  An alphabet has a default ordering: the generators of a free semigroup
##  or free monoid are indexed on <M>[ 1, 2, \ldots, n ]</M>,
##  where <M>n</M> is the size of the alphabet.
##  Another ordering on the alphabet will always be given in terms
##  of this one, either in terms of a list of length <M>n</M>, where position
##  <M>i</M> (<M>1 \leq i \leq n</M>) indicates what is the <M>i</M>-th
##  generator in the ordering, or else as a list of the generators,
##  starting from the smallest one.
##

#############################################################################
##
#P  IsOrderingOnFamilyOfAssocWords( <ord>)
##
##  <#GAPDoc Label="IsOrderingOnFamilyOfAssocWords">
##  <ManSection>
##  <Prop Name="IsOrderingOnFamilyOfAssocWords" Arg='ord'/>
##
##  <Description>
##  for an ordering <A>ord</A>,
##  returns true if <A>ord</A> is an ordering over a family of associative
##  words.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsOrderingOnFamilyOfAssocWords",IsOrdering);

#############################################################################
##
#A  LetterRepWordsLessFunc( <ord> )
##
##  <ManSection>
##  <Attr Name="LetterRepWordsLessFunc" Arg='ord'/>
##
##  <Description>
##  If <A>ord</A> is an ordering for associative words,
##  this attribute (if known) will hold a function which implements a
##  <Q>less than</Q> function for words given by a list of letters
##  (see&nbsp;<Ref Func="LetterRepAssocWord"/>).
##  </Description>
##  </ManSection>
##
DeclareAttribute( "LetterRepWordsLessFunc" ,IsOrderingOnFamilyOfAssocWords);

#############################################################################
##
#P  IsTranslationInvariantOrdering( <ord> )
##
##  <#GAPDoc Label="IsTranslationInvariantOrdering">
##  <ManSection>
##  <Prop Name="IsTranslationInvariantOrdering" Arg='ord'/>
##
##  <Description>
##  for an ordering <A>ord</A> on a family of associative words,
##  returns <K>true</K> if and only if the ordering is translation invariant.
##  <P/>
##  This is a property of orderings on families of associative words.
##  An ordering <A>ord</A> over a family <M>F</M>, with alphabet <M>X</M>
##  is translation invariant if
##  <C>IsLessThanUnder(</C> <A>ord</A>, <M>u</M>, <M>v</M> <C>)</C> implies
##  that for any <M>a, b \in X^*</M>,
##  <C>IsLessThanUnder(</C> <A>ord</A>, <M>a*u*b</M>, <M>a*v*b</M> <C>)</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsTranslationInvariantOrdering" ,IsOrdering and
                                    IsOrderingOnFamilyOfAssocWords);

#############################################################################
##
#P  IsReductionOrdering( <ord> )
##
##  <#GAPDoc Label="IsReductionOrdering">
##  <ManSection>
##  <Prop Name="IsReductionOrdering" Arg='ord'/>
##
##  <Description>
##  for an ordering <A>ord</A> on a family of associative words,
##  returns <K>true</K> if and only if the ordering is a reduction ordering.
##  An ordering <A>ord</A> is a reduction ordering
##  if it is well founded and translation invariant.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsReductionOrdering",
    IsTranslationInvariantOrdering and IsWellFoundedOrdering );


##  The ordering on the letters of the alphabet is important when
##  defining an order in a family of associative words.
##  An alphabet has a default ordering: the generators of a free semigroup
##  or free monoid are indexed on <M>[1,2,\ldots,n]</M>, where <M>n</M> is the size of
##  the alphabet. Another ordering on the alphabet will always be given in terms
##  of this one, either in terms of a list <A>gensord</A> of length <M>n</M>,
##  where position <M>i</M> (<M>1 \leq i \leq n</M>) indicates what is the <M>i</M>-th
##  generator in the ordering, or else as a list <A>alphabet</A> of the generators,
##  starting from the smallest one.


#############################################################################
##
#A  OrderingOnGenerators( <ord>)
##
##  <#GAPDoc Label="OrderingOnGenerators">
##  <ManSection>
##  <Attr Name="OrderingOnGenerators" Arg='ord'/>
##
##  <Description>
##  for an ordering <A>ord</A> on a family of associative words,
##  returns a list in which the generators are considered.
##  This could be indeed the ordering of the generators in the ordering,
##  but, for example, if a weight is associated to each generator
##  then this is not true anymore.
##  See the example for <Ref Func="WeightLexOrdering"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("OrderingOnGenerators",IsOrdering and
                    IsOrderingOnFamilyOfAssocWords);

#############################################################################
##
#O  LexicographicOrdering( <D>[, <gens>] )
##
##  <#GAPDoc Label="LexicographicOrdering">
##  <ManSection>
##  <Oper Name="LexicographicOrdering" Arg='D[, gens]'/>
##
##  <Description>
##  Let <A>D</A> be a free semigroup, a free monoid, or the elements
##  family of such a domain.
##  Called with only argument <A>D</A>,
##  <Ref Func="LexicographicOrdering"/> returns the lexicographic
##  ordering on the elements of <A>D</A>.
##  <P/>
##  The optional argument <A>gens</A> can be either the list of free
##  generators of <A>D</A>, in the desired order,
##  or a list of the positions of these generators,
##  in the desired order,
##  and <Ref Func="LexicographicOrdering"/> returns the lexicographic
##  ordering on the elements of <A>D</A> with the ordering on the
##  generators as given.
##  <Example><![CDATA[
##  gap> f := FreeSemigroup(3);
##  <free semigroup on the generators [ s1, s2, s3 ]>
##  gap> lex := LexicographicOrdering(f,[2,3,1]);
##  Ordering
##  gap> IsLessThanUnder(lex,f.2*f.3,f.3);
##  true
##  gap> IsLessThanUnder(lex,f.3,f.2);
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("LexicographicOrdering",
    [IsFamily and IsAssocWordFamily, IsList and IsAssocWordCollection]);


#############################################################################
##
#O  ShortLexOrdering( <D>[, <gens>] )
##
##  <#GAPDoc Label="ShortLexOrdering">
##  <ManSection>
##  <Oper Name="ShortLexOrdering" Arg='D[, gens]'/>
##
##  <Description>
##  Let <A>D</A> be a free semigroup, a free monoid, or the elements
##  family of such a domain.
##  Called with only argument <A>D</A>,
##  <Ref Func="ShortLexOrdering"/> returns the shortlex
##  ordering on the elements of <A>D</A>.
##  <P/>
##  The optional argument <A>gens</A> can be either the list of free
##  generators of <A>D</A>, in the desired order,
##  or a list of the positions of these generators,
##  in the desired order,
##  and <Ref Func="ShortLexOrdering"/> returns the shortlex
##  ordering on the elements of <A>D</A> with the ordering on the
##  generators as given.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("ShortLexOrdering",[IsFamily and IsAssocWordFamily,
                                     IsList and IsAssocWordCollection]);

#############################################################################
##
#P  IsShortLexOrdering( <ord>)
##
##  <#GAPDoc Label="IsShortLexOrdering">
##  <ManSection>
##  <Prop Name="IsShortLexOrdering" Arg='ord'/>
##
##  <Description>
##  for an ordering <A>ord</A> of a family of associative words,
##  returns <K>true</K> if and only if <A>ord</A> is a shortlex ordering.
##  <Example><![CDATA[
##  gap> f := FreeSemigroup(3);
##  <free semigroup on the generators [ s1, s2, s3 ]>
##  gap> sl := ShortLexOrdering(f,[2,3,1]);
##  Ordering
##  gap> IsLessThanUnder(sl,f.1,f.2);
##  false
##  gap> IsLessThanUnder(sl,f.3,f.2);
##  false
##  gap> IsLessThanUnder(sl,f.3,f.1);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsShortLexOrdering",IsOrdering and
                          IsOrderingOnFamilyOfAssocWords);

#############################################################################
##
#F  IsShortLexLessThanOrEqual( <u>, <v> )
##
##  <#GAPDoc Label="IsShortLexLessThanOrEqual">
##  <ManSection>
##  <Func Name="IsShortLexLessThanOrEqual" Arg='u, v'/>
##
##  <Description>
##  returns <C>IsLessThanOrEqualUnder(<A>ord</A>, <A>u</A>, <A>v</A>)</C>
##  where <A>ord</A> is the short less ordering for the family of <A>u</A>
##  and <A>v</A>.
##  (This is here for compatibility with &GAP;&nbsp;4.2.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "IsShortLexLessThanOrEqual" );

#############################################################################
##
#O  WeightLexOrdering( <D>, <gens>, <wt> )
##
##  <#GAPDoc Label="WeightLexOrdering">
##  <ManSection>
##  <Oper Name="WeightLexOrdering" Arg='D, gens, wt'/>
##
##  <Description>
##  Let <A>D</A> be a free semigroup, a free monoid, or the elements
##  family of such a domain. <A>gens</A> can be either the list of free
##  generators of <A>D</A>, in the desired order,
##  or a list of the positions of these generators, in the desired order.
##  Let <A>wt</A> be a list of weights.
##  <Ref Func="WeightLexOrdering"/> returns the weightlex
##  ordering on the elements of <A>D</A> with the ordering on the
##  generators and weights of the generators as given.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("WeightLexOrdering",
  [IsFamily and IsAssocWordFamily,IsList and IsAssocWordCollection,IsList]);

#############################################################################
##
#A  WeightOfGenerators( <ord>)
##
##  <#GAPDoc Label="WeightOfGenerators">
##  <ManSection>
##  <Attr Name="WeightOfGenerators" Arg='ord'/>
##
##  <Description>
##  for a weightlex ordering <A>ord</A>,
##  returns a list with length the size of the alphabet of the family.
##  This list gives the weight of each of the letters of the alphabet
##  which are used for weightlex orderings with respect to the
##  ordering given by <Ref Func="OrderingOnGenerators"/>.
##  <Example><![CDATA[
##  gap> f := FreeSemigroup(3);
##  <free semigroup on the generators [ s1, s2, s3 ]>
##  gap> wtlex := WeightLexOrdering(f,[f.2,f.3,f.1],[3,2,1]);
##  Ordering
##  gap> IsLessThanUnder(wtlex,f.1,f.2);
##  true
##  gap> IsLessThanUnder(wtlex,f.3,f.2);
##  true
##  gap> IsLessThanUnder(wtlex,f.3,f.1);
##  false
##  gap> OrderingOnGenerators(wtlex);
##  [ s2, s3, s1 ]
##  gap> WeightOfGenerators(wtlex);
##  [ 3, 2, 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("WeightOfGenerators",IsOrdering and
                    IsOrderingOnFamilyOfAssocWords);

#############################################################################
##
#P  IsWeightLexOrdering( <ord>)
##
##  <#GAPDoc Label="IsWeightLexOrdering">
##  <ManSection>
##  <Prop Name="IsWeightLexOrdering" Arg='ord'/>
##
##  <Description>
##  for an ordering <A>ord</A> on a family of associative words,
##  returns <K>true</K> if and only if <A>ord</A> is a weightlex ordering.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsWeightLexOrdering",IsOrdering and
                      IsOrderingOnFamilyOfAssocWords);

#############################################################################
##
#O  BasicWreathProductOrdering( <D>[, <gens>] )
##
##  <#GAPDoc Label="BasicWreathProductOrdering">
##  <ManSection>
##  <Oper Name="BasicWreathProductOrdering" Arg='D[, gens]'/>
##
##  <Description>
##  Let <A>D</A> be a free semigroup, a free monoid, or the elements
##  family of such a domain.
##  Called with only argument <A>D</A>,
##  <Ref Func="BasicWreathProductOrdering"/> returns the basic wreath product
##  ordering on the elements of <A>D</A>.
##  <P/>
##  The optional argument <A>gens</A> can be either the list of free
##  generators of <A>D</A>, in the desired order,
##  or a list of the positions of these generators,
##  in the desired order,
##  and <Ref Func="BasicWreathProductOrdering"/> returns the lexicographic
##  ordering on the elements of <A>D</A> with the ordering on the
##  generators as given.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("BasicWreathProductOrdering",[IsAssocWordFamily,IsList]);

#############################################################################
##
#P  IsBasicWreathProductOrdering( <ord>)
##
##  <#GAPDoc Label="IsBasicWreathProductOrdering">
##  <ManSection>
##  <Prop Name="IsBasicWreathProductOrdering" Arg='ord'/>
##
##  <Description>
##  <Example><![CDATA[
##  gap> f := FreeSemigroup(3);
##  <free semigroup on the generators [ s1, s2, s3 ]>
##  gap> basic := BasicWreathProductOrdering(f,[2,3,1]);
##  Ordering
##  gap> IsLessThanUnder(basic,f.3,f.1);
##  true
##  gap> IsLessThanUnder(basic,f.3*f.2,f.1);
##  true
##  gap> IsLessThanUnder(basic,f.3*f.2*f.1,f.1*f.3);
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsBasicWreathProductOrdering",IsOrdering);

#############################################################################
##
#F  IsBasicWreathLessThanOrEqual( <u>, <v> )
##
##  <#GAPDoc Label="IsBasicWreathLessThanOrEqual">
##  <ManSection>
##  <Func Name="IsBasicWreathLessThanOrEqual" Arg='u, v'/>
##
##  <Description>
##  returns <C>IsLessThanOrEqualUnder(<A>ord</A>, <A>u</A>, <A>v</A>)</C>
##  where <A>ord</A> is the basic wreath product ordering for the family of
##  <A>u</A> and <A>v</A>.
##  (This is here for compatibility with &GAP;&nbsp;4.2.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "IsBasicWreathLessThanOrEqual" );

#############################################################################
##
#O  WreathProductOrdering( <D>[, <gens>], <levels>)
##
##  <#GAPDoc Label="WreathProductOrdering">
##  <ManSection>
##  <Oper Name="WreathProductOrdering" Arg='D[, gens], levels'/>
##
##  <Description>
##  Let <A>D</A> be a free semigroup, a free monoid, or the elements
##  family of such a domain,
##  let <A>gens</A> be either the list of free generators of <A>D</A>,
##  in the desired order,
##  or a list of the positions of these generators, in the desired order,
##  and let <A>levels</A> be a list of levels for the generators.
##  If <A>gens</A> is omitted then the default ordering is taken.
##  <Ref Func="WreathProductOrdering"/> returns the wreath product
##  ordering on the elements of <A>D</A> with the ordering on the
##  generators as given.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("WreathProductOrdering",[IsFamily,IsList,IsList]);

#############################################################################
##
#P  IsWreathProductOrdering( <ord>)
##
##  <#GAPDoc Label="IsWreathProductOrdering">
##  <ManSection>
##  <Prop Name="IsWreathProductOrdering" Arg='ord'/>
##
##  <Description>
##  specifies whether an ordering is a wreath product ordering 
##  (see <Ref Oper="WreathProductOrdering"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsWreathProductOrdering",IsOrdering);

#############################################################################
##
#A  LevelsOfGenerators( <ord>)
##
##  <#GAPDoc Label="LevelsOfGenerators">
##  <ManSection>
##  <Attr Name="LevelsOfGenerators" Arg='ord'/>
##
##  <Description>
##  for a wreath product ordering <A>ord</A>, returns the levels
##  of the generators as given at creation
##  (with respect to <Ref Func="OrderingOnGenerators"/>).
##  <Example><![CDATA[
##  gap> f := FreeSemigroup(3);
##  <free semigroup on the generators [ s1, s2, s3 ]>
##  gap> wrp := WreathProductOrdering(f,[1,2,3],[1,1,2,]);
##  Ordering
##  gap> IsLessThanUnder(wrp,f.3,f.1);
##  false
##  gap> IsLessThanUnder(wrp,f.3,f.2);
##  false
##  gap> IsLessThanUnder(wrp,f.1,f.2);
##  true
##  gap> LevelsOfGenerators(wrp);
##  [ 1, 1, 2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("LevelsOfGenerators",IsOrdering and IsWreathProductOrdering);


#############################################################################
##
#E