/usr/share/gap/lib/orders.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 | #############################################################################
##
#W orders.gi GAP library Isabel Araújo
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
##
#############################################################################
##
#M OrderingsFamily(<F>)
##
InstallMethod( OrderingsFamily,
"for a family", true, [IsFamily], 0,
function( fam)
local ord_req, ord_imp;
ord_req := IsOrdering;
ord_imp := IsObject;
return NewFamily( "OrderingsFamily(...)",ord_req,ord_imp);
end);
######################################################################
##
#M ViewObj( <ord> )
##
InstallMethod( ViewObj,
"for an ordering", true,
[IsOrdering], 0,
function(ord)
Print("Ordering");
end);
######################################################################
##
## Creating orderings
##
######################################################################
##
#F CreateOrderingByLtFunction( <fam>, <fun>, <list> )
##
## creates an orderings for the elements of the family fam
## with LessThan given by <fun>
## and with the properties list in <list>
##
BindGlobal("CreateOrderingByLtFunction",
function( fam, fun, list)
local ord,prop;
if NumberArgumentsFunction(fun)<>2 then
return Error("Function for orderings has to have two arguments");
fi;
ord := Objectify(
NewType( OrderingsFamily( fam ),
IsAttributeStoringRep),rec());
SetFamilyForOrdering(ord, fam);
SetLessThanFunction(ord, fun);
# now set the properties in list to true
for prop in list do
Setter(prop)(ord,true);
od;
return ord;
end);
######################################################################
##
#F CreateOrderingByLteqFunction( <fam>, <fun>, <list> )
##
## creates an orderings for the elements of the family fam
## with LessThanOrequal given by <fun>
## and with the properties list in <list>
##
BindGlobal("CreateOrderingByLteqFunction",
function( fam, fun, list)
local ord,prop;
if NumberArgumentsFunction(fun)<>2 then
return Error("Function for orderings has to have two arguments");
fi;
ord := Objectify(
NewType( OrderingsFamily( fam ),
IsAttributeStoringRep),rec());
SetFamilyForOrdering(ord, fam);
SetLessThanOrEqualFunction(ord, fun);
# now set the properties in list to true
for prop in list do
Setter(prop)(ord,true);
od;
return ord;
end);
######################################################################
##
#M OrderingByLessThanFunctionNC( <fam>, <fun> )
##
InstallMethod( OrderingByLessThanFunctionNC,
"for a family and a function", true,
[IsFamily, IsFunction], 0,
function(fam, fun)
return CreateOrderingByLtFunction(fam,fun,[]);
end);
InstallOtherMethod( OrderingByLessThanFunctionNC,
"for a family, a function, and a list of properties", true,
[IsFamily,IsFunction,IsList], 0,
function(fam,fun,list)
return CreateOrderingByLtFunction( fam,fun,list );
end);
######################################################################
##
#M OrderingByLessThanOrEqualFunctionNC( <fam>, <fun> )
##
InstallMethod( OrderingByLessThanOrEqualFunctionNC,
"for a family and a function", true,
[IsFamily, IsFunction], 0,
function(fam, fun)
return CreateOrderingByLteqFunction(fam,fun,[]);
end);
InstallOtherMethod( OrderingByLessThanOrEqualFunctionNC,
"for a family, a function, and a list of properties", true,
[IsFamily,IsFunction,IsList], 0,
function(fam,fun,list)
return CreateOrderingByLteqFunction( fam,fun,list );
end);
#############################################################################
##
#A LessThanOrEqualFunction( <ord> )
##
InstallMethod( LessThanOrEqualFunction,
"for an ordering which has a a LessThanFunction", true,
[IsOrdering and HasLessThanFunction], 0,
function( ord)
local fun;
fun := function(x,y)
return x=y or LessThanFunction(ord)(x,y);
end;
return fun;
end);
#############################################################################
##
#A LessThanFunction( <ord> )
##
InstallMethod( LessThanFunction,
"for an ordering which has a a LessThanOrEqualFunction", true,
[IsOrdering and HasLessThanOrEqualFunction], 0,
function( ord)
local fun;
fun := function(x,y)
return x<>y and LessThanOrEqualFunction(ord)(x,y);
end;
return fun;
end);
#############################################################################
##
#A IsLessThanUnder( <ord>, <obj1>, <obj2> )
##
InstallMethod( IsLessThanUnder,
"for an ordering ", true,
[IsOrdering, IsObject,IsObject], 0,
function( ord, obj1, obj2 )
local fun;
if FamilyObj(obj1)<>FamilyObj(obj2) then
Error("Can only compare objects belonging to the same family");
fi;
if FamilyObj(ord)<>OrderingsFamily(FamilyObj(obj1)) then
Error(ord," and ",obj1,obj2," do not have compatible families");
fi;
fun := LessThanFunction(ord);
return fun(obj1,obj2);
end);
#############################################################################
##
#A IsLessThanOrEqualUnder( <ord>,<obj1>, <obj2> )
##
InstallMethod( IsLessThanOrEqualUnder,
"for an ordering and two objects ", true,
[IsOrdering,IsObject,IsObject], 0,
function( ord, obj1, obj2 )
local fun;
fun := LessThanOrEqualFunction(ord);
return fun(obj1,obj2);
end);
#############################################################################
##
#A IsIncomparableUnder( <ord>,<obj1>, <obj2> )
##
## for an ordering <ord> on the elements of the family of <el1> and <el2>.
## Returns true if $el1\neq el2$i and `IsLessThanUnder'(<ord>,<el1>,<el2>),
## `IsLessThanUnder'(<ord>,<el2>,<el1>) are both false.
## Returns false otherise.
## Notice that if obj1=obj2 then they are comparable
##
InstallMethod( IsIncomparableUnder,
"for an ordering", true,
[IsOrdering,IsObject,IsObject], 0,
function(ord,obj1,obj2)
local lteqfun;
if FamilyObj(obj1)<>FamilyObj(obj2) then
Error("`obj1' and `obj2' must belong to same family");
fi;
if not (FamilyObj(ord)=OrderingsFamily(FamilyObj(obj1))) then
Error("`ord' is not an ordering in `OrderingsFamily(obj1)'");
fi;
# if we know that the ordering is total
# then any pair of elements is comprable
if HasIsTotalOrdering(ord) and IsTotalOrdering(ord) then
return false;
fi;
lteqfun := LessThanOrEqualFunction( ord );
# now check that neither obj1 is less than or equal to obj2
# nor obj2 is less than or equal to obj1
# Note that if obj1=obj2 then they are comparable!
if (not lteqfun(obj1,obj2)) and (not lteqfun(obj2,obj1)) then
return true;
fi;
return false;
end);
######################################################################
##
## Orderings on families of associative words
##
#############################################################################
##
#M LexicographicOrdering( <fam> )
#M LexicographicOrdering( <fam>, <alphabet> )
#M LexicographicOrdering( <fam>, <gensord> )
#M LexicographicOrdering( <f> )
#M LexicographicOrdering( <f>, <alphabet> )
#M LexicographicOrdering( <f>, <gensord> )
#B LexicographicOrderingNC( <fam>, <alphabet> )
##
## LexicographicOrderingNC is the function that actually does the work
##
BindGlobal("LexicographicOrderingNC",
function(fam,alphabet)
local ltfun, # the less than function
ord; # the ordering
ltfun := function(w1,w2)
local i,x,y;
for i in [1..Minimum(Length(w1),Length(w2))] do
x := Subword(w1,i,i);
y := Subword(w2,i,i);
if Position(alphabet,x)< Position(alphabet,y) then
return true;
elif Position(alphabet,y)<Position(alphabet,x) then
return false;
fi;
od;
# at this time the shortest one is a prefix of the other one
# or they are equal
return Length(w1)<Length(w2);
end;
ord := OrderingByLessThanFunctionNC(fam,ltfun,[IsTotalOrdering,
IsOrderingOnFamilyOfAssocWords]);
SetIsTranslationInvariantOrdering(ord, false);
SetOrderingOnGenerators(ord,alphabet);
return ord;
end);
InstallOtherMethod( LexicographicOrdering,
"for a family of words of a free semigroup or free monoid",
true,
[IsFamily and IsAssocWordFamily], 0,
function(fam)
local gens; # the generating set
# first find out if fam is a family of free semigroup or monoid
# because we need to get a list of generators (in the default order)
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
return LexicographicOrderingNC(fam,gens);
end);
InstallMethod( LexicographicOrdering,
"for a family of words of a free semigroup or free monoid and a list of generators",
true,
[IsFamily and IsAssocWordFamily,IsList and IsAssocWordCollection], 0,
function(fam,alphabet)
local gens;
# first find out if fam is a family of free semigroup or monoid
# because we need to get a list of generators (in the default order)
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
# now check that the elements of alphabet lie in the right family
if ElementsFamily(FamilyObj(alphabet))<>fam then
Error("Elements of `alphabet' should be in family `fam'");
fi;
# alphabet has to be a list of size Length(gens)
# and all gens have to appear in the alphabet
if Length(alphabet)<>Length(gens) or Set(alphabet)<>gens then
Error("The list `alphabet' does not contain all generators");
fi;
return LexicographicOrderingNC(fam,alphabet);
end);
InstallOtherMethod( LexicographicOrdering,
"for a family of words of a free semigroup or free monoid and a list",
true,
[IsFamily and IsAssocWordFamily,IsList], 0,
function(fam,orderofgens)
local gens, # list of generators
alphabet, # list of gens in the appropriate ordering
n; # the size of the generating set
# first find out if fam is a family of free semigroup or monoid
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
# we have to do some checking
# orderofgens has to be a list of size Length(gens)
# and all indexed of gens have to appear in the list
n := Length(gens);
if Length(orderofgens)<>n or Set(orderofgens)<>[1..n] then
Error("`list' is not compatible with `fam'");
fi;
# we have to turn the list giving the order of gens
# in a list of gens
alphabet := List([1..Length(gens)],i->gens[orderofgens[i]]);
return LexicographicOrderingNC(fam,alphabet);
end);
InstallOtherMethod( LexicographicOrdering,
"for a free semigroup",
true,
[IsFreeSemigroup], 0,
function(f)
return LexicographicOrderingNC(ElementsFamily(FamilyObj(f)),
GeneratorsOfSemigroup(f));
end);
InstallOtherMethod( LexicographicOrdering,
"for a free monoid",
true,
[IsFreeMonoid], 0,
function(f)
return LexicographicOrderingNC(ElementsFamily(FamilyObj(f)),
GeneratorsOfMonoid(f));
end);
InstallOtherMethod( LexicographicOrdering,
"for a free semigroup and a list of generators",
IsElmsColls,
[IsFreeSemigroup,IsList and IsAssocWordCollection], 0,
function(f,alphabet)
return LexicographicOrdering(ElementsFamily(FamilyObj(f)),alphabet);
end);
InstallOtherMethod( LexicographicOrdering,
"for a free monoid and a list of generators",
IsElmsColls,
[IsFreeMonoid,IsList and IsAssocWordCollection], 0,
function(f,alphabet)
return LexicographicOrdering(ElementsFamily(FamilyObj(f)),alphabet);
end);
InstallOtherMethod( LexicographicOrdering,
"for a free semigroup and a list",
true,
[IsFreeSemigroup,IsList], 0,
function(f,gensord)
return LexicographicOrdering(ElementsFamily(FamilyObj(f)),gensord);
end);
InstallOtherMethod( LexicographicOrdering,
"for a free monoid and a list",
true,
[IsFreeMonoid,IsList], 0,
function(f,gensord)
return LexicographicOrdering(ElementsFamily(FamilyObj(f)),gensord);
end);
#############################################################################
##
#M ShortLexOrdering( <fam> )
#M ShortLexOrdering( <fam>, <alphabet> )
#M ShortLexOrdering( <fam>, <gensorder> )
#M ShortLexOrdering( <f> )
#M ShortLexOrdering( <f>, <alphabet> )
#M ShortLexOrdering( <f>, <gensorder> )
#B ShortLexOrderingNC ( <fam>, <alphabet> )
##
## We implement these for families of elements of free smg and monoids
## In the first form returns the ShortLexOrdering for the elements of fam
## with the generators of the freeSmg (or freeMonoid) in the default order.
## In the second form returns the ShortLexOrdering for the elements of fam
## with the generators of the freeSmg (or freeMonoid) in the following order:
## gens[i]<gens[j] if and only if orderofgens[i]<orderofgens[j]
##
BindGlobal("ShortLexOrderingNC",
function(fam,alphabet)
local ltfun, ord;
# the less than function
ltfun := function(w1,w2)
local x,y,i;
# if w1=w2 then w1 is certainly not less than w2
if w1=w2 then
return false;
fi;
if Length(w1)<Length(w2) then
return true;
elif Length(w1)=Length(w2) then
return IsLessThanUnder(LexicographicOrdering(fam,alphabet),w1,w2);
fi;
return false;
end;
ord := OrderingByLessThanFunctionNC(fam,ltfun,[IsTotalOrdering,
IsReductionOrdering, IsShortLexOrdering,
IsOrderingOnFamilyOfAssocWords]);
SetOrderingOnGenerators(ord,alphabet);
alphabet:=List(alphabet,i->GeneratorSyllable(i,1));
ord!.alphnums:=alphabet;
if IsSSortedList(alphabet) then
SetLetterRepWordsLessFunc(ord,function(a,b)
if Length(a)<Length(b) then
return true;
elif Length(a)>Length(b) then
return false;
else
return a<b;
fi;
end);
else
ord!.alphpos:=List([1..Maximum(alphabet)],i->Position(alphabet,i));
SetLetterRepWordsLessFunc(ord,function(a,b)
if Length(a)<Length(b) then
return true;
elif Length(a)>Length(b) then
return false;
else
return List(a,i->SignInt(i)*ord!.alphpos[AbsInt(i)])<
List(b,i->SignInt(i)*ord!.alphpos[AbsInt(i)]);
fi;
end);
fi;
return ord;
end);
InstallOtherMethod( ShortLexOrdering,
"for a family of words of a free semigroup or free monoid", true,
[IsFamily and IsAssocWordFamily], 0,
function(fam)
local gens;
# first find out if fam is a family of free semigroup or monoid
# because we need to get a list of generators (in the default order)
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
return ShortLexOrderingNC(fam,gens);
end);
InstallMethod( ShortLexOrdering,
"for a family of words of a free semigroup or free monoid and a list of generators",
true,
[IsFamily and IsAssocWordFamily,IsList and IsAssocWordCollection], 0,
function(fam,alphabet)
local x, # loop variable
gens, # the generators of the semigroup or monoid
ltfun, # the less than function of the ordering being built,
ord; # the ordering
# first find out if fam is a family of free semigroup or monoid
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
# now check that the elements of alphabet lie in the right family
if ElementsFamily(FamilyObj(alphabet))<>fam then
Error("Elements of `alphabet' should be in family `fam'");
fi;
# alphabet has to be a list of size Length(gens)
# and all gens have to appear in the alphabet
if Length(alphabet)<>Length(gens) or Set(alphabet)<>gens then
Error("`fam' and `alphabet' are not compatible");
fi;
# now build the ordering
return ShortLexOrderingNC(fam,alphabet);
end);
InstallOtherMethod( ShortLexOrdering,
"for a family of free words of a free semigroup or free monoid and a list",
true, [IsFamily and IsAssocWordFamily,IsList], 0,
function(fam,orderofgens)
local i, # loop variable
gens, # the generators of the semigroup or monoid
n, # the length of the generators list
alphabet; # the gens in the desired order
# first find out if fam is a family of free semigroup or monoid
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
# we have to do some checking
# orderofgens has to be a list of size Length(gens)
# and all gens have to appear in the list
n := Length(gens);
if Length(orderofgens)<>n or Set(orderofgens)<>[1..n] then
Error("`fam' and `orderofgens' are not compatible");
fi;
# we have to turn the list giving the order of gens
# in a list of gens
alphabet := List([1..Length(gens)],i->gens[orderofgens[i]]);
return ShortLexOrderingNC(fam,alphabet);
end);
InstallOtherMethod( ShortLexOrdering,
"for a free semigroup", true,
[IsFreeSemigroup], 0,
f -> ShortLexOrderingNC(ElementsFamily(FamilyObj(f)),
GeneratorsOfSemigroup(f)));
InstallOtherMethod( ShortLexOrdering,
"for a free monoid", true,
[IsFreeMonoid], 0,
f -> ShortLexOrderingNC(ElementsFamily(FamilyObj(f)),GeneratorsOfMonoid(f)));
InstallOtherMethod( ShortLexOrdering,
"for a free semigroup and a list of generators in the required order",
IsElmsColls,
[IsFreeSemigroup, IsList and IsAssocWordCollection], 0,
function(f,alphabet)
return ShortLexOrdering( ElementsFamily(FamilyObj(f)),alphabet);
end);
InstallOtherMethod( ShortLexOrdering,
"for a free monoid and a list of generators in the required order ",
IsElmsColls,
[IsFreeMonoid,IsList and IsAssocWordCollection], 0,
function(f,alphabet)
return ShortLexOrdering( ElementsFamily(FamilyObj(f)),alphabet);
end);
InstallOtherMethod( ShortLexOrdering,
"for a free semigroup and a list", true,
[IsFreeSemigroup, IsList], 0,
function(f,gensorder)
return ShortLexOrdering( ElementsFamily(FamilyObj(f)),gensorder);
end);
InstallOtherMethod( ShortLexOrdering,
"for a free monoid and a list", true,
[IsFreeMonoid,IsList], 0,
function(f,gensorder)
return ShortLexOrdering( ElementsFamily(FamilyObj(f)),gensorder);
end);
#############################################################################
##
#F IsShortLexLessThanOrEqual( <u>, <v> )
##
## for two associative words <u> and <v>.
## It returns true if <u> is less than or equal to <v>, with
## respect to the shortlex ordering.
## (the shortlex ordering is the default one given by u<=v)
## (we have this function here to assure compatability with gap4.2).
##
InstallGlobalFunction( IsShortLexLessThanOrEqual,
function( u, v )
local fam,ord;
fam := FamilyObj(u);
ord := ShortLexOrdering(fam);
return IsLessThanOrEqualUnder(ord,u,v);
end);
#############################################################################
##
#M WeightLexOrdering( <fam>,<alphabet>,<wt>)
#M WeightLexOrdering( <fam>,<gensord>,<wt>)
#M WeightLexOrdering( <f>,<wt>,<alphabet>)
#M WeightLexOrdering( <f>,<wt>,<gensord>)
#B WeightLexOrderingNC( <fam>,<alphabet>,<wt>)
##
BindGlobal("WeightLexOrderingNC",
function(fam,alphabet,wt)
local wordwt, # function that given a word returns its weigth
ltfun, # the less than function
auxalph,
ord; # the ordering
#########################################################
# this is a function that given a word returns its weight
wordwt := function(w)
local i, sum;
sum := 0;
for i in [1..Length(alphabet)] do
sum := sum + ExponentSumWord(w,alphabet[i])*wt[i];
od;
return sum;
end;
# the less than function
ltfun := function(w1,w2)
local w1wt,w2wt; # the weights of words w1 and w2, resp
# if w1=w2 then w1 is certainly not less than w2
if w1=w2 then
return false;
fi;
# then if the sum of the weights of w1 is less than
# the sum of the weight of w2 then returns true
# so we calculate the weigth of w1
w1wt := wordwt(w1);
w2wt := wordwt(w2);
if w1wt<w2wt then
return true;
elif w1wt=w2wt then
return IsLessThanUnder(LexicographicOrdering(fam,alphabet),w1,w2);
fi;
return false;
end;
ord := OrderingByLessThanFunctionNC(fam,ltfun,[IsTotalOrdering,
IsReductionOrdering, IsWeightLexOrdering,
IsOrderingOnFamilyOfAssocWords]);
SetOrderingOnGenerators(ord,alphabet);
SetWeightOfGenerators(ord,wt);
auxalph := ShallowCopy(alphabet);
auxalph := List(auxalph,i->GeneratorSyllable(i,1));
ord!.alphnums:=auxalph;
if IsSSortedList(auxalph) then
SetLetterRepWordsLessFunc(ord,function(a,b)
local wa,wb;
wa:=Sum(a,i->wt[i]);
wb:=Sum(b,i->wt[i]);
if wa<wb then
return true;
elif wa>wb then
return false;
else
return a<b;
fi;
end);
else
ord!.alphpos:=List([1..Maximum(auxalph)],i->Position(auxalph,i));
SetLetterRepWordsLessFunc(ord,function(a,b)
local wa,wb;
wa:=Sum(a,i->wt[i]);
wb:=Sum(b,i->wt[i]);
if wa<wb then
return true;
elif wa>wb then
return false;
else
return List(a,i->SignInt(i)*ord!.alphpos[AbsInt(i)])<
List(b,i->SignInt(i)*ord!.alphpos[AbsInt(i)]);
fi;
end);
fi;
return ord;
end);
InstallMethod( WeightLexOrdering,
"for a family of words of a free semigroup or free monoid, a list of generators and a list of weights",
true,
[IsFamily and IsAssocWordFamily,IsList and IsAssocWordCollection, IsList], 0,
function(fam,alphabet,wt)
local x, # loop variable
gens, # the generators of the semigroup or monoid
ltfun, # the less than function of the ordering being built,
w1wt,w2wt, # the weights of w1 and w2, resp
ord; # the ordering
# first find out if fam is a family of free semigroup or monoid
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
# now check that the elements of alphabet lie in the right family
if ElementsFamily(FamilyObj(alphabet))<>fam then
Error("Elements of `alphabet' should be in family `fam'");
fi;
# alphabet and wt both have to be lists of size Length(gens)
# and all gens have to appear in the alphabet
if Length(alphabet)<>Length(gens) or Length(wt)<>Length(gens)
or Set(alphabet)<> gens then
Error("`alphabet' and `wt' are not compatible with `fam'");
fi;
return WeightLexOrderingNC(fam,alphabet,wt);
end);
InstallOtherMethod( WeightLexOrdering,
"for a family of words of a free semigroup or free monoid, and two lists",
true, [IsFamily and IsAssocWordFamily,IsList,IsList], 0,
function(fam,orderofgens,wt)
local gens, # the generators of the semigroup or monoid
alphabet; # the gens in the desired order
# first find out if fam is a family of free semigroup or monoid
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
# alphabet and wt both have to be lists of size Length(gens)
# and all gens have to appear in the alphabet
if Length(orderofgens)<>Length(gens) or Length(wt)<>Length(gens)
or Set(orderofgens)<> [1..Length(gens)] then
Error("`orderofgens' and `wt' are not compatible with `fam'");
fi;
# we have to turn the list giving the order of gens
# in a list of gens
alphabet := List([1..Length(gens)],i->gens[orderofgens[i]]);
return WeightLexOrderingNC(fam,alphabet,wt);
end);
InstallOtherMethod( WeightLexOrdering,
"for a free semigroup, a list of generators and a list of weights",
true,
[IsFreeSemigroup,IsList and IsAssocWordCollection,IsList], 0,
function(f,alphabet,wt)
return WeightLexOrdering( ElementsFamily(FamilyObj(f)),alphabet,wt);
end);
InstallOtherMethod( WeightLexOrdering,
"for a free monoid, a list of generators and a list of weights",
true,
[IsFreeMonoid,IsList and IsAssocWordCollection,IsList], 0,
function(f,alphabet,wt)
return WeightLexOrdering( ElementsFamily(FamilyObj(f)),alphabet,wt);
end);
InstallOtherMethod( WeightLexOrdering,
"for a free semigroup, a list giving ordering on generators and a list of weights",
true,
[IsFreeSemigroup,IsList,IsList], 0,
function(f,orderofgens,wt)
return WeightLexOrdering( ElementsFamily(FamilyObj(f)),orderofgens,wt);
end);
InstallOtherMethod( WeightLexOrdering,
"for a free monoid, a list giving ordering on generators and a list of weights",
true,
[IsFreeMonoid,IsList,IsList], 0,
function(f,orderofgens,wt)
return WeightLexOrdering( ElementsFamily(FamilyObj(f)),orderofgens,wt);
end);
#############################################################################
##
#M BasicWreathProductOrdering( <fam> )
#M BasicWreathProductOrdering( <fam>, <alphabet>)
#M BasicWreathProductOrdering( <fam>, <gensord>)
#M BasicWreathProductOrdering( <f>)
#M BasicWreathProductOrdering( <f>, <alphabet>)
#M BasicWreathProductOrdering( <f>, <gensord>)
#B BasicWreathProductOrderingNC( <fam>, <alphabet>)
##
## We implement these for families of elements of free smg and monoids
## In the first form returns the BasicWreathProductOrdering for the
## elements of fam with the generators of the freeSmg (or freeMonoid)
## in the default order.
## In the second form returns the BasicWreathProductOrdering for the
## elements of fam with the generators of the freeSmg (or freeMonoid)
## in the following order:
## gens[i]<gens[j] if and only if orderofgens[i]<orderofgens[j]
##
## So with the given order on the generators
## u<v if u'<v' where u=xu'y and v=xv'y
## So, if u and v have no common prefix, u is less than v wrt this ordering if
## (i) maxletter(v) > maxletter(u); or
## (ii) maxletter(u) = maxletter(v) and
## #maxletter(u) < #maxletter(v); or
## (iii) maxletter(u) = maxletter(v) =b and
## #maxletter(u) = #maxletter(v) and
## if u = u1 * b * u2 * b ... b * uk
## v = v1 * b * v2 * b ... b * vk
## then u1<v1 in the basic wreath product ordering.
##
BindGlobal("BasicWreathProductOrderingNC",
function(fam,alphabet)
local ltfun, # the less than function
oltfun,
nltfun,
alphpos,
ord; # the ordering
nltfun := function(u,v)
local l,m,n,ltgens,eu,ev,mp,np,me,ne;
eu:=ExtRepOfObj(u);
ev:=ExtRepOfObj(v);
if eu=ev then
return false;
fi;
# find the longest common prefix
l:=1;
while l<=Length(eu) and l<=Length(ev) and eu[l]=ev[l] do
l:=l+1;
od;
l:=l-1;
if l<>0 or (l=0 and (IsEmpty(eu) or IsEmpty(ev))) then
if IsEvenInt(l) then
# disagree on generator or ran out
# if u is a proper prefix of v (ie l=|u|) then u<v
if Length(eu)=l then
return true;
# but if v is a proper prefix of u then u>v
elif Length(ev)=l then
return false;
fi;
eu:=eu{[l+1..Length(eu)]};
ev:=ev{[l+1..Length(ev)]};
elif SignInt(eu[l+1])=SignInt(ev[l+1]) then
# disagree on exponent
# if u is a proper prefix of v (ie l=|u|) then u<v
if Length(eu)=l+1 and AbsInt(eu[l+1])<AbsInt(ev[l+1]) then
return true;
# but if v is a proper prefix of u then u>v
elif Length(ev)=l+1 and AbsInt(eu[l+1])>AbsInt(ev[l+1]) then
return false;
fi;
if AbsInt(eu[l+1])<AbsInt(ev[l+1]) then
ev:=ev{[l..Length(ev)]};
ev[2]:=ev[2]-eu[l+1];
eu:=eu{[l+2..Length(eu)]};
else
eu:=eu{[l..Length(eu)]};
eu[2]:=eu[2]-ev[l+1];
ev:=ev{[l+2..Length(ev)]};
fi;
else
eu:=eu{[l..Length(eu)]};
ev:=ev{[l..Length(ev)]};
fi;
fi;
# now eu and ev don't have a common prefix.
#T the code now assumes that all exponents are positive. If we use free
#T groups, this needs to be cleaned up
mp:=Length(eu)-1;
np:=Length(ev)-1;
me:=eu[mp+1];
ne:=ev[np+1];
while mp>0 and np>0 do
if ord!.alphpos[ev[np]]<ord!.alphpos[eu[mp]] then
ne:=ne-1;
if ne=0 then
np:=np-2;
if np>0 then
ne:=ev[np+1];
fi;
fi;
elif ord!.alphpos[eu[mp]]<ord!.alphpos[ev[np]] then
me:=me-1;
if me=0 then
mp:=mp-2;
if mp>0 then
me:=eu[mp+1];
fi;
fi;
else
ne:=ne-1;
if ne=0 then
np:=np-2;
if np>0 then
ne:=ev[np+1];
fi;
fi;
me:=me-1;
if me=0 then
mp:=mp-2;
if mp>0 then
me:=eu[mp+1];
fi;
fi;
fi;
od;
if mp<=0 and np<>0 then
return true;
else
return false;
fi;
end;
########
#
# this is obsolete but for tests
oltfun := function(u,v)
local l,m,n,ltgens,eu,ev,mp,np,me,ne;
# we start by building the function that gives the order on the alphabet
ltgens := function(x,y)
return Position(alphabet,x)< Position(alphabet,y);
end;
if u=v then
return false;
fi;
l := LengthOfLongestCommonPrefixOfTwoAssocWords( u, v);
if l<>0 then
# if u is a proper prefix of v (ie l=|u|) then u<v
# but if v is a proper prefix of u then u>v
if l=Length(u) then
return true;
elif l=Length(v) then
return false;
fi;
# at this stage none of the words is a proper prefix of the other one
# so remove the common prefix from both words
u := Subword( u, l+1, Length(u) );
v := Subword( v, l+1, Length(v) );
fi;
m := Length( u );
n := Length( v );
# so now u and v have no common prefixes
# (in particular they are not equal)
while m>0 and n>0 do
if ltgens(Subword( v, n, n),Subword( u, m, m)) then
n := n - 1;
elif ltgens(Subword( u, m, m),Subword( v, n, n)) then
m := m - 1;
else
m := m - 1;
n := n - 1;
fi;
od;
if m =0 and n<>0 then
return true;
else
return false;
fi;
end;
ltfun:=function(u,v)
local x,y;
x:=oltfun(u,v);
y:=nltfun(u,v);
if x=y then
return x;
else
Error("disagree");
fi;
end;
if AssertionLevel()=0 then
ltfun:=nltfun;
fi;
ord := OrderingByLessThanFunctionNC(fam,ltfun,[IsTotalOrdering,
IsBasicWreathProductOrdering,
IsOrderingOnFamilyOfAssocWords, IsReductionOrdering]);
SetOrderingOnGenerators(ord,alphabet);
alphpos:=List(alphabet,i->GeneratorSyllable(i,1));
ord!.alphpos:=List([1..Maximum(alphpos)],i->Position(alphpos,i));
return ord;
end);
InstallOtherMethod(BasicWreathProductOrdering,
"for a family of words of a free semigroup or free monoid and a list",
true, [IsAssocWordFamily and IsFamily], 0,
function(fam)
local gens; # the generators list
# first find out if fam is a family of free semigroup or monoid
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
return BasicWreathProductOrderingNC(fam,gens);
end);
InstallMethod(BasicWreathProductOrdering,
"for a family of words of a free semigroup or free monoid and a list of generators",
true, [IsAssocWordFamily and IsFamily, IsList and IsAssocWordCollection], 0,
function(fam,alphabet)
local gens; # the generators of the semigroup or monoid
# first find out if fam is a family of free semigroup or monoid
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
# we have to do some checking
# alphabet has to be a list of size Length(gens)
# all gens have to appear in the list
if Length(alphabet)<>Length(gens) or Set(alphabet)<>gens then
Error("`alphabet' is not compatible with `fam'");
fi;
return BasicWreathProductOrderingNC(fam,alphabet);
end);
InstallMethod(BasicWreathProductOrdering,
"for a family of words of a free semigroup or free monoid and a list",
true, [IsAssocWordFamily and IsFamily, IsList], 0,
function(fam,orderofgens)
local gens, # the generators of the semigroup or monoid
n, # the length of the generators list
alphabet; # the generators in the appropiate order
# first find out if fam is a family of free semigroup or monoid
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
# we have to do some checking
# orderofgens has to be a list of size Length(gens)
# all gens have to appear in the list
n := Length(gens);
if Length(orderofgens)<>n or Set(orderofgens)<>[1..n] then
Error("`orderofgens' is not compatible with `fam'");
fi;
# we have to turn the list giving the order of gens
# in a list of gens
alphabet := List([1..Length(gens)],i->gens[orderofgens[i]]);
return BasicWreathProductOrderingNC(fam,alphabet);
end);
InstallOtherMethod(BasicWreathProductOrdering,
"for a free semigroup", true,
[IsFreeSemigroup], 0,
f-> BasicWreathProductOrderingNC(ElementsFamily(FamilyObj(f)),
GeneratorsOfSemigroup(f)));
InstallOtherMethod(BasicWreathProductOrdering,
"for a free monoid", true,
[IsFreeMonoid], 0,
f-> BasicWreathProductOrderingNC(ElementsFamily(FamilyObj(f)),
GeneratorsOfMonoid(f)));
InstallOtherMethod(BasicWreathProductOrdering,
"for a free semigroup and a list of generators", true,
[IsFreeSemigroup,IsList and IsAssocWordCollection], 0,
function(f,alphabet)
return BasicWreathProductOrdering(ElementsFamily(FamilyObj(f)),alphabet);
end);
InstallOtherMethod(BasicWreathProductOrdering,
"for a free monoid and a list of generators", true,
[IsFreeMonoid,IsList and IsAssocWordCollection], 0,
function(f,alphabet)
return BasicWreathProductOrdering(ElementsFamily(FamilyObj(f)),alphabet);
end);
InstallOtherMethod(BasicWreathProductOrdering,
"for a free semigroup and a list", true,
[IsFreeSemigroup,IsList], 0,
function(f,gensorder)
return BasicWreathProductOrdering(ElementsFamily(FamilyObj(f)),gensorder);
end);
InstallOtherMethod(BasicWreathProductOrdering,
"for a free monoid and a list", true,
[IsFreeMonoid,IsList], 0,
function(f,gensorder)
return BasicWreathProductOrdering(ElementsFamily(FamilyObj(f)),gensorder);
end);
#############################################################################
##
#F IsBasicWreathLessThanOrEqual( <u>, <v> )
##
## for two associative words <u> and <v>.
## It returns true if <u> is less than or equal to <v>, with
## respect to the basic wreath product ordering.
## (we have this function here to assure compatability with gap4.2).
##
InstallGlobalFunction( IsBasicWreathLessThanOrEqual,
function( u, v )
local fam,ord;
fam := FamilyObj(u);
ord := BasicWreathProductOrdering(fam);
return IsLessThanOrEqualUnder(ord,u,v);
end);
#############################################################################
##
#M WreathProductOrdering( <fam>, <levels> )
#M WreathProductOrdering( <fam>, <gensord>, <levels>)
#M WreathProductOrdering( <f>, <levels>)
#M WreathProductOrdering( <f>, <gensord>, <levels>)
##
## We implement these for families of elements of free smg and monoids
## In the first form returns the WreathProductOrdering for the
## elements of fam with the generators of the freeSmg (or freeMonoid)
## in the default order.
## In the second form returns the WreathProductOrdering for the
## elements of fam with the generators of the freeSmg (or freeMonoid)
## in the following order:
## gens[i]<gens[j] if and only if orderofgens[i]<orderofgens[j]
##
## <levels> is a list of length equal to the number of generators,
## specifying the levels of the generators IN THEIR NEW ORDERING,
## That is, levels[i] is the level of the generator that comes i-th
## in the new ordering.
##
## So with the given order on the generators
## u<v if u'<v' where u=xu'y and v=xv'y
## So, if u and v have no common prefix, u is less than v wrt this ordering if
## (i) u_max < v_max in the shortlex ordering, where u_max, v_max are
## the words obtained from u, v by removing all letters that do not
## the highest level, or
## (ii) u_max = v_max and
## if u = u1 * u_m1 * u2 * u_m2 ... b * u_mk
## v = v1 * v_m1 * v2 * v_m2 ... b * v_mk
## where u_mi, v_mi are the maximal subwords of u, v containing
## only the letters of maximal weight
## (so u_max = u_m1 * u_m2 * ... * u_mk = v_m1 * v_m2 * ... * v_mk),
## then u1<v1 in the wreath product ordering.
##
InstallOtherMethod(WreathProductOrdering,
"for a family of words of a free semigroup or free monoid and a list",
true, [IsAssocWordFamily and IsFamily,IsList], 0,
function(fam, levels)
local gens;
# first find out if fam is a family of free semigroup or monoid
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
return WreathProductOrdering(fam,[1..Length(gens)],levels);
end);
InstallMethod(WreathProductOrdering,
"for a family of words of a free semigroup or free monoid and a list",
true, [IsAssocWordFamily and IsFamily, IsList, IsList], 0,
function(fam,orderofgens,levels)
local i, # loop variable
gens, # the generators of the semigroup or monoid
ltgens, # the function giving the order on the alphabet
ltfun, # the less than function
ord; # the ordering
# first find out if fam is a family of free semigroup or monoid
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
# we have to do some checking
# orderofgens has to be a list of size Length(gens)
if Length(orderofgens)<>Length(gens) then
TryNextMethod();
fi;
# all gens have to appear in the list
for i in [1..Length(orderofgens)] do
if not i in orderofgens then
TryNextMethod();
fi;
od;
# now we build the less than function for the ordering
ltfun := function(u,v)
local l, #length of common prefix of u,v
m, #current position in scan of u (from right)
n, #current position in scan of v (from right)
ug, vg, #Current generators of u, v
ug_lev, vg_lev, #levels of urrent generators of u, v
sl_lev, #level at which one of the words u,v is
#smaller in the shortlex ordering
sl, #sl=1 or 2 if u or v, resp., is
#smaller in the shortlex ordering at level sl_lev.
#note sl=0 <=> sl_lev=0.
tgens,levgens; #functions on generators
# we start by building the function that gives the order on
# the alphabet
# we construct it from the list <orderofgens>
ltgens := function(x,y)
return Position(orderofgens,Position(gens,x))<
Position(orderofgens,Position(gens,y));
end;
#and similarly for the level function on the alphabet
levgens := function(x)
return levels[Position(orderofgens,Position(gens,x))];
end;
if u=v then
return false;
fi;
if Length(u)=0 then
return true;
fi;
if Length(v)=0 then
return false;
fi;
l := LengthOfLongestCommonPrefixOfTwoAssocWords( u, v);
if l<>0 then
# if u is a proper prefix of v (ie l=|u|) then u<v
# but if v is a proper prefix of u then u>v
if l=Length(u) then
return true;
elif l=Length(v) then
return false;
fi;
# at this stage none of the words is a proper prefix of the
# other one so remove the common prefix from both words
u := Subword( u, l+1, Length(u) );
v := Subword( v, l+1, Length(v) );
fi;
# so now u and v have no common prefixes
# (in particular they are not equal)
m := Length( u );
n := Length( v );
sl_lev := 0;
sl := 0;
#We now start scanning u,v from right to left.
#sl_lev denotes the level of the block of generators
#which is currently distinguishing between u,v.
#sl = 1 or 2 if u or v is smaller, respectively, in this block.
#Initially sl_lev=sl=0. This can also occur later if either
# (i) we read two equal generators in u,v at a higher level
# than sl_lev. Then everything to the right of these
# equal generators becomes irrelevant.
#(ii) we read a generator in u or v at a higher level than
# sl_lev that is not matched by a generator at the same
# level in the other word. We keep scanning backwards
# along the other word until we find a generator of the
# corresponding level or higher, but keep sl_lev=sl=0
# while we are doing this.
while m>0 or n>0 do
#Print(m,n,sl,sl_lev,"\n");
if m<>0 then
ug := Subword(u,m,m);
ug_lev := levgens(ug);
fi;
if n<>0 then
vg := Subword(v,n,n);
vg_lev := levgens(vg);
fi;
if m = 0 then
#we have reached the beginning of u, but
#u might be ahead in shortlex at sl_lev
if sl <> 2 or vg_lev >= sl_lev then
#u is certainly smaller
return true;
fi;
#u is ahead in shortlex at sl_lev, so keep
#scanning v
n := n-1;
elif n = 0 then
#we have reached the beginning of v, but
#v might be ahead in shortlex at sl_lev
if sl <> 1 or ug_lev >= sl_lev then
#v is certainly smaller
return false;
fi;
#v is ahead in shortlex at sl_lev, so keep
#scanning u.
m := m-1;
elif vg_lev < ug_lev and sl_lev <= ug_lev then
#u is now at a higher level than v
n := n - 1;
if sl_lev < ug_lev then
#we are in situation (ii) (see above)
sl_lev := 0;
sl := 0;
fi;
elif ug_lev < vg_lev and sl_lev <= vg_lev then
#v is now at a higher level than u
m := m - 1;
if sl_lev < vg_lev then
#we are in situation (ii) (see above)
sl_lev := 0;
sl := 0;
fi;
elif ug_lev = vg_lev and sl_lev <= vg_lev then
#u and v are at same level so use shortlex
if ltgens(ug,vg) then
sl := 1;
sl_lev := ug_lev;
elif ltgens(vg,ug) then
sl := 2;
sl_lev := ug_lev;
elif sl_lev < ug_lev then
#u and v are equal at this higher level.
#everything to the right of u,v is now
#irrelevant we are in situation (i) above.
sl := 0;
sl_lev := 0;
fi;
m := m - 1;
n := n - 1;
else
#ug and vg are both at a lower level than sl_lev,
#so can be ignored.
m := m-1;
n := n-1;
fi;
od;
#We have reached the ends of both words, so sl tells us
#which is the smaller.
if sl = 1 then
return true;
elif sl = 2 then
return false;
else
Error("There is a bug in WreathProductOrdering!");
fi;
end;
ord := OrderingByLessThanFunctionNC(fam,ltfun,[IsTotalOrdering,
IsWreathProductOrdering,
IsOrderingOnFamilyOfAssocWords, IsReductionOrdering]);
SetOrderingOnGenerators(ord,orderofgens);
SetLevelsOfGenerators(ord,List([1..Length(gens)],j->
levels[Position(orderofgens,j)]) );
return ord;
end);
InstallOtherMethod(WreathProductOrdering,
"for a family of associative words, a list of generators and a list with the levels of the generators", true,
[IsAssocWordFamily,IsList and IsAssocWordCollection,IsList], 0,
function(fam,alphabet,levels)
local gens,gensord,n;
# first find out if fam is a family of free semigroup or monoid
if IsBound(fam!.freeSemigroup) then
gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
elif IsBound(fam!.freeMonoid) then
gens := GeneratorsOfMonoid(fam!.freeMonoid);
else
TryNextMethod();
fi;
# we have to do some checking
# alphabet has to be a list of size Length(gens)
# all gens have to appear in the list
n := Length(gens);
if Length(alphabet)<>n or Set(alphabet)<>gens then
Error("`alphabet' is not compatible with `fam'");
fi;
# we have to turn the `alphabet' to a list giving the order of gens
gensord := List([1..Length(gens)],i-> Position(gens,alphabet[i]));
return WreathProductOrdering(fam,gensord,levels);
end);
InstallOtherMethod(WreathProductOrdering,
"for a free monoid and a list", true,
[IsFreeMonoid,IsList,IsList], 0,
function(f,gensorder,levels)
return WreathProductOrdering(ElementsFamily(FamilyObj(f)),gensorder,levels);
end);
InstallOtherMethod(WreathProductOrdering,
"for a free semigroup", true,
[IsFreeSemigroup,IsList], 0,
function(f,levels)
return WreathProductOrdering(ElementsFamily(FamilyObj(f)),levels);
end);
InstallOtherMethod(WreathProductOrdering,
"for a free monoid", true,
[IsFreeMonoid,IsList], 0,
function(f,levels)
return WreathProductOrdering(ElementsFamily(FamilyObj(f)),levels);
end);
InstallOtherMethod(WreathProductOrdering,
"for a free semigroup and a list", true,
[IsFreeSemigroup,IsList,IsList], 0,
function(f,gensorder,levels)
return WreathProductOrdering(ElementsFamily(FamilyObj(f)),gensorder,levels);
end);
InstallOtherMethod(WreathProductOrdering,
"for a free monoid and a list", true,
[IsFreeMonoid,IsList,IsList], 0,
function(f,gensorder,levels)
return WreathProductOrdering(ElementsFamily(FamilyObj(f)),gensorder,levels);
end);
|