This file is indexed.

/usr/share/gap/lib/overload.g is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#############################################################################
##
#W  overload.g                  GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declaration and methods of ``overloaded''
##  operations, that is, operations for which the meaning of the result
##  depends on the arguments.
##
##  Examples are `IsSolvable' and `IsNilpotent' (where we have methods for
##  groups and for algebras), and `Kernel' (which in the case of a group
##  homomorphism means the elements mapped to the identity of the range,
##  in the case of a ring homomorphism means those mapped to the zero,
##  and in the case of a group character means those mapped to the
##  character degree).
##
##  In these examples we seem to be safe, as no object can be both a group
##  and an algebra.
##
##  Such non-qualified operations should be kept to a minimum.
##  (Remember the problems we had with `NewObject'.)
##
##  Note that operations such as `IsCommutative' are not of this type,
##  since the result means the same for any multiplicative structure.
##  
##  The key requirement is that no object ever exists which inherits from
##  two types with distinct meanings.
##  Whenever this happens, there *must* be a method installed for the meet
##  of the relevant categories which decides which meaning applies,
##  otherwise the meaning of the operation is at the mercy of the ranking
##  system.
##
##  The guideline for the implementation is the following.
##  Non-qualified operations with one argument aren't attributes or
##  properties.
##  For each different meaning of the argument there are a corresponding
##  attribute (e.g. `IsSolvableGroup') and a method that delegates to this
##  attribute.
##  In the library one calls the attributes directly, and the non-qualified
##  operation is thought only as a shorthand for the user.
##
##  (So this file should be read after all the other library files.)
##
#T Shall we print warnings when the shorthands are used?
##


#############################################################################
##
#O  CoKernel( <obj> )
##
##  is the cokernel of a general mapping that respects multiplicative or
##  additive structure (or both, so we have to check) ...
##
DeclareOperation( "CoKernel", [ IsObject ] );

InstallMethod( CoKernel,
    [ IsGeneralMapping ],
    function( map )
    if RespectsAddition( map ) and RespectsZero( map ) then
      return CoKernelOfAdditiveGeneralMapping( map );
    elif RespectsMultiplication( map ) and RespectsOne( map ) then
      return CoKernelOfMultiplicativeGeneralMapping( map );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#O  Degree( <obj> )
##
##  is the degree of a univariate Laurent polynomial, a character ...
##
DeclareOperation( "Degree", [ IsObject ] );

InstallMethod( Degree, [ IsClassFunction ], DegreeOfCharacter );
InstallMethod( Degree, [ IsRationalFunction ],
    function( ratfun )
    if IsLaurentPolynomial( ratfun ) then
      return DegreeOfLaurentPolynomial( ratfun );
    else
      TryNextMethod();
    fi;
    end );

#############################################################################
##
#O  DerivedSeries( <D> )
##
DeclareOperation( "DerivedSeries", [ IsObject ] );

# DerivedSeriesOfAlgebra no longer exists! (There are the functions 
# LieDerivedSeries and PowerSubalgebraSeries). 
#
InstallMethod( DerivedSeries, [ IsAlgebra ],
  function( A )
    if HasIsLieAlgebra(A) and IsLieAlgebra(A) then
      Error(
"you can't use DerivedSeries( <L> ) for a Lie algebra <L>, you may want to try LieDerivedSeries( <L> ) instead");
    else
      Error(
"you can't use DerivedSeries( <A> ) for an algebra <A>, you may want to try PowerSubalgebraSeries( <A> ) instead");
    fi;
  end );

InstallMethod( DerivedSeries, [ IsGroup ], DerivedSeriesOfGroup );


#############################################################################
##
#O  Determinant( <obj> )
##
##  is the determinant of a matrix, a linear mapping, a character ...
##
DeclareOperation( "Determinant", [ IsObject ] );

InstallMethod( Determinant, [ IsMatrix ], DeterminantMat );
InstallMethod( Determinant, [ IsClassFunction ], DeterminantOfCharacter );


#############################################################################
##
#O  Eigenvalues( <obj> )
##
DeclareOperation( "Eigenvalues", [ IsObject ] );

InstallOtherMethod( Eigenvalues, [ IsClassFunction, IsPosInt ],
    EigenvaluesChar );


#############################################################################
##
#O  IsIrreducible( <obj> )
##
##  is `true' if <obj> is an irreducible ring element or an irreducible
##  character or an irreducible module ...
##
##  (Note that we must be careful since characters are also ring elements,
##  and for example linear characters are irreducible as characters but not
##  as ring elements since they are units.)
##
DeclareOperation( "IsIrreducible", [ IsObject ] );

#T InstallMethod( IsIrreducible, [ IsAModule ], IsIrreducibleModule );
InstallMethod( IsIrreducible, [ IsClassFunction ], IsIrreducibleCharacter );
InstallMethod( IsIrreducible, [ IsRingElement ],
    function( r )
    if IsClassFunction( r ) then
      TryNextMethod();
    fi;
    return IsIrreducibleRingElement( r );
    end );

InstallOtherMethod(IsIrreducible,"polynomial",IsCollsElms,
  [IsPolynomialRing,IsPolynomial],0,IsIrreducibleRingElement);


#############################################################################
##
#O  IsMonomial( <obj> )
##
##  is `true' if <obj> is a monomial group or a monomial character or
##  a monomial representation or a monomial matrix or a monomial number ...
##
DeclareOperation( "IsMonomial", [ IsObject ] );

InstallMethod( IsMonomial, [ IsClassFunction ], IsMonomialCharacter );
InstallMethod( IsMonomial, [ IsGroup ], IsMonomialGroup );
InstallMethod( IsMonomial, [ IsMatrix ], IsMonomialMatrix );
InstallMethod( IsMonomial, [ IsPosInt ], IsMonomialNumber );
InstallMethod( IsMonomial, [ IsOrdinaryTable ], IsMonomialCharacterTable );


#############################################################################
##
#O  IsNilpotent( <obj> )
##
##  is `true' if <obj> is a nilpotent group or a nilpotent algebra or ...
##
DeclareOperation( "IsNilpotent", [ IsObject ] );
Add(SOLVABILITY_IMPLYING_FUNCTIONS,IsNilpotent);

# IsNilpotentAlgebra is now called IsLieNilpotent.
#
InstallMethod( IsNilpotent, [ IsAlgebra ],
  function(A)
    if HasIsLieAlgebra(A) and IsLieAlgebra(A) then
      Error("you can't use IsNilpotent( <L> ) for a Lie algebra <L>, you may want to try IsLieNilpotent( <L> ) instead");
    else
      Error("you can't use IsNilpotent( <A> ) for an algebra <A>");
    fi;
  end
);

InstallMethod( IsNilpotent, [ IsGroup ], IsNilpotentGroup   );
InstallMethod( IsNilpotent, [ IsOrdinaryTable ], IsNilpotentCharacterTable );


#############################################################################
##
#O  IsSimple( <obj> )
##
##  is `true' if <obj> is a simple group or a simple algebra or ...
##
DeclareOperation( "IsSimple", [ IsObject ] );

InstallMethod( IsSimple, [ IsAlgebra ], IsSimpleAlgebra );
#T InstallMethod( IsSimple, [ IsAModule ], IsSimpleModule );
InstallMethod( IsSimple, [ IsGroup   ], IsSimpleGroup   );
InstallMethod( IsSimple, [ IsOrdinaryTable ], IsSimpleCharacterTable );


#############################################################################
##
#O  IsAlmostSimple( <obj> )
##
##  is `true' if <obj> is an almost simple group
##  or an almost simple character table or ...
##
DeclareOperation( "IsAlmostSimple", [ IsObject ] );

InstallMethod( IsAlmostSimple, [ IsGroup   ], IsAlmostSimpleGroup   );
InstallMethod( IsAlmostSimple, [ IsOrdinaryTable ],
    IsAlmostSimpleCharacterTable );


#############################################################################
##
#O  IsSolvable( <obj> )
##
##  is `true' if <obj> is a solvable group or ...
##
DeclareOperation( "IsSolvable", [ IsObject ] );
Add(SOLVABILITY_IMPLYING_FUNCTIONS,IsSolvable);

# IsSolvableAlgebra is now called IsLieSolvable.
#
InstallMethod( IsSolvable, [ IsAlgebra ],
  function(A)
    if HasIsLieAlgebra(A) and IsLieAlgebra(A) then
      Error(
"you can't use IsSolvable( <L> ) for a Lie algebra <L>, you may want to try IsLieSolvable( <L> ) instead");
    else
      Error("you can't use IsSolvable( <A> ) for an algebra <A>");
    fi;
  end );

InstallMethod( IsSolvable, [ IsGroup   ], IsSolvableGroup   );
InstallMethod( IsSolvable, [ IsOrdinaryTable ], IsSolvableCharacterTable );


#############################################################################
##
#O  IsSporadicSimple( <obj> )
##
##  is `true' if <obj> is a sporadic simple group or character table or ...
##
DeclareOperation( "IsSporadicSimple", [ IsObject ] );

InstallMethod( IsSporadicSimple, [ IsGroup ], IsSporadicSimpleGroup );
InstallMethod( IsSporadicSimple, [ IsOrdinaryTable ],
    IsSporadicSimpleCharacterTable );


#############################################################################
##
#O  IsSupersolvable( <obj> )
##
##  is `true' if <obj> is a supersolvable group or a supersolvable algebra
##  or ...
##
DeclareOperation( "IsSupersolvable", [ IsObject ] );

InstallMethod( IsSupersolvable, [ IsGroup ], IsSupersolvableGroup );
InstallMethod( IsSupersolvable, [ IsOrdinaryTable ],
    IsSupersolvableCharacterTable );


#############################################################################
##
#O  IsPerfect( <D> )
##
DeclareOperation( "IsPerfect", [ IsObject ] );

InstallMethod( IsPerfect, [ IsGroup ], IsPerfectGroup );
InstallMethod( IsPerfect, [ IsOrdinaryTable ], IsPerfectCharacterTable );


#############################################################################
##
#O  Kernel( <obj> )
##
##  is the kernel of a general mapping that respects multiplicative or
##  additive structure (or both, so we must check),
##  or the kernel of a character ...
##
DeclareOperation( "Kernel", [ IsObject ] );

InstallMethod( Kernel,
    [ IsGeneralMapping ],
    function( map )
    if RespectsAddition( map ) and RespectsZero( map ) then
      return KernelOfAdditiveGeneralMapping( map );
    elif RespectsMultiplication( map ) and RespectsOne( map ) then
      return KernelOfMultiplicativeGeneralMapping( map );
    else
      TryNextMethod();
    fi;
    end );

InstallMethod( Kernel, [ IsClassFunction ], KernelOfCharacter );


#############################################################################
##
#O  LowerCentralSeries( <D> )
##
DeclareOperation( "LowerCentralSeries", [ IsObject ] );

# LowerCentralSeries is now called LieLowerCentralSeries. 
#
InstallMethod( LowerCentralSeries, [ IsAlgebra ],
  function(A)
    if HasIsLieAlgebra(A) and IsLieAlgebra(A) then
      Error("you can't use LowerCentralSeries( <L> ) for a Lie algebra <L>, you may want to try LieLowerCentralSeries( <L> ) instead");
    else
      Error("you can't use LowerCentralSeries( <A> ) for an algebra <A>");
    fi;
  end
);

InstallMethod( LowerCentralSeries, [ IsGroup ], LowerCentralSeriesOfGroup );


#############################################################################
##
#O  Rank( <obj> )
##
##  is the rank of a matrix or a $p$-group or ...
##
DeclareOperation( "Rank", [ IsObject ] );

InstallMethod( Rank, [ IsMatrix ], RankMat );

InstallMethod( Rank, [ IsGroup ], RankPGroup );


#############################################################################
##
#O  UpperCentralSeries( <D> )
##
DeclareOperation( "UpperCentralSeries", [ IsObject ] );

# UpperCentralSeriesOfAlgebra is now called LieUpperCentralSeries.
#
InstallMethod( UpperCentralSeries, [ IsAlgebra ],
  function(A)
    if HasIsLieAlgebra(A) and IsLieAlgebra(A) then
      Error("you can't use UpperCentralSeries( <L> ) for a Lie algebra <L>, you may want to try LieUpperCentralSeries( <L> ) instead");
    else
      Error("you can't use UpperCentralSeries( <A> ) for an algebra <A>");
    fi;
  end
);

InstallMethod( UpperCentralSeries, [ IsGroup ], UpperCentralSeriesOfGroup );


DeclareGlobalFunction( "InsertElmList" );

InstallGlobalFunction(InsertElmList, function (list, pos, elm)
    Add(list,elm,pos);
end);

DeclareSynonym( "RemoveElmList", Remove);

#############################################################################
##
#E