/usr/share/gap/lib/padics.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | #############################################################################
##
#W padics.gd GAP Library Jens Hollmann
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration part of the padic numbers.
##
#############################################################################
##
#C IsPadicNumber
##
## <ManSection>
## <Filt Name="IsPadicNumber" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategory( "IsPadicNumber", IsScalar
and IsAssociativeElement and IsCommutativeElement );
DeclareCategoryCollections( "IsPadicNumber" );
DeclareCategoryCollections( "IsPadicNumberCollection" );
DeclareSynonym( "IsPadicNumberList", IsPadicNumberCollection and IsList );
DeclareSynonym( "IsPadicNumberTable", IsPadicNumberCollColl and IsTable );
#############################################################################
##
#C IsPadicNumberFamily
##
## <ManSection>
## <Filt Name="IsPadicNumberFamily" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategoryFamily( "IsPadicNumber" );
#############################################################################
##
#C IsPurePadicNumber(<obj>)
##
## <#GAPDoc Label="IsPurePadicNumber">
## <ManSection>
## <Filt Name="IsPurePadicNumber" Arg='obj' Type='Category'/>
##
## <Description>
## The category of pure <M>p</M>-adic numbers.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsPurePadicNumber", IsPadicNumber );
#############################################################################
##
#C IsPurePadicNumberFamily(<fam>)
##
## <#GAPDoc Label="IsPurePadicNumberFamily">
## <ManSection>
## <Filt Name="IsPurePadicNumberFamily" Arg='fam' Type='Category'/>
##
## <Description>
## The family of pure <M>p</M>-adic numbers.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategoryFamily( "IsPurePadicNumber" );
#############################################################################
##
#C IsPadicExtensionNumber(<obj>)
##
## <#GAPDoc Label="IsPadicExtensionNumber">
## <ManSection>
## <Filt Name="IsPadicExtensionNumber" Arg='obj' Type='Category'/>
##
## <Description>
## The category of elements of the extended <M>p</M>-adic field.
## <Example><![CDATA[
## gap> efam:=PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1]);;
## gap> IsPadicExtensionNumber(PadicNumber(efam,7/9));
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsPadicExtensionNumber", IsPadicNumber );
#############################################################################
##
#C IsPadicExtensionNumberFamily(<fam>)
##
## <#GAPDoc Label="IsPadicExtensionNumberFamily">
## <ManSection>
## <Filt Name="IsPadicExtensionNumberFamily" Arg='fam' Type='Category'/>
##
## <Description>
## Family of elements of the extended <M>p</M>-adic field.
## <Example><![CDATA[
## gap> efam:=PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1]);;
## gap> IsPadicExtensionNumberFamily(efam);
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategoryFamily( "IsPadicExtensionNumber" );
#############################################################################
##
#O Valuation( <obj> )
##
## <#GAPDoc Label="Valuation">
## <ManSection>
## <Oper Name="Valuation" Arg='obj'/>
##
## <Description>
## The valuation is the <M>p</M>-part of the <M>p</M>-adic number.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Valuation", [ IsObject ] );
#############################################################################
##
#O PadicNumber( <fam>, <rat> )
#O PadicNumber( <purefam>,<list>)
#O PadicNumber( <extfam>,<list>)
##
## <#GAPDoc Label="PadicNumber">
## <ManSection>
## <Oper Name="PadicNumber" Arg='fam, rat'
## Label="for a p-adic extension family and a rational"/>
## <Oper Name="PadicNumber" Arg='purefam, list'
## Label="for a pure p-adic numbers family and a list"/>
## <Oper Name="PadicNumber" Arg='extfam, list'
## Label="for a p-adic extension family and a list"/>
##
## <Description>
## (see also <Ref Oper="PadicNumber" Label="for pure padics"/>).
## <P/>
## <Ref Func="PadicNumber"
## Label="for a p-adic extension family and a rational"/>
## creates a <M>p</M>-adic number in the
## <M>p</M>-adic numbers family <A>fam</A>.
## The first form returns the <M>p</M>-adic number corresponding to the
## rational <A>rat</A>.
## <P/>
## The second form takes a pure <M>p</M>-adic numbers family <A>purefam</A>
## and a list <A>list</A> of length two, and returns the number
## <M>p</M><C>^</C><A>list</A><C>[1] * </C><A>list</A><C>[2]</C>.
## It must be guaranteed that no entry of <A>list</A><C>[2]</C> is
## divisible by the prime <M>p</M>.
## (Otherwise precision will get lost.)
## <P/>
## The third form creates a number in the family <A>extfam</A> of a
## <M>p</M>-adic extension.
## The second argument must be a list <A>list</A> of length two such that
## <A>list</A><C>[2]</C> is the list of coefficients w.r.t. the basis
## <M>\{ 1, \ldots, x^{{f-1}} \cdot y^{{e-1}} \}</M> of the extended
## <M>p</M>-adic field and <A>list</A><C>[1]</C> is a common <M>p</M>-part
## of all these coefficients.
## <P/>
## <M>p</M>-adic numbers admit the usual field operations.
## <Example><![CDATA[
## gap> efam:=PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1]);;
## gap> PadicNumber(efam,7/9);
## padic(120(3),0(3))
## ]]></Example>
## <P/>
## <E>A word of warning:</E>
## <P/>
## Depending on the actual representation of quotients, precision may seem
## to <Q>vanish</Q>.
## For example in <C>PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1])</C>
## the number <C>(1.2000, 0.1210)(3)</C> can be represented as
## <C>[ 0, [ 1.2000, 0.1210 ] ]</C> or as <C>[ -1, [ 12.000, 1.2100 ] ]</C>
## (here the coefficients have to be multiplied by <M>p^{{-1}}</M>).
## <P/>
## So there may be a number <C>(1.2, 2.2)(3)</C> which seems to have
## only two digits of precision instead of the declared 5.
## But internally the number is stored as <C>[ -3, [ 0.0012, 0.0022 ] ]</C>
## and so has in fact maximum precision.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PadicNumber", [ IsPadicNumberFamily, IsObject ] );
#############################################################################
##
#O ShiftedPadicNumber( <padic>, <int> )
##
## <#GAPDoc Label="ShiftedPadicNumber">
## <ManSection>
## <Oper Name="ShiftedPadicNumber" Arg='padic, int'/>
##
## <Description>
## <Ref Func="ShiftedPadicNumber"/> takes a <M>p</M>-adic number
## <A>padic</A> and an integer <A>shift</A>
## and returns the <M>p</M>-adic number <M>c</M>,
## that is <A>padic</A> <C>*</C> <M>p</M><C>^</C><A>shift</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ShiftedPadicNumber", [ IsPadicNumber, IsInt ] );
#############################################################################
##
#O PurePadicNumberFamily( <p>, <precision> )
##
## <#GAPDoc Label="PurePadicNumberFamily">
## <ManSection>
## <Oper Name="PurePadicNumberFamily" Arg='p, precision'/>
##
## <Description>
## returns the family of pure <M>p</M>-adic numbers over the
## prime <A>p</A> with <A>precision</A> <Q>digits</Q>. That is to say, the approximate value
## will differ from the correct value by a multiple of <M>p^{digits}</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PurePadicNumberFamily" );
DeclareGlobalVariable( "PADICS_FAMILIES");
#############################################################################
##
#F PadicExtensionNumberFamily( <p>, <precision>, <unram>, <ram> )
##
## <#GAPDoc Label="PadicExtensionNumberFamily">
## <ManSection>
## <Func Name="PadicExtensionNumberFamily" Arg='p, precision, unram, ram'/>
##
## <Description>
## An extended <M>p</M>-adic field <M>L</M> is given by two polynomials
## <M>h</M> and <M>g</M> with coefficient lists <A>unram</A> (for the
## unramified part) and <A>ram</A> (for the ramified part).
## Then <M>L</M> is isomorphic to <M>Q_p[x,y]/(h(x),g(y))</M>.
## <P/>
## This function takes the prime number <A>p</A> and the two coefficient
## lists <A>unram</A> and <A>ram</A> for the two polynomials.
## The polynomial given by the coefficients in <A>unram</A> must be a
## cyclotomic polynomial and the polynomial given by <A>ram</A> must be
## either an Eisenstein polynomial or <M>1+x</M>.
## <E>This is not checked by &GAP;.</E>
## <P/>
## Every number in <M>L</M> is represented as a coefficient list w. r. t.
## the basis <M>\{ 1, x, x^2, \ldots, y, xy, x^2 y, \ldots \}</M>
## of <M>L</M>.
## The integer <A>precision</A> is the number of <Q>digits</Q> that all the
## coefficients have.
## <P/>
## <E>A general comment:</E>
## <P/>
## The polynomials with which <Ref Func="PadicExtensionNumberFamily"/> is
## called define an extension of <M>Q_p</M>.
## It must be ensured that both polynomials are really irreducible over
## <M>Q_p</M>!
## For example <M>x^2+x+1</M> is <E>not</E> irreducible over <M>Q_p</M>.
## Therefore the <Q>extension</Q>
## <C>PadicExtensionNumberFamily(3, 4, [1,1,1], [1,1])</C> contains
## non-invertible <Q>pseudo-p-adic numbers</Q>.
## Conversely, if an <Q>extension</Q> contains noninvertible elements
## then one of the defining polynomials was not irreducible.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PadicExtensionNumberFamily" );
#############################################################################
##
#E
|