This file is indexed.

/usr/share/gap/lib/padics.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
#############################################################################
##
#W  padics.gi                   GAP Library                     Jens Hollmann
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the implementation part of the padic numbers.
##


#############################################################################
##
#F  PrintPadicExpansion( <ppower>, <int>, <prime>, <precision> )
##
##  PrintPadicsExpansion prints   a pure p-adic  number x,  which is given as
##  <ppower> and <int> such  that  x =  <prime>^<ppower>*<int> as the  p-adic
##  expansion in the  pure p-adic numbers with   <precision> "digits".  <int>
##  may be  divisible by <prime>.  Each "digit"  ranges from  0 to <prime>-1.
##  If a "digit" has more  than one decimal digit  it  is embraced in  single
##  quotes.
##
##  For Example:
##      153.0(17) is  1*17^(-2) + 5*17^(-1) + 3*17^0 and
##    '15'3.0(17) is 15*17^(-1) + 3*17^0 
##
PrintPadicExpansion := function( ppower, int, prime, precision )
    local   pos,  flag,  z,  k,  r;

    if int = 0  then
        Print( "0" );
    else

        # <int> might be divisible by <prime>
        while int mod prime = 0 do
            int := int / prime;
            ppower := ppower + 1;
        od;
        if ppower > 0 then

            # leading zeros
            for pos in [0..ppower-1] do
                if pos = 1 then
                    Print( "." );
                fi;
                Print( "0" );
            od;
        fi;
        pos := ppower;
        flag := false;

        # print the <int>
        z := int;
        k := 1;
        r := z mod prime;
        while (pos < 1) or ((k<=precision) and (z<>0)) do
            if pos = 1 then
                Print( "." );
            fi;
            if prime >= 10 then
                if flag then
                    Print( r, "'" );
                else
                    Print( "'" , r, "'" );
                fi;
                flag := true;
            else
                Print( r );
                flag := false;
            fi;
            z := (z - r) / prime;
            r := z mod prime;
            k := k + 1;
            pos := pos + 1;
        od;
    fi;
    Print( "(", prime, ")" );
end;


#############################################################################
##
#F  PadicExpansionByRat( <a>, <prime>, <precision>)
##
##  PadicExpansionByRat takes a rational <a> and returns a list [ppart, erg],
##  such  that  <a>  is <prime>^ppart*erg in   the pure  p-adic numbers  over
##  <prime> with <precision> "digits".
##
##  For Example:
##    PadicExpansionByRat(5, 3, 4)   -> [0,  5] = 12.00(3)
##    PadicExpansionByRat(1/2, 3, 4) -> [0, 41] = 2.111(3)
##
PadicExpansionByRat := function( a, prime, precision )
    local   c,  flag,  ppart,  z,  step,  erg,  ppot,  l,  digit;

    if a = 0 then
        c := [0,0];
    else

        # extract the p-part (num and den of rationals are coprime)
        flag := false;
        ppart := 0;
        if NumeratorRat(a) mod prime = 0 then
            z := NumeratorRat(a) / prime;
            step := 1;
            flag := true;
        fi;
        if DenominatorRat(a) mod prime = 0 then
            z := DenominatorRat(a) / prime;
            step := -1;
            flag := true;
        fi;
        if flag then

            # extract the <prime>-part
            ppart := step;
            while z mod prime = 0 do
                z := z / prime;
                ppart := ppart + step;
            od;
        fi;
        a := a / prime^ppart;
        erg := 0;
        ppot := 1;
        l := 1;
        while( l<= precision) and (a <> 0) do
            digit := a mod prime;
            erg := erg + digit * ppot;
            a := (a - digit) / prime;
            ppot := ppot * prime;
            l := l + 1;
        od;
        c := [ppart, erg];
    fi;
    return c;
end;


#############################################################################
##
#F  MultMatrixPadicNumbersByCoefficientsList( <list> )
##
##  MultMatrix...List  takes  the coeff.-list  <list>   of  a polynomial  and
##  returns  a (n  x   2*n-1)-matrix if n  is the   degree of  the polynomial
##  i.e. the length of <list> minus 1.  If you have an extension L of a field
##  K by a given polynomial f (i.e. L = K[X]/(f(X))) with coeff.-list <list>,
##  than the i-th row of the returned matrix gives the coeff.-presentation of
##  X^(i-1) in the basis {X^0, ..., X^n-1} of L.
##
##  For example:
##    Mult...List( [-1,5,-2,1] ) -> [1      ]
##      so the polynomial is        [   1   ]
##      X^3-2X^2+5X-1               [      1]
##                                  [1 -5  2]
##                                  [2 -9 -1]
##
##  So multiplying two elements of L (polynomials in X) is simply multiplying
##  the  polynomials and then multiplying the  resulting coeff.-list with the
##  matrix and get the  coeff.-presentation of the result  in the right basis
##  of L.
##
MultMatrixPadicNumbersByCoefficientsList := function ( list )
    local   n,  F,  zero,  one,  mat,  i,  j;

    n := Length(list) - 1;
    F := FamilyObj(list[1]);
    zero := Zero(F);
    one  := One(F);
    if n <= 1 then
        return [[one]];
    fi;
    # prepare a zero-matrix with ones on the main diagonale:
    mat := [  ];
    for i in [1..2*n-1] do
        mat[i] := [ ];
        for j in [1..n] do
            mat[i][j] := zero;
        od;
    od;
    for i in [1..n] do
        mat[i][i] := one;
    od;
    # the n+1-th row is simple:
    for j in [1..n] do
        mat[n+1][j] := - list[j];
    od;
    # the rest is a little more complex. Regard the fact, that
    # x^i is x*x^(i-1) and the coeff.presentation of x^(i-1) is
    # already known.
    for i in [n+2..2*n-1] do
        mat[i] := ShiftedCoeffs(mat[i-1],1) + mat[i-1][n] * mat[n+1];
    od;
    return mat;
end;


#############################################################################
##
#F  StructureConstantsPadicNumbers( <e>, <f> )
##
##  An  extended  p-adic field  is   given by  two polynomials.  One  for the
##  ramified  part g with  degree <e> and one for  the unramified part h with
##  degree <f>. The extended p-adic field is then the extension of Q_p i.e. L
##  = Q_p[x,y]/(g(y),h(x)).
##
##  L has a basis in x^i*y^j. This basis is ordered as follows:
##    {1, x, x^2, ..., y, x y, x^2 y, ..., y^2, x y^2, x^2 y^2, ...}
##
##  Let B_i be  the i-th basiselement.   StructureConstantsPadicNumbers takes
##  the two degrees <e> and <f> and returns a (n x n)-matrix (n = <e> * <f>).
##  In this matrix stands  at  position (i,j) the  index  of the row  of  the
##  multiplication-matrix that gives the coeff.-presentation of B_i * B_j The
##  mult.-matrix   of  an   extended   p-adic  field    is   given  as    the
##  Kronecker-product of the mult.-matrices  of the two  polynomials returned
##  by        MultMatrixPadicNumbersByCoefficientsList.        (see        in
##  PadicExtensionNumberFamily)
##
##  So I get the structure-constants m_ijk if 
##    B_i*B_j = SUM(k=1,...,n) m_ijk B_k
##  simply by M[ B[i,j], k].
##
##  M is the mult.-matrix and B is the matrix returned by this function.
##
StructureConstantsPadicNumbers := function( e, f )
    local   mat,  i,  j,  a1,  a2,  b1,  b2;

    # there are <e>*<f> basis-elements and according to the above ordering
    # B_i is simply x^((i-1) mod f)*y^((i-1) div f)
    mat := [];
    for i in [1..e*f] do
        mat[i] := [];
        for j in [1..e*f] do
            a1 := (i-1) mod f;
            a2 := (j-1) mod f;
            b1 := QuoInt(i-1, f);
            b2 := QuoInt(j-1, f);
            mat[i][j] := (a1+a2) + (b1+b2)*(2*f-1) + 1;
        od;
    od;
    return mat;
end;


#############################################################################
##
#M  ShiftedPadicNumber( <padic>, <shift> ) 
##
##  ShiftedPadicNumber  takes a p-adic number <padic>  and an integer <shift>
##  and returns the  p-adic number   c, that is   <padic> *  p^<shift>.   The
##  <shift> is just added to the p-part.
##
InstallMethod( ShiftedPadicNumber,
    true,
    [ IsPadicNumber, IsInt ],
    0,

function( x, shift )
    local   fam,  c;

    fam := FamilyObj(x);
    c := Immutable( [ x![1]+shift, x![2] ] );
    return Objectify( fam!.defaultType, c );
end );


#############################################################################
##
#M  <padic> * <rat>
##
InstallMethod( \*,
     true,
     [ IsPadicNumber, IsRat ],
     0,

function( a, b )
    local   fam;

    fam := FamilyObj( a );
    return a * PadicNumber( fam, b );
end );


#############################################################################
##
#M  <rat> * <padic>
##
InstallMethod( \*,
     true,
     [ IsRat, IsPadicNumber ],
     0,

function( a, b )
    local   fam;

    fam := FamilyObj( b );
    return PadicNumber( fam, a ) * b;
end );


#############################################################################
##
#M  <padic-list> * <rat>
##
InstallMethod( \*,
     true,
     [ IsPadicNumberList, IsRat ],
     0,

function( a, b )
    b := PadicNumber( FamilyObj(a[1]), b );
    return List( a, x -> x * b );
end );


#############################################################################
##
#M  <rat> * <padic-list>
##
InstallMethod( \*,
     true,
     [ IsRat, IsPadicNumberList ],
     0,

function( a, b )
    a := PadicNumber( FamilyObj(b[1]), a );
    return List( b, x -> a * x );
end );


#############################################################################
##
#M  ZeroOp( <padic> )
##
InstallMethod( ZeroOp,
    "for a p-adic number",
    true,
    [ IsPadicNumber ],
    0,

function( padic )
    return Zero( FamilyObj( padic ) );
end );


#############################################################################
##
#M  OneOp( <padic> )
##
InstallMethod( OneOp,
    "for a p-adic number",
    true,
    [ IsPadicNumber ],
    0,

function( padic )
    return One( FamilyObj( padic ) );
end );


#############################################################################
##
#M  PurePadicNumberFamily( <p>, <precision> )
##
##  PurePadicNumberFamily returns the family of pure p-adic numbers over the
##  prime  <p> with  <precision>  "digits".  For the  representation  of pure
##  p-adic numbers see "PadicNumber" below.
##

InstallValue(PADICS_FAMILIES,[]);


InstallGlobalFunction( PurePadicNumberFamily, function( p, precision )
    local   str,  fam;

    if not IsPrimeInt( p ) then 
        Error( "<p> must be a prime" ); 
    fi;
    if (not IsInt( precision )) or (precision < 0) then
        Error( "<precision> must be a positive integer" );
    fi;
    if not IsBound(PADICS_FAMILIES[p]) then
        PADICS_FAMILIES[p] := [];
    fi;
    if not IsBound(PADICS_FAMILIES[p][precision]) then
        str := "PurePadicNumberFamily(";
        Append( str, String(p) );
        Append( str, "," );
        Append( str, String(precision) );
        Append( str, ")" );
        fam := NewFamily( str, IsPurePadicNumber );
        fam!.prime:= p;
        fam!.precision:= precision;
        fam!.modulus:= p^precision;
        fam!.printPadicSeries:= true;
        fam!.defaultType := NewType( fam, IsPurePadicNumber );
        PADICS_FAMILIES[p][precision] := fam;
    fi;
    return PADICS_FAMILIES[p][precision];
end );


#############################################################################
##
#M  PadicNumber( <pure-padic-family>, <list> )
##
##  Make  a pure  p-adic number  out of  a list.    A pure  p-adic  number is
##  represented as a list of  length 2 such  that the  number is p^list[1]  *
##  list[2].  It is easily guaranteed that  list[2] is never divisible by the
##  prime p.  By that we have always maximum precision.
##  
InstallMethod( PadicNumber, "for a pure p-adic family and a list",
    true,
    [ IsPurePadicNumberFamily,
      IsCyclotomicCollection ],
    0,

function( fam, list )
    if Length(list) <> 2 then
        Error( "<list> must have length 2" );
    elif not IsInt(list[1]) then
        Error( "<list>[1] must be an integer" );
    elif not IsInt(list[2]) or list[2] < 0 or list[2] >= fam!.modulus then
        Error( "<list>[2] must be an integer in {0..p^precision}" );
    fi;
    return Objectify( fam!.defaultType, Immutable(list) );
end );


#############################################################################
##
#M  PadicNumber( <pure-padic-family>, <rat> )
##
##  Make a pure p-adic number out of a rational.
##
InstallMethod( PadicNumber, "for a pure p-adic family and a rational",
    true,
    [ IsPurePadicNumberFamily,
      IsRat ],
    0,

function( fam, rat )
    local   c;

    c := Immutable( PadicExpansionByRat( rat, fam!.prime, fam!.precision ) );
    return Objectify( fam!.defaultType, c );
end );


#############################################################################
##
#M  PrintObj( <pure-padic> )
##
InstallMethod( PrintObj,
    true,
    [ IsPurePadicNumber ],
    0,

function ( x )
    local   fam;

    fam := FamilyObj(x);
    # printPadicSeries is just a boolean variable. Handy for checking
    # what REALLY happens if set to false.
    if fam!.printPadicSeries then
        PrintPadicExpansion( x![1], x![2], fam!.prime, fam!.precision );
    else
        Print( fam!.prime, "^", x![1], "*", x![2], "(" , fam!.prime , ")" );
    fi;
end );


#############################################################################
##
#M  Random( <pure-padic-family> )
##
##  This is just  something that actually returns  a pure p-adic number.  The
##  range of the  p-part is not totally covered  as it is  infinity.  But you
##  may get two pure p-adic  numbers that have no  "digit"  in common, so  by
##  adding them, one of the two vanishes.
##
InstallOtherMethod( Random,
    true,
    [ IsPurePadicNumberFamily ],
    0,

function ( fam )
    local c;

    c := [];
    c[1] := Random( -fam!.precision, fam!.precision );
    c[2] := Random( 0, fam!.modulus-1 );
    while c[2] mod fam!.prime = 0  do
        c[1] := c[1] + 1;
        c[2] := c[2] / fam!.prime;
    od;
    return Objectify( fam!.defaultType, Immutable( c ) );
end );


#############################################################################
##

#M  Zero( <pure-padic-family> )
##
InstallOtherMethod( Zero,
    true,
    [ IsPurePadicNumberFamily ],
    0,

function ( fam )
    return PadicNumber( fam, [0,0] );
end );


#############################################################################
##
#M  IsZero( <pure-padic> )
##
InstallMethod( IsZero,
    true,
    [ IsPurePadicNumber ],
    0,

function ( x )
    return x![2] = 0;
end );


########################################################################
##
#M  One( <pure-padic-family> )
##
InstallOtherMethod( One,
    true,
    [ IsPurePadicNumberFamily ],
    0,

function ( fam )
    return PadicNumber( fam, [0,1] );
end );


#############################################################################
##
#M  Valuation( <pure-padic>
##
##  The Valuation is the p-part of the p-adic number.
##
InstallMethod( Valuation,
    true,
    [ IsPurePadicNumber ],
    0,

function( x )
    if IsZero(x) then
        return infinity;
    fi;
    return x![1];
end );


#############################################################################
##

#M  AdditiveInverseOp( <pure-padic> )
##
InstallMethod( AdditiveInverseOp,
     true,
     [ IsPurePadicNumber ],
     0,

function( a )
    local   fam,  c;

    fam := FamilyObj( a );
    c := [ a![1], -a![2] mod fam!.modulus];
    return Objectify( fam!.defaultType, Immutable( c ) );
end );


#############################################################################
##
#M  InverseOp( <pure-padic> )
##
InstallMethod( InverseOp,
     true,
     [ IsPurePadicNumber ],
     0,

function( a )
    local   fam,  c;

    if IsZero(a)  then
        Error("division by zero");
    fi;
    fam:= FamilyObj( a );
    c:= [ -a![1] , 1/a![2] mod fam!.modulus ];
    return Objectify( fam!.defaultType, Immutable( c ) );
end );


#############################################################################
##
#M  <pure-padic> + <pure-padic>
##
InstallMethod( \+,
     IsIdenticalObj,
     [ IsPurePadicNumber, IsPurePadicNumber ],
     0,

function( a, b )
    local   fam,  c,  r;

    # if <a> or <b> is zero, return the other one
    if IsZero(a) then
        return b;
    fi;
    if IsZero(b) then
        return a;
    fi;
    fam:= FamilyObj( a );

    # different valuation: c[2] is NOT divisible by p!
    if a![1] < b![1] then
        c := [ a![1], 
               (a![2]+fam!.prime^(b![1]-a![1])*b![2]) mod fam!.modulus ];

    # equal valuation: c[2] MAY BE divisible by p! So check that.
    elif a![1] = b![1] then
        c := [];
        c[1] := a![1];
        c[2] := (a![2] + b![2]) mod fam!.modulus;

        # c[2] might be divisible by p
        r := c[2] mod fam!.prime;
        while (r=0) and (c[2]>1) do
            c[1] := c[1] + 1;
            c[2] := c[2] / fam!.prime;
            r := c[2] mod fam!.prime;
        od;

    # different valuation: again c[2] is NOT divisible by p!
    else
        c:= [ b![1],
              (fam!.prime^(a![1]-b![1])*a![2]+b![2]) mod fam!.modulus ];
    fi;
    return Objectify( fam!.defaultType, Immutable( c ) );
end );


#############################################################################
##
#M  <pure-padic> * <pure-padic>
##
InstallMethod( \*,
     IsIdenticalObj,
     [ IsPurePadicNumber, IsPurePadicNumber ],
     0,

function( a, b )
    local   fam,  c;

    fam:= FamilyObj( a );
    if IsZero(a) then
        c:= [0, 0];
    elif IsZero(b) then
        c:= [0, 0];
    else
        c:= [ a![1]+b![1] , a![2]*b![2] mod fam!.modulus ];
    fi;
    return Objectify( fam!.defaultType, Immutable( c ) );
end );


#############################################################################
##
#M  <pure-padic> / <pure-padic>
##
InstallMethod( \/,
     IsIdenticalObj,
     [ IsPurePadicNumber, IsPurePadicNumber ],
     0,

function( a, b )
    local   fam,  c;

    if IsZero(b) then
        Error("division by zero");
    fi;
    fam:= FamilyObj( a );
    c:= [ a![1]-b![1] , a![2]/b![2] mod fam!.modulus ];
    return Objectify( fam!.defaultType, Immutable( c ) );
end );


#############################################################################
##
#M  <pure-padic> = <pure-padic>
##
InstallMethod( \=,
     IsIdenticalObj,
     [ IsPurePadicNumber, IsPurePadicNumber ],
     0,

function( a, b )
    return (a![1] = b![1]) and (a![2] = b![2]);
end );


#############################################################################
##
#M  <pure-padic> < <pure-padic>
##
##  This is just something to keep GAP quiet
##
InstallMethod( \<,
     IsIdenticalObj,
     [ IsPurePadicNumber, IsPurePadicNumber ],
     0,

function( a, b )
    if a![1] = b![1]  then
        return a![2] < b![2];
    else
        return a![1] < b![1];
    fi;
end );


#############################################################################
##
#M  PadicExtensionNumberFamily( <p>, <precision>, <unram>, <ram> )
##
##  An   extended p-adic field  L  is given by two   polynomials h and g with
##  coeff.-lists   <unram> (for  the  unramified  part)  and <ram>  (for  the
##  ramified part). Then L  is Q_p[x,y]/(h(x),g(y)).  This function takes the
##  prime number  <p> and the two coeff.-lists  <unram> and <ram> for the two
##  polynomials.  It   is  not checked  BUT <unram>   should be  a cyclotomic
##  polynomial and <ram> should be  an Eisenstein-polynomial or [1,1].  Every
##  number  out   of  L is  represented   as   a coeff.-list   for  the basis
##  {1,x,x^2,...,y,xy,x^2y,...} of L.   <precision> is the number of "digits"
##  that all the coeff. have.
##  
InstallGlobalFunction( PadicExtensionNumberFamily,
    function( p, precision, unram, ram )
    local   str,  fam,  yem1;

    if not IsPrimeInt( p ) then 
        Error( "<p> must be a prime" ); 
    fi;
    if (not IsInt( precision )) or (precision < 0) then
        Error( "<precision> must be a positive integer" );
    fi;
    str := "PadicExtensionNumberFamily(";
    Append( str, String(p) );
    Append( str, "," );
    Append( str, String(precision) );
    Append( str, ",...)" );
    fam := NewFamily( str, IsPadicExtensionNumber );
    fam!.defaultType := NewType( fam, IsPadicExtensionNumber );
    fam!.prime       := p;
    fam!.precision   := precision;
    fam!.modulus     := p^precision;
    fam!.unramified  := unram;
    fam!.f           := Length(unram)-1;
    fam!.ramified    := ram;
    fam!.e           := Length(ram)-1;
    fam!.n           := fam!.e * fam!.f;
    fam!.M           := KroneckerProduct(
                         MultMatrixPadicNumbersByCoefficientsList(ram), 
                         MultMatrixPadicNumbersByCoefficientsList(unram) );
    fam!.B           := StructureConstantsPadicNumbers(fam!.e, fam!.f);

    yem1 := List( [1..fam!.n], i->0 );
    yem1[ (fam!.e-1) * fam!.f + 1 ] := 1;
    fam!.yem1 := Objectify( fam!.defaultType, [0, yem1] );

    fam!.printPadicSeries := true;

    return fam;
end );


#############################################################################
##
##  General  comment:    In  PadicExtensionNumberFamily  you  give   the two
##  polynomials,  that define  the  extension of  Q_p.  You have  to care for
##  yourself, that these polynomials  are  really irreducible over Q_p!   Try
##  PadicExtensionNumberFamily(3, 4, [1,1,1], [1,1]) for example.  You think
##  this is ok? It is not, because  x^2+x+1 is NOT  irreducible over Q_p. The
##  result being,  that you get non-invertible extended  p-adic numbers.  So,
##  if that happens, check your polynomials!
##


#############################################################################
##
#M  PadicNumber( <extended-padic-family>, <list> )
##
##  Make an extended p-adic number out of  a list.  An extended p-adic number
##  is represented as a list L of length 2.
##
##  L[2] is  the list of coeff. for  the  Basis {1,..,x^(f-1)*y^(e-1)} of the
##  extended p-adic field.
##
##  L[1] is a common p-part of all the coeff.
##
##  It is  NOT  guaranteed that all  or  at least one   of the coeff.  is not
##  divisible by the prime p.
##
##  For example: in PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1])
##    the number (1.2000, 0.1210)(3) may be 
##      [ 0, [ 1.2000, 0.1210 ] ]   or
##      [-1, [ 12.000, 1.2100 ] ]  here the coeff. have to be multiplied
##                                 by p^(-1)
##
##    so there may be a number (1.2, 2.2)(3) and you may ask: "Where are my 5
##    digits? There  are only two! Where  is the complain  department!"  But
##    the number is  intern: [-3, [ 0.0012, 0.0022  ] ]  and  so has in  fact
##    maximum precision.
##
##  So watch it!
##
InstallMethod( PadicNumber, "for a p-adic extension family and a list",
    true,
    [ IsPadicExtensionNumberFamily,
      IsList ],
    0,

function( fam, list )
    local   range;

    range := [ 0 .. fam!.modulus-1 ];
    if not IsInt(list[1]) then
        Error( "<list>[1] must be an integer" );
    elif not IsList(list[2]) or Length(list[2]) <> fam!.n  then
        Error( "<list>[2] must be a list of length ", fam!.n );
    elif not ForAll( list[2], x -> x in range )  then
        Error( "<list>[2] must be a list of integers in ", range );
    fi;
    return Objectify( fam!.defaultType, Immutable(list) );
end );


#############################################################################
##
#M  PadicNumber( <extended-padic-family>, <rat> )
##
##  Make an extended p-adic number  out of a rational.   That means take  the
##  result of PadicExpansionByRat  and put it at  the  first position of  the
##  coeff.list.
##
InstallMethod( PadicNumber, "for a p-adic extension family and a rational",
    true,
    [ IsPadicExtensionNumberFamily,
      IsRat ],
    0,

function( fam, rat )
    local   c,  erg;

    c := PadicExpansionByRat( rat, fam!.prime, fam!.precision );
    erg    := List( [1..fam!.n], i->0 );
    erg[1] := c[2];
    c      := [ c[1], erg ];
    return Objectify( fam!.defaultType, Immutable( c ) );
end );


#############################################################################
##
#M  PrintObj( <extended-padic> )
##
InstallMethod( PrintObj,
    true,
    [ IsPadicExtensionNumber ],
    0,

function( x )
    local   fam,  l;

    fam := FamilyObj(x);
    if fam!.printPadicSeries then
        Print( "padic(" );
        for l in [1..fam!.n-1] do
            PrintPadicExpansion( x![1], x![2][l], fam!.prime, fam!.precision );
            Print( "," );
        od;
        PrintPadicExpansion( x![1], x![2][fam!.n], fam!.prime, fam!.precision );
        Print( ")" );
    else
        Print( "padic(", fam!.prime, "^", x![1], "*", x![2], ")" );
    fi;
end );


#############################################################################
##
#M  Random( <extended-padic-family>
##
##  Again this is just something that returns an extended p-adic number.  The
##  p-part is not totally covered (just ranges from -precision to precision).
##
InstallOtherMethod( Random,
    true,
    [ IsPadicExtensionNumberFamily ],
    0,

function ( fam )
    local   c,  l;

    c := [];
    c[1] := Random( -fam!.precision, fam!.precision );
    c[2] := [];
    for l  in [ 1 .. fam!.n ] do
        c[2][l] := Random( 0, fam!.modulus-1 );
    od;
    while ForAll( c[2], x-> x mod fam!.prime = 0 ) do
        c[1] := c[1] + 1;
        c[2] := c[2] / fam!.prime;
    od;
    return Objectify( fam!.defaultType, Immutable( c ) );
end );


#############################################################################
##

#M  Zero( <extended-padic-family> )
##
InstallOtherMethod( Zero,
    true,
    [ IsPadicExtensionNumberFamily ],
    0,

function( fam )
    return Objectify( fam!.defaultType, [0, List( [1..fam!.n], i->0 )] );
end );


########################################################################
##
#M  IsZero( <extended-padic> )
##
InstallMethod( IsZero,
    true,
    [ IsPadicExtensionNumber ],
    0,

function ( x )
    if PositionNot( x![2], 0 ) > Length( x![2] ) then
        return true;
    fi;
    return false;
end );


#############################################################################
##
#M  One( <extended-padic-family> )
##
InstallOtherMethod( One,
    true,
    [ IsPadicExtensionNumberFamily ],
    0,

function( fam )
    local   c;

    c := List( [ 1 .. fam!.n ], i -> 0 );
    c[1] := 1;
    return Objectify( fam!.defaultType, [0, c] );
end );


#############################################################################
##
#M  Valuation( <extended-padic>
##
##  In an  extended p-adic field the  prime p has  valuation e (the degree of
##  the totally ramified part) and y has valuation 1. y^e  is p so this makes
##  sense.
##
##  The valuation of a sum is (in this case) the minimum of the valuations of
##  the summands. As an extended p-adic number is
##
##    SUM(i=0..(f-1)) SUM(j=0..(e-1)) a_ij x^i y^j
##
##  the valuation nu of that number is the minimum over i and j of
##
##    nu(a_ij x^i y^j)
##
##  The valuation of a product is the sum of the single valuations, so
##
##    nu(a_ij x^i y^j) = nu(a_ij) + nu(x^i) + nu(y^j)
##                     = nu(a_ij) + j
##
InstallMethod( Valuation,
    true,
    [ IsPadicExtensionNumber ],
    0,

function ( x )
    local   fam,  min,  j,  wert;

    fam := FamilyObj(x);
    min := Minimum( List([1..fam!.f], i -> Valuation(x![2][i],fam!.prime)) );
    if min <> infinity then
        min := fam!.e * min;
    fi;
    for j in [1..fam!.e-1] do
        wert := Minimum( List( [1..fam!.f], i ->
                    Valuation(x![2][i+j*fam!.f], fam!.prime) ) );
        if wert <> infinity then
            wert := fam!.e * wert + j;
        fi;
        if wert < min then
            min := wert;
        fi;
    od;
    if min <> infinity then
        min := min + x![1] * fam!.e;
    fi;
    return min;
end );


#############################################################################
##

#M  AdditiveInverseOp( <extended-padic> )
##
InstallMethod( AdditiveInverseOp,
     true,
     [ IsPadicExtensionNumber ],
     0,

function( a )
    local   fam,  c;

    fam := FamilyObj( a );
    c := [ a![1], List( a![2], x -> (-x) mod fam!.modulus ) ];
    return Objectify( fam!.defaultType, Immutable( c ) );
end );


#############################################################################
##
#M  InverseOp( <extended-padic> )
##
InstallMethod( InverseOp,
    true,
    [ IsPadicExtensionNumber ],
    0,

function(x)
    local   fam,  val,  coeffppart,  coeffypart,  ppart,  z,  L,  k,  j,  
            Lp,  E,  Beta,  ppot,  Beta_k,  c,  addppart;

    if IsZero(x)  then
        Error( "<x> must be non-zero" );
    fi;
    fam := FamilyObj(x);
    # need a copy of x later:
    z := Objectify( fam!.defaultType, [x![1], ShallowCopy(x![2])] );

    # if x = [ppart, [x_1,...,x_n]] then 
    # Valuation(x) = ppart*fam!.e + coeffppart*fam!.e + coeffypart
    val := Valuation(x);
    if fam!.e > 1 then
        coeffypart := val mod fam!.e;
    else
        coeffypart := 0;
    fi;
    ppart := x![1];
    coeffppart := (val - ppart*fam!.e - coeffypart) / fam!.e;
    # so x = p^(ppart + coeffppart) * y^coeffypart * z 
    # and z is divisable neither by y nor by p, so it has Valuation 0
    # and can be inverted.
    # We don't have y^(-1) but y^(e-1) which is p*y^(-1) 
    # so z = x * y^(e-1)^coeffypart * p^(-ppart-coeffppart-coeffypart).
    # at least there is the coeffppart in z![2]:
    if coeffppart > 0 then
        z![1] := z![1] + coeffppart;
        z![2] := z![2] / fam!.prime^coeffppart;
    fi;
    addppart := 0;
    if coeffypart > 0 then
        z := z * fam!.yem1^coeffypart;
        # BUT by multiplying with y^(e-1) one may get additional p-parts
        # in the coeffs
        while ForAll( z![2], y -> y mod fam!.prime = 0 ) do
            addppart := addppart + 1;
            z![1] := z![1] + 1;
            z![2] := z![2] / fam!.prime;
        od;
    fi;
    # z![1] := z![1] - ppart - coeffppart - coeffypart - addppart;

    # NOW z![2] has an entry that is not divisible by p and L should be
    # invertible
    L := [];
    for k in [1..fam!.n] do
        L[k] := [];
        for j in [1..fam!.n] do
            L[k][j]:=Sum(List([1..fam!.n], 
                             i -> z![2][i] * fam!.M[ fam!.B[i][j] ][ k ] ));
        od;
    od;

    Lp := InverseMatMod(L, fam!.prime);

    # E is the right side (1,0,...,0) and Beta is just (0,...,0)
    E := List([1..fam!.n], i->0);
    Beta := ShallowCopy(E);
    E[1] := 1;
    ppot := 1;

    # now solve L * Beta = E mod p:
    for k in [0..fam!.precision-1-coeffppart] do
        Beta_k := List( Lp * E, x -> x mod fam!.prime );
        Beta := Beta + Beta_k * ppot;
        E := (E - L * Beta_k) / fam!.prime;
        ppot := ppot * fam!.prime;
    od;
    c := [];
    c[1] := -z![1];
    c[2] := Beta;

    # as z^(-1) is now calculated, the formula above gives
    # x^(-1) = z^(-1) * y^(e-1)^m * p^(-ppart-coeffppart-coeffypart)
    c[1] := c[1] - coeffppart - addppart;
    c[2] := c[2] * fam!.prime^(coeffppart + addppart);
    c[2] := List( c[2], x -> x mod fam!.modulus );
    Objectify( fam!.defaultType, c );
    return ( c * fam!.yem1^coeffypart );
end );


#############################################################################
##
#M  <extended-padic> + <extended-padic>
##
InstallMethod( \+,
     IsIdenticalObj,
     [ IsPadicExtensionNumber,
       IsPadicExtensionNumber ],
     0,

function( x, y )
    local   fam,  ppot,  c;

    if IsZero(y) then
        return x;
    elif IsZero(x) then
        return y;
    fi;
    fam:= FamilyObj( x );
    ppot := Minimum( x![1], y![1] );
    c := [];
    c[1] := ppot;
    c[2] := fam!.prime^(x![1]-ppot)*x![2] + fam!.prime^(y![1]-ppot)*y![2];
    c[2] := List( c[2], x -> x mod fam!.modulus );
    return Objectify( fam!.defaultType, Immutable( c ) );
end );


#############################################################################
##
#M  <extended-padic> - <extended-padic>
##
InstallMethod( \-,
     IsIdenticalObj,
     [ IsPadicExtensionNumber,
       IsPadicExtensionNumber ],
     0,

function( x, y )
    local   fam,  ppot,  c;

    if IsZero(y) then
        return x;
    elif IsZero(x) then
        return y;
    fi;
    fam:= FamilyObj( x );
    ppot := Minimum( x![1], y![1] );
    c := [];
    c[1] := ppot;
    c[2] := fam!.prime^(x![1]-ppot)*x![2] - fam!.prime^(y![1]-ppot)*y![2];
    c[2] := List( c[2], x -> x mod fam!.modulus );
    return Objectify( fam!.defaultType, Immutable( c ) );
end );


#############################################################################
##
#M  <pure-padic> * <extended-padic>
##
InstallMethod( \*,
     true,
     [ IsPurePadicNumber,
       IsPadicExtensionNumber ],
     0,

function( a, x )
    local   Qpxy,  Qp,  c;

    Qpxy := FamilyObj(x);
    Qp   := FamilyObj(a);
    if Qpxy!.prime <> Qp!.prime then
        Error( "different primes" );
    fi;
    if Qpxy!.precision <> Qp!.precision  then
        Error( "different precision" );
    fi;
    c := [ a![1] + x![1] ];
    c[2] := List( a![2] * x![2], x -> x mod Qpxy!.modulus );
    return Objectify( Qpxy!.defaultType, Immutable( c ) );
end );


#############################################################################
##
#M  <extended-padic> * <pure-padic>
##
InstallMethod( \*,
     true,
     [ IsPadicExtensionNumber,
       IsPurePadicNumber ],
     0,

function( x, a )
    local   Qpxy,  Qp,  c;

    Qpxy := FamilyObj(x);
    Qp   := FamilyObj(a);
    if Qpxy!.prime <> Qp!.prime then
        Error( "different primes" );
    fi;
    if Qpxy!.precision <> Qp!.precision  then
        Error( "different precision" );
    fi;
    c := [ a![1] + x![1] ];
    c[2] := List( x![2] * a![2], x -> x mod Qpxy!.modulus );
    return Objectify( Qpxy!.defaultType, Immutable( c ) );
end );


#############################################################################
##
#M  <extended-padic> * <extended-padic>
##
InstallMethod( \*,
     IsIdenticalObj,
     [ IsPadicExtensionNumber,
       IsPadicExtensionNumber ],
     0,

function (a, b)
    local   fam,  vec,  addvec,  bj,  bi,  aj,  ai,  c;

    fam := FamilyObj( a );

    ## zwei Nullvektoren der Laenge (2f-1)(2e-1):
    vec := List( [1..(2*fam!.f-1)*(2*fam!.e-1)], i->0 ); 
    addvec := List( [1..(2*fam!.f-1)*(2*fam!.e-1)], i->0 ); 

    ## Koeff. von b eintragen
    for bj in [1..fam!.e] do
        for bi in [1..fam!.f] do
            vec[ (bj-1)*(2*fam!.f-1) + bi ] := b![2][ (bj-1)*fam!.f + bi ];
        od;
    od;

    ## Das eigentliche Multiplizieren:
    for aj in [1..fam!.e] do
        for ai in [1..fam!.f] do
            addvec := addvec + vec * a![2][ (aj-1)*fam!.f + ai ];
            vec := ShiftedCoeffs( vec, 1 );
        od;
        vec := ShiftedCoeffs( vec, fam!.f-1 );
    od;
    c := [ a![1] + b![1], List(addvec * fam!.M, x -> x mod fam!.modulus) ];
    return Objectify( fam!.defaultType, Immutable( c ) );
end );


#############################################################################
##
#M  <extended-padic> = <extended-padic>
##
InstallMethod( \=,
     IsIdenticalObj,
     [ IsPadicExtensionNumber,
       IsPadicExtensionNumber ],
     0,

function( a, b )
    local   fam;

    if IsZero(a)  then
        return IsZero(b);
    elif IsZero(b)  then
        return false;
    fi;
    # A little work is needed, because p^1 * 10 is equal to one
    fam := FamilyObj(a);
    a := [ a![1], ShallowCopy(a![2]) ];
    b := [ b![1], ShallowCopy(b![2]) ];
    while ForAll( a[2], z -> z mod fam!.prime = 0 ) do
        a[2] := a[2] / fam!.prime;
        a[1] := a[1] + 1;
    od;
    while ForAll( b[2], z -> z mod fam!.prime = 0 ) do
        b[2] := b[2] / fam!.prime;
        b[1] := b[1] + 1;
    od;
    return (a[1] = b[1]) and (a[2] = b[2]);
end );


#############################################################################
##
#M  <extended-padic> < <extended-padic>
##
##  Again just something to have it.
##
InstallMethod( \<,
     IsIdenticalObj,
     [ IsPadicExtensionNumber,
       IsPadicExtensionNumber ],
     0,

function( a, b )
    local   fam;

    if IsZero(a)  then
        return not IsZero(b);
    elif IsZero(b)  then
        return false;
    fi;
    fam := FamilyObj(a);
    a := [ a![1], ShallowCopy(a![2]) ];
    b := [ b![1], ShallowCopy(b![2]) ];
    while ForAll( a[2], z -> z mod fam!.prime = 0 ) do
        a[2] := a[2] / fam!.prime;
        a[1] := a[1] + 1;
    od;
    while ForAll( b[2], z -> z mod fam!.prime = 0 ) do
        b[2] := b[2] / fam!.prime;
        b[1] := b[1] + 1;
    od;
    if a[1] = b[1]  then
        return a[2] < b[2];
    else
        return a[1] < b[1];
    fi;
end );


#############################################################################
##

#E  padics.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##