/usr/share/gap/lib/pcgscomp.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | #############################################################################
##
#W pcgscomp.gi GAP Library Frank Celler
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for polycylic generating systems dealing
## with or defined by a pc series.
##
#############################################################################
##
#M PcgsByPcSequenceNC( <fam>, <pcs> )
##
#############################################################################
InstallMethod( PcgsByPcSequenceNC, "pc series", true,
[ IsFamily, IsHomogeneousList ], 0,
function( efam, pcs )
local pcgs;
# quick check
if not IsIdenticalObj( efam, ElementsFamily(FamilyObj(pcs)) ) then
Error( "elements family of <pcs> does not match <efam>" );
fi;
# construct a pcgs
pcgs := PcgsByPcSequenceCons(
IsPcgsDefaultRep,
IsPcgs,
efam,
pcs,[] );
# that it
return pcgs;
end );
#############################################################################
InstallMethod( PcgsByPcSequenceNC, "pc series, empty sequence", true,
[ IsFamily, IsList and IsEmpty ], 0,
function( efam, pcs )
local pcgs;
# construct a pcgs
pcgs := PcgsByPcSequenceCons(
IsPcgsDefaultRep, IsPcgs, efam, pcs,[] );
# that it
return pcgs;
end );
#############################################################################
##
#M PcgsByPcSequence( <fam>, <pcs> )
##
#############################################################################
InstallMethod( PcgsByPcSequence,
true,
[ IsFamily,
IsHomogeneousList ],
0,
function( efam, pcs )
#T 96/09/26 fceller do some checks
return PcgsByPcSequenceNC( efam, pcs );
end );
#############################################################################
InstallMethod( PcgsByPcSequence,
true,
[ IsFamily,
IsList and IsEmpty ],
0,
function( efam, pcs )
#T 96/09/26 fceller do some checks
return PcgsByPcSequenceNC( efam, pcs );
end );
#############################################################################
##
#M Pcgs( <grp> ) . . . . . . . . . . . . . . . . . . . . . . pcgs for groups
##
InstallMethod( Pcgs,
"generic method using CompositionSeries",
true,
#T Why was 'IsFinite' required here? This gave this method a higher value it
#T deserved
[ IsGroup],0,
function( grp )
local series, pcgs, orders, i, elm, o;
if HasIsFinite(grp) and not IsFinite(grp) then
Error("requires group to be finite!");
fi;
series := CompositionSeries(grp);
pcgs := [];
orders := [];
for i in [ 1 .. Length(series)-1 ] do
o := Index(series[i],series[i+1]);
if not IsPrime(o) then
Error( "finite group <grp> is not polycyclic" );
fi;
Add( orders, o );
repeat
elm := Random(series[i]);
until not elm in series[i+1];
Add( pcgs, elm );
od;
pcgs := PcgsByPcSequenceNC( FamilyObj(One(grp)), pcgs );
SetPcSeries( pcgs, series );
SetOneOfPcgs( pcgs, One(grp) );
SetRelativeOrders( pcgs, orders );
SetGroupOfPcgs (pcgs, grp);
return pcgs;
end );
#############################################################################
##
#M ExponentsOfPcElement( <pcgs>, <elm> )
##
InstallMethod( ExponentsOfPcElement, "pc series", IsCollsElms,
[ IsPcgs, IsObject ], 0,
function( pcgs, elm )
local series, exps, id, depth, exp,ml;
series := PcSeries(pcgs);
exps := ListWithIdenticalEntries(Length(pcgs),0);
id := OneOfPcgs(pcgs);
depth := 1;
ml:=Length(pcgs)+1;
while elm <> id do
while elm in series[depth] do
depth := depth + 1;
od;
exp := 0;
repeat
exp := exp+1;
if depth<2 or depth>ml then
return fail;
fi;
elm := LeftQuotient( pcgs[depth-1], elm );
until elm in series[depth];
exps[depth-1] := exp;
od;
return exps;
end );
#############################################################################
##
#M RelativeOrders( <pcgs> )
##
InstallMethod( RelativeOrders, "pc series", true, [ IsPcgs ], 0,
function( pcgs )
local ord, pcs, i;
ord := [];
pcs := PcSeries(pcgs);
for i in [ 1 .. Length(pcs)-1 ] do
Add( ord, Size(pcs[i]) / Size(pcs[i+1]) );
od;
return ord;
end );
#############################################################################
##
#M PcSeries( <pcgs> )
##
InstallMethod( PcSeries,"construct subgroups", true, [ IsPcgs ], 0,
function( pcgs )
local grp, series, i;
# construct the group generated by <pcgs>
#T 1996/10/01 fceller something seems to break for Difference or Set
#T grp := GroupByGenerators( pcgs, One(pcgs) );
#T seems to work now, 1998/12/09 sam
grp := GroupOfPcgs(pcgs);
# construct the series
series := [ grp ];
for i in [ 2 .. Length(pcgs)+1 ] do
Add( series, SubgroupByPcgs( grp,
InducedPcgsByPcSequenceNC(pcgs,pcgs{[ i .. Length(pcgs) ]} ) ));
od;
return series;
end );
#############################################################################
##
#E
##
|