/usr/share/gap/lib/permdeco.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 | #############################################################################
##
#W permdeco.gi GAP library Alexander Hulpke
##
##
#Y Copyright (C) 2004 The GAP Group
##
## This file contains functions that deal with action on chief factors or
## composition factors and the representation of such groups in a nice way
## as permutation groups.
##
InstallMethod( FittingFreeLiftSetup, "permutation", true, [ IsPermGroup ],0,
function( G )
local pcgs,r,hom,A,iso,p,i;
r:=RadicalGroup(G);
hom:=NaturalHomomorphismByNormalSubgroup(G,r);
pcgs := TryPcgsPermGroup( G,r, false, false, true );
if not IsPcgs( pcgs ) then
return fail;
fi;
if not HasPcgsElementaryAbelianSeries(r) then
SetPcgsElementaryAbelianSeries(r,pcgs);
fi;
A:=CreateIsomorphicPcGroup(pcgs,true,false);
iso := GroupHomomorphismByImagesNC( G, A, pcgs, GeneratorsOfGroup( A ));
SetIsBijective( iso, true );
return rec(pcgs:=pcgs,
depths:=IndicesEANormalSteps(pcgs),
radical:=r,
pcisom:=iso,
factorhom:=hom);
end );
#testfunction for AutomorphismRepresentingGroup
#test:=function(start)
#local it,g,a,r;
# it:=SimpleGroupsIterator(start:NOPSL2);
# repeat
# g:=NextIterator(it);
# Print("@ Trying ",g," ",Size(g),"\n");
# a:=AutomorphismGroup(g);
# r:=AutomorphismRepresentingGroup(g,GeneratorsOfGroup(a));
# Print("@ Got ",NrMovedPoints(r[1])," from ",NrMovedPoints(g),"\n");
# until false;
#end;
InstallGlobalFunction(AutomorphismRepresentingGroup,function(G,autos)
local G0,a0,tryrep,sel,selin,a,s,dom,iso,stabs,outs,map,i,j,p,found,seln,
sub,d;
tryrep:=function(rep,bound)
local Gi,repi,maps,v,w,cen,hom;
Gi:=Image(rep,G);
if not IsSubset(MovedPoints(Gi),[1..LargestMovedPoint(Gi)]) then
rep:=rep*ActionHomomorphism(Gi,MovedPoints(Gi),"surjective");
Gi:=Image(rep,G);
fi;
Info(InfoGroup,2,"Trying degree ",NrMovedPoints(Gi));
repi:=InverseGeneralMapping(rep);
maps:=List(sel,x->repi*autos[x]*rep);
for v in maps do
SetIsBijective(v,true);
od;
if ForAll(maps,IsConjugatorAutomorphism) then
# the representation extends
v:=List( maps, ConjugatorOfConjugatorIsomorphism );
w:=ClosureGroup(Gi,v);
Info(InfoGroup,1,"all conjugator degree ",NrMovedPoints(w));
maps:=[];
maps{sel}:=v;
maps{selin}:=List(selin,x->
Image(rep,
ConjugatorOfConjugatorIsomorphism(autos[x])));
cen:=Centralizer(w,Gi);
if Size(cen)=1 then
return [w,rep,maps];
else
Info(InfoGroup,2,"but centre");
hom:=NaturalHomomorphismByNormalSubgroupNC(w,cen);
if IsPermGroup(Image(hom)) and
NrMovedPoints(Image(hom))<=bound then
#Print("QQQ\n");
return [Image(hom,w),rep*hom,List(maps,x->Image(hom,x))];
fi;
fi;
else
Info(InfoGroup,2,"Does not work");
fi;
return fail;
end;
selin:=Filtered([1..Length(autos)],x->IsInnerAutomorphism(autos[x]));
sel:=Difference([1..Length(autos)],selin);
# first try given rep
if NrMovedPoints(G)^3>Size(G) then
# likely too high degree. Try to reduce first
a:=SmallerDegreePermutationRepresentation(G);
a:=tryrep(a,4*NrMovedPoints(Image(a)));
elif not IsSubset(MovedPoints(G),[1..LargestMovedPoint(G)]) then
a:=tryrep(ActionHomomorphism(G,MovedPoints(G),"surjective"),
4*NrMovedPoints(G));
else
a:=tryrep(IdentityMapping(G),4*NrMovedPoints(G));
if a=fail and ForAll(autos,IsConjugatorAutomorphism) then
a:=tryrep(SmallerDegreePermutationRepresentation(G),4*NrMovedPoints(G));
fi;
fi;
if a<>fail then return a;fi;
# then (assuming G simple) try transitive action of small degree
dom:=Set(Orbit(G,LargestMovedPoint(G)));
s:=Blocks(G,dom);
if Length(s)=1 then
if Set(dom)=[1..Length(dom)] then
Info(InfoGroup,2,"reduction is equal to G");
iso:=fail;
else
Info(InfoHomClass,2,"point action");
iso:=ActionHomomorphism(G,dom,"surjective");
fi;
else
Info(InfoHomClass,2,"block refinement");
iso:=ActionHomomorphism(G,s,OnSets,"surjective");
fi;
if iso<>fail then
# try the new rep
a:=tryrep(iso,4*NrMovedPoints(G));
if a<>fail then return a;fi;
# otherwise go to new small deg rep
G:=Image(iso,G);
autos:=List(autos,x->InverseGeneralMapping(iso)*x*iso);
fi;
# test the automorphisms that are not conjugator
seln:=Filtered(sel,x->not IsConjugatorAutomorphism(autos[x]));
# autos{seln} generates the non-perm automorphism group. Enumerate
# use that automorphism is conjugator is stabilizer is conjugate
stabs:=[Stabilizer(G,1)];
outs:=[IdentityMapping(G)];
i:=1;
while i<=Length(stabs) do
for j in seln do
map:=outs[i]*autos[j];
sub:=Image(autos[j],stabs[i]);
p:=0;
found:=fail;
while found=fail and p<Length(stabs) do
p:=p+1;
found:=RepresentativeAction(G,sub,stabs[p]);
od;
if found=fail then
# new copy
Add(stabs,sub);
Add(outs,map);
fi;
od;
i:=i+1;
od;
Info(InfoGroup,1,"Build ",Length(outs)," copies");
if Length(stabs)=1 then
# the group is given in a representation in which there is a centralizer
# in Sn
a:=tryrep(IdentityMapping(G),infinity);
return a;
Error("why only one -- should have been found before");
fi;
d:=DirectProduct(List(stabs,x->G));
p:=[];
for i in GeneratorsOfGroup(G) do
a:=One(d);
for j in [1..Length(stabs)] do
a:=a*Image(Embedding(d,j),Image(outs[j],i));
od;
Add(p,a);
od;
a:=Subgroup(d,p);
SetSize(a,Size(G));
p:=GroupHomomorphismByImagesNC(G,a,GeneratorsOfGroup(G),p);
a:=tryrep(p,4*NrMovedPoints(G));
if a<>fail then
if iso<>fail then
a[2]:=iso*a[2];
fi;
return a;
fi;
Info(InfoGroup,1,"Wreath embedding failed");
Error("This should never happen");
end);
InstallGlobalFunction(EmbedAutomorphisms,function(arg)
local G,H,tg,th,hom, tga, Gemb, C, outs, auts, ar, Hemb;
G:=arg[1];
H:=arg[2];
tg:=arg[3];
th:=arg[4];
if Length(arg)>4 then
outs:=arg[4];
else
outs:=fail;
fi;
if th=tg then
hom:=IdentityMapping(tg);
else
hom:=IsomorphismGroups(th,tg);
fi;
if hom=fail then
Error("nonisomorphic simple groups!");
fi;
tga:=List(GeneratorsOfGroup(H),
i->GroupHomomorphismByImagesNC(tg,tg,
GeneratorsOfGroup(tg),
List(GeneratorsOfGroup(tg),
j->Image(hom,PreImagesRepresentative(hom,j)^i))));
Gemb:=fail;
if ForAll(tga,IsConjugatorAutomorphism) then
Info(InfoHomClass,4,"All automorphism are conjugator");
C:=ClosureGroup(G,List(tga,ConjugatorInnerAutomorphism));
#reco:=ConstructiveRecognitionAlmostSimpleGroupTom(tg);
if outs=fail then
outs:=Size(AutomorphismGroup(tg))/Size(tg);
fi;
if Size(C)/Size(tg)=outs then
Info(InfoHomClass,2,"Automorphisms realize full automorphism group");
Gemb:=IdentityMapping(G);
G:=C;
tga:=List(tga,ConjugatorInnerAutomorphism);
fi;
fi;
if Gemb=fail then
# not all realizable or too small -> build new group
Info(InfoHomClass,2,"Compute full automorphism group");
auts:=AutomorphismGroup(tg);
auts:=GeneratorsOfGroup(auts);
ar:=AutomorphismRepresentingGroup(tg,Concatenation(
auts,
List(GeneratorsOfGroup(G),i->ConjugatorAutomorphism(tg,i)),
tga));
tga:=ar[3]{[Length(ar[3])-Length(tga)+1..Length(ar[3])]};
Gemb:=GroupHomomorphismByImagesNC(G,ar[1],GeneratorsOfGroup(G),
ar[3]{[Length(auts)+1..Length(auts)+Length(GeneratorsOfGroup(G))]});
G:=ar[1];
else
Gemb:=IdentityMapping(G);
fi;
Hemb:=GroupHomomorphismByImagesNC(H,Group(tga),GeneratorsOfGroup(H),tga);
return [G,Gemb,Hemb];
end);
InstallGlobalFunction(WreathActionChiefFactor,
function(G,M,N)
local cs,i,k,u,o,norm,T,Thom,autos,ng,a,Qhom,Q,E,Ehom,genimages,
n,w,embs,reps,act,img,gimg,gens;
# get the simple factor(s)
cs:=CompositionSeries(M);
# the cs with N gives a cs for M/N.
# take the first subnormal subgroup that is not in N. This will be the
# subgroup
i:=Length(cs);
u:=fail;
while u=fail and i>0 do
if not IsSubset(N,cs[i]) then
u:=ClosureGroup(N,cs[i]);
fi;
i:=i-1;
od;
o:=OrbitStabilizer(G,u);
norm:=o.stabilizer;
o:=o.orbit;
n:=Length(o);
Info(InfoHomClass,1,"Factor: ",Index(u,N),"^",n);
Qhom:=ActionHomomorphism(G,o,"surjective");
Q:=Image(Qhom,G);
Thom:=NaturalHomomorphismByNormalSubgroup(u,N);
T:=Image(Thom);
# get the induced automorphism action
ng:=SmallGeneratingSet(norm);
autos:=List(ng,i->GroupHomomorphismByImagesNC(T,T,
GeneratorsOfGroup(T),
List(GeneratorsOfGroup(T),
j->Image(Thom,PreImagesRepresentative(Thom,j)^i))));
a:=AutomorphismRepresentingGroup(T,autos);
Thom:=GroupHomomorphismByImagesNC(norm,a[1],ng,a[3]);
a:=a[1];
# now embed into wreath
w:=WreathProduct(a,Q);
embs:=List([1..n+1],i->Embedding(w,i));
# define isomorphisms between the components
reps:=List([1..n],i->
PreImagesRepresentative(Qhom,RepresentativeAction(Q,1,i)));
genimages:=[];
for i in GeneratorsOfGroup(G) do
img:=Image(Qhom,i);
gimg:=Image(embs[n+1],img);
for k in [1..n] do
# look at part of i's action on the k-th factor.
# we get this by looking at the action of
# reps[k] * i * reps[k^img]^-1
# 1 -> k -> k^img -> 1
# on the first component.
act:=reps[k]*i*(reps[k^img]^-1);
# this must be multiplied *before* permuting
gimg:=ImageElm(embs[k],ImageElm(Thom,act))*gimg;
od;
#gimg:=RestrictedPermNC(gimg,MovedPoints(w));
Add(genimages,gimg);
od;
E:=Subgroup(w,genimages);
# allow also mapping of `a' by enlarging
gens:=GeneratorsOfGroup(G);
if AssertionLevel()>0 then
Ehom:=GroupHomomorphismByImages(G,w,gens,genimages);
Assert(1,fail<>Ehom);
else
Ehom:=GroupHomomorphismByImagesNC(G,w,gens,genimages);
fi;
return [w,Ehom,a,Image(Thom,u),n];
end);
#############################################################################
##
#F PermliftSeries( <G> )
##
InstallGlobalFunction(PermliftSeries,function(G)
local limit, r, pcgs, ser, ind, m, p, l, l2, good, i, j,nser,hom;
# Do we limit factor size?
limit:=ValueOption("limit");
if HasStoredPermliftSeries(G) then
ser:=StoredPermliftSeries(G);
if limit=fail or ForAll([2..Length(ser[1])],
i->Size(ser[1][i-1])/Size(ser[1][i])<=limit) then
return ser;
fi;
fi;
# it seems to be cleaner (and avoids deferring abelian factors) if we
# factor out the radical first. (Note: The radical method for perm groups
# stores the nat hom.!)
r:=RadicalGroup(G);
if Size(r)=1 then
return [[r],false];
fi;
# try to improve the representation of G/r
hom:=NaturalHomomorphismByNormalSubgroup(G,r);
if IsPermGroup(Range(hom)) then
hom:=hom*SmallerDegreePermutationRepresentation(Range(hom));
fi;
AddNaturalHomomorphismsPool(G,r,hom);
# first try whether the pcgs found
# is good enough
pcgs:=PcgsElementaryAbelianSeries(r);
ser:=EANormalSeriesByPcgs(pcgs);
if not ForAll(ser,i->IsNormal(G,i)) then
# we have to get a better series
# do we want to reduce the degree?
m:=fail;
if IsPermGroup(r) then
m:=ReducedPermdegree(r);
fi;
if m<>fail then
p:=Image(m);
ser:=InvariantElementaryAbelianSeries(p, List( GeneratorsOfGroup( G ),
i -> GroupHomomorphismByImagesNC(p,p,GeneratorsOfGroup(p),
List(GeneratorsOfGroup(p),
j->Image(m,PreImagesRepresentative(m,j)^i)))),
TrivialSubgroup(p),true);
ser:=List(ser,i->PreImage(m,i));
else
ser:=InvariantElementaryAbelianSeries(r, List( GeneratorsOfGroup( G ),
i -> ConjugatorAutomorphismNC( r, i ) ),
TrivialSubgroup(G),true);
fi;
# remember there is no universal parent pcgs
pcgs:=false;
ind:=false;
else
ind:=IndicesEANormalSteps(pcgs);
pcgs:=List([1..Length(ind)],
i->InducedPcgsByPcSequenceNC(pcgs,pcgs{[ind[i]..Length(pcgs)]}));
fi;
if limit<>fail then
nser:=[ser[1]];
for i in [2..Length(ser)] do
if Size(ser[i-1])/Size(ser[i])>limit then
m:=ModuloPcgs(ser[i-1],ser[i]);
p:=RelativeOrders(m)[1];
l:=GModuleByMats(LinearActionLayer(G,m),GF(p));
l:=MTX.BasesCompositionSeries(l);
l2:=[[]];
good:=false;
for j in [1..Length(l)] do
if p^(Length(l[j])-Length(l2[Length(l2)]))>limit then
if Length(good)>0 then
Add(l2,good);
fi;
fi;
good:=l[j];
od;
l2:=List(l2,i->List(i,j->PcElementByExponentsNC(m,j)));
l2:=List(l2,j->ClosureGroup(ser[i],j));
pcgs:=false; # if there was a pcgs is it wrong now
Append(nser,Reversed(l2));
else
Add(nser,ser[i]);
fi;
od;
if nser<>ser then
ser:=nser;
fi;
fi;
ser:=[ser,pcgs];
if not HasStoredPermliftSeries(G) then
SetStoredPermliftSeries(G,ser);
fi;
return ser;
end);
InstallMethod(StoredPermliftSeries,true,[IsGroup],0,PermliftSeries);
InstallGlobalFunction(EmbeddingWreathInWreath,function(wnew,w,emb,start)
local info, a, ai, n, gens, imgs, e, e2, shift, hom, i, j;
info:=WreathProductInfo(w);
a:=GeneratorsOfGroup(info.groups[1]);
ai:=List(a,i->Image(emb,i));
n:=Length(info.components);
gens:=[];
imgs:=[];
# base
for i in [1..n] do
e:=Embedding(w,i);
e2:=Embedding(wnew,i+start-1);
for j in [1..Length(a)] do
Add(gens,Image(e,a[j]));
Add(imgs,Image(e2,ai[j]));
od;
od;
# complement embeddings
e:=Embedding(w,n+1);
e2:=Embedding(wnew,Length(WreathProductInfo(wnew).components)+1);
shift:=MappingPermListList([1..n],[start..start+n-1]);
for j in GeneratorsOfGroup(info.groups[2]) do
Add(gens,Image(e,j)); # component permutation in w
Add(imgs,Image(e2,j^shift));
od;
hom:=GroupHomomorphismByImages(w,wnew,gens,imgs);
return hom;
end);
InstallGlobalFunction(EmbedFullAutomorphismWreath,function(w,a,t,n)
local au, agens, agau, a2, w2, ogens, ngens, oe, ne, emb, i, j;
IsNaturalAlternatingGroup(t);
au:=AutomorphismGroup(t);
agens:=GeneratorsOfGroup(a);
agau:=List(agens,i->ConjugatorAutomorphism(t,i));
a2:=AutomorphismRepresentingGroup(t,
# this way we get the images easily
Concatenation(agau,GeneratorsOfGroup(au)));
agau:=a2[3]{[1..Length(agau)]};
if Index(a,t)=1 then
agau:=a2[2];
else
agau:=GroupHomomorphismByImagesNC(a,a2[1],agens,agau);
fi;
w2:=WreathProduct(a2[1],Image(Projection(w)));
ogens:=[];
ngens:=[];
# for all w-generators take the corresponding w2 generators
for i in [1..n+1] do
oe:=Embedding(w,i);
ne:=Embedding(w2,i);
for j in GeneratorsOfGroup(Source(oe)) do
Add(ogens,Image(oe,j));
if i<=n then
Add(ngens,Image(ne,Image(agau,j)));
else
Add(ngens,Image(ne,j));
fi;
od;
od;
emb:=GroupHomomorphismByImagesNC(w,w2,ogens,ngens);
return [emb,w2,a2[1],Image(a2[2])];
end);
#############################################################################
##
#E permdeco.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
|