/usr/share/gap/lib/polyconw.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | #############################################################################
##
#W polyconw.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of functions and data around
## Conway polynomials.
##
###############################################################################
##
#F PowerModEvalPol( <f>, <g>, <xpownmodf> )
##
## <ManSection>
## <Func Name="PowerModEvalPol" Arg='f, g, xpownmodf'/>
##
## <Description>
## computes the coefficients list of the polynomial <M>g( x^n ) \bmod f</M>,
## for the given coefficients lists of the two polynomials <M>f</M> and
## <M>g</M>, and the coefficients list of <M>x^n \bmod f</M>.
## <P/>
## We evaluate <M>g</M> at <M>x^n \bmod f</M>, and use Horner's method and
## reduction modulo <M>f</M> for computing the result.
## If <M>g = \sum_{i=0}^k g_i x^i</M> then we compute
## <M>( \cdots (((c_k x^n + c_{k-1}) x^n + c_{k-2}) x^n + c_{k-3}) x^n
## + \cdots ) x^n + c_0</M>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "PowerModEvalPol" );
############################################################################
##
#F ConwayPol( <p>, <n> ) . . . . . <n>-th Conway polynomial in charact. <p>
##
## <ManSection>
## <Func Name="ConwayPol" Arg='p, n'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ConwayPol" );
############################################################################
##
#F ConwayPolynomial( <p>, <n> ) . <n>-th Conway polynomial in charact. <p>
##
## <#GAPDoc Label="ConwayPolynomial">
## <ManSection>
## <Func Name="ConwayPolynomial" Arg='p, n'/>
##
## <Description>
## is the Conway polynomial of the finite field <M>GF(p^n)</M> as
## polynomial over the prime field in characteristic <A>p</A>.
## <P/>
## The <E>Conway polynomial</E> <M>\Phi_{{n,p}}</M> of <M>GF(p^n)</M>
## is defined by the following properties.
## <P/>
## First define an ordering of polynomials of degree <M>n</M> over
## <M>GF(p)</M>, as follows.
## <M>f = \sum_{{i = 0}}^n (-1)^i f_i x^i</M> is smaller than
## <M>g = \sum_{{i = 0}}^n (-1)^i g_i x^i</M> if and only if there is an index
## <M>m \leq n</M> such that <M>f_i = g_i</M> for all <M>i > m</M>, and
## <M>\tilde{{f_m}} < \tilde{{g_m}}</M>,
## where <M>\tilde{{c}}</M> denotes the integer value in
## <M>\{ 0, 1, \ldots, p-1 \}</M> that is mapped to <M>c \in GF(p)</M> under
## the canonical epimorphism that maps the integers onto <M>GF(p)</M>.
## <P/>
## <M>\Phi_{{n,p}}</M> is <E>primitive</E> over <M>GF(p)</M>
## (see <Ref Func="IsPrimitivePolynomial"/>).
## That is, <M>\Phi_{{n,p}}</M> is irreducible, monic,
## and is the minimal polynomial of a primitive root of <M>GF(p^n)</M>.
## <P/>
## For all divisors <M>d</M> of <M>n</M> the compatibility condition
## <M>\Phi_{{d,p}}( x^{{\frac{{p^n-1}}{{p^m-1}}}} ) \equiv 0
## \pmod{{\Phi_{{n,p}}(x)}}</M>
## holds. (That is, the appropriate power of a zero of <M>\Phi_{{n,p}}</M>
## is a zero of the Conway polynomial <M>\Phi_{{d,p}}</M>.)
## <P/>
## With respect to the ordering defined above, <M>\Phi_{{n,p}}</M> shall be
## minimal.
## <P/>
## The computation of Conway polynomials can be time consuming. Therefore,
## &GAP; comes with a list of precomputed polynomials. If a requested
## polynomial is not stored then &GAP; prints a warning and computes it by
## checking all polynomials in the order defined above for the defining
## conditions.
## If <M>n</M> is not a prime this is probably a very long computation.
## (Some previously known polynomials with prime <M>n</M> are not stored in
## &GAP; because they are quickly recomputed.)
## Use the function <Ref Func="IsCheapConwayPolynomial"/> to check in
## advance if <Ref Func="ConwayPolynomial"/> will give a result after a
## short time.
## <P/>
## Note that primitivity of a polynomial can only be checked if &GAP; can
## factorize <M>p^n-1</M>.
## A sufficiently new version of the <Package>FactInt</Package>
## package contains many precomputed factors of such numbers from various
## factorization projects.
## <P/>
## See <Cite Key="L03"/> for further information on known
## Conway polynomials.
## <P/>
## An interactive overview of the Conway polynomials known to &GAP; is
## provided by the function <C>BrowseConwayPolynomials</C> from the
## &GAP; package <Package>Browse</Package>,
## see <Ref Func="BrowseGapData" BookName="browse"/>.
## <P/>
## If <A>pol</A> is a result returned by <Ref Func="ConwayPolynomial"/> the
## command <C>Print( InfoText( <A>pol</A> ) );</C> will print some info on
## the origin of that particular polynomial.
## <P/>
## For some purposes it may be enough to have any primitive polynomial for
## an extension of a finite field instead of the Conway polynomial,
## see <Ref Func="RandomPrimitivePolynomial"/> below.
## <Example><![CDATA[
## gap> ConwayPolynomial( 2, 5 ); ConwayPolynomial( 3, 7 );
## x_1^5+x_1^2+Z(2)^0
## x_1^7-x_1^2+Z(3)^0
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ConwayPolynomial" );
############################################################################
##
#F IsCheapConwayPolynomial( <p>, <n> ) . . . tell if Conway polynomial is cheap to obtain
##
## <#GAPDoc Label="IsCheapConwayPolynomial">
## <ManSection>
## <Func Name="IsCheapConwayPolynomial" Arg='p, n'/>
##
## <Description>
## Returns <K>true</K> if <C>ConwayPolynomial( <A>p</A>, <A>n</A> )</C>
## will give a result in <E>reasonable</E> time.
## This is either the case when this polynomial is pre-computed,
## or if <A>n</A> is a not too big prime.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "IsCheapConwayPolynomial" );
############################################################################
##
#F RandomPrimitivePolynomial( <F>, <n>[, <i> ] ) . . . . . random primitive polynomial over finite field
##
## <#GAPDoc Label="RandomPrimitivePolynomial">
## <ManSection>
## <Func Name="RandomPrimitivePolynomial" Arg='F, n[, i ]'/>
##
## <Description>
## For a finite field <A>F</A> and a positive integer <A>n</A> this function
## returns a primitive polynomial of degree <A>n</A> over <A>F</A>,
## that is a zero of this polynomial has maximal multiplicative order
## <M>|<A>F</A>|^n-1</M>.
## If <A>i</A> is given then the polynomial is written in variable number
## <A>i</A> over <A>F</A>
## (see <Ref Func="Indeterminate" Label="for a ring (and a number)"/>),
## the default for <A>i</A> is 1.
## <P/>
## Alternatively, <A>F</A> can be a prime power q, then <A>F</A> = GF(q) is
## assumed.
## And <A>i</A> can be a univariate polynomial over <A>F</A>,
## then the result is a polynomial in the same variable.
## <P/>
## This function can work for much larger fields than those for which
## Conway polynomials are available, of course &GAP; must be able to
## factorize <M>|<A>F</A>|^n-1</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "RandomPrimitivePolynomial" );
#############################################################################
##
#E
|