/usr/share/gap/lib/polyconw.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 | #############################################################################
##
#W polyconw.gi GAP library Thomas Breuer
#W Frank Lübeck
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the implementation part of functions and data around
## Conway polynomials.
##
###############################################################################
##
#F PowerModEvalPol( <f>, <g>, <xpownmodf> )
##
InstallGlobalFunction( PowerModEvalPol, function( f, g, xpownmodf )
local l, res, reslen, powlen, i;
l:= Length( g );
res:= [ g[l] ];
reslen:= 1;
powlen:= Length( xpownmodf );
ConvertToVectorRep( res );
for i in [ 1 .. l-1 ] do
res:= ProductCoeffs( res, reslen, xpownmodf,
powlen ); # `res:= res * x^n;'
reslen:= ReduceCoeffs( res, f ); # `res:= res mod f;'
if reslen = 0 then
res[1]:= g[l-i]; # `res:= res + g_{l-i+1};'
reslen:= 1;
else
res[1]:= res[1] + g[l-i]; # `res:= res + g_{l-i+1};'
fi;
od;
ShrinkRowVector( res );
return res;
end );
############################################################################
##
#V CONWAYPOLYNOMIALS
##
## This variable was used in GAP 4, version <= 4.4.4 for storing
## coefficients of (pre)computed Conway polynomials. It is no longer used.
##
############################################################################
##
#V CONWAYPOLYNOMIALSINFO
##
## strings describing the origin of precomputed Conway polynomials, can be
## accessed by 'InfoText'
##
## also used to remember which data files were read
##
BindGlobal("CONWAYPOLYNOMIALSINFO", rec(
RP := "original list by Richard Parker (from 1980's)\n",
GAP := "computed with the GAP function by Thomas Breuer, just checks\n\
conditions starting from 'smallest' polynomial\n",
FL := "computed by a parallelized program by Frank Lübeck, computes\n\
minimal polynomial of all compatible elements (~2001)\n",
KM := "computed by Kate Minola, a parallelized program for p=2, considering\n\
minimal polynomials of all compatible elements (~2004-2005)\n",
RPn := "computed by Richard Parker (2004)\n",
3\,21 := "for p=3, n=21 there appeared a polynomial in some lists/systems\n\
which was not the Conway polynomial; the current one in GAP is correct\n",
JB := "computed by John Bray using minimal polynomials of consistent \
elements, respectively a similar algorithm as in GAP (~2005)\n",
conwdat1 := false,
conwdat2 := false,
conwdat3 := false,
# cache for p > 110000
cache := rec()
) );
############################################################################
##
#V CONWAYPOLDATA
##
## List of lists caching (pre-)computed Conway polynomials.
##
## Format: The ConwayPolynomial(p, n) is cached in CONWAYPOLDATA[p][n].
## The entry has the format [num, fld]. Here fld is one of the
## component names of CONWAYPOLYNOMIALSINFO and describes the
## origin of the polynomial. num is an integer, encoding the
## polynomial as follows:
## Let (a0 + a1 X + a2 X^2 + ... + X^n)*One(GF(p)) be the polynomial
## where a0, a1, ... are integers in the range 0..p-1. Then
## num = a0 + a1 p + a2 p^2 + ... + a<n-1> p^(n-1).
##
BindGlobal("CONWAYPOLDATA", []);
## a utility function, checks consistency of a polynomial with Conway
## polynomials of proper subfield. (But doesn't check that it is the
## "smallest" such polynomial in the ordering used to define Conway
## polynomials.
BindGlobal( "IsConsistentPolynomial", function( pol )
local n, p, ps, x, null, f;
n := DegreeOfLaurentPolynomial(pol);
p := Characteristic(pol);
ps := Set(FactorsInt(n));
x := IndeterminateOfLaurentPolynomial(pol);
null := 0*pol;
f := function(k)
local kpol;
kpol := ConwayPolynomial(p, k);
return Value(kpol, PowerMod(x, (p^n-1)/(p^k-1), pol)) mod pol = null;
end;
if IsPrimitivePolynomial(GF(p), pol) then
return ForAll(ps, p-> f(n/p));
else
return false;
fi;
end);
## This is now incorporated more intelligently in the 'FactInt' package.
## Commented out, since it wasn't documented anyway.
## BRENT_FACTORS_LIST := "not loaded, call `AddBrentFactorList();'";
## AddBrentFactorList := function( )
## local str, get, comm, res, n, p, z, pos;
## Print(
## "Copying many prime factors of numbers a^n+1 / a^n-1 from Richard Brent's\n",
## "list `factors.gz' (in \n",
## "ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Richard.Brent/factors/factors.gz\n");
## str := "";
## get := OutputTextString(str, false);
## comm := "wget -q ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Richard.Brent/factors/factors.gz -O - | gzip -dc ";
## Process(DirectoryCurrent(), Filename(DirectoriesSystemPrograms(),"sh"),
## InputTextUser(), get, ["-c", comm]);
## res := [[],[]];
## n := 0;
## p := Position(str, '\n', 0);
## while p <> fail do
## z := str{[n+1..p-1]};
## pos := Position(z, '-');
## if pos = fail then
## pos := Position(z, '+');
## fi;
## if pos <> fail then
## Add(res[1], NormalizedWhitespace(z{[1..pos]}));
## Add(res[2], Int(NormalizedWhitespace(z{[pos+2..Length(z)]})));
## fi;
## n := p;
## p := Position(str, '\n', n);
## od;
## for p in res[2] do
## AddSet(Primes2,p);
## od;
## SortParallel(res[1], res[2]);
## BRENT_FACTORS_LIST := res;
## end;
## A consistency check for the data, loading AddBrentFactorList() is useful
## for the primitivity tests.
##
## # for 41^41-1
## AddSet(Primes2, 5926187589691497537793497756719);
## # for 89^89-1
## AddSet(Primes2, 4330075309599657322634371042967428373533799534566765522517);
## # for 97^97-1
## AddSet(Primes2, 549180361199324724418373466271912931710271534073773);
## AddSet(Primes2, 85411410016592864938535742262164288660754818699519364051241927961077872028620787589587608357877);
## for p in [2,113,1009] do IsCheapConwayPolynomial(p,1); od;
## cp:=CONWAYPOLDATA;;
## test := [];
## for i in [1..Length(cp)] do
## if IsBound(cp[i]) then
## for j in [1..Length(cp[i])] do
## if IsBound(cp[i][j]) then
## a := IsConsistentPolynomial(ConwayPolynomial(i,j));
## Print(i," ",j," ", a,"\n");
## Add(test, [i, j, a]);
## fi;
## od;
## fi;
## od;
## number of polynomials for GF(p^n) compatible with Conway polynomials for
## all proper subfields.
BindGlobal("NrCompatiblePolynomials", function(p, n)
local ps, lcm;
ps := Set(Factors(n));
lcm := Lcm(List(ps, r-> p^(n/r)-1));
return (p^n-1)/lcm;
end);
## list of all cases wich less than 100*10^9 compatible polynomials, sorted
## w.r.t. this number
ConwayCandidates := function()
local cand, p, i;
# read data
for p in [2,113,1009] do
ConwayPolynomial(p,1);
od;
cand := [];;
for p in Primes{[1..31]} do
for i in [1..200] do
if NrCompatiblePolynomials(p,i) < 100000000000 then
Add(cand, [NrCompatiblePolynomials(p,i), p, i]);
fi;
od;
od;
Sort(cand);
cand := Filtered(cand, a-> not IsBound(CONWAYPOLDATA[a[2]][a[3]]));
return cand;
end;
##
##
#################### end of list of new polynomials ####################
############################################################################
##
#F ConwayPol( <p>, <n> ) . . . . . <n>-th Conway polynomial in charact. <p>
##
InstallGlobalFunction( ConwayPol, function( p, n )
local F, # `GF(p)'
one, # `One( F )'
zero, # `Zero( F )'
eps, # $(-1)^n$ in `F'
x, # indeterminate over `F', as coefficients list
cpol, # actual candidate for the Conway polynomial
nfacs, # all `n/d' for prime divisors `d' of `n'
cpols, # Conway polynomials for `d' in `nfacs'
pp, # $p^n-1$
quots, # list of $(p^n-1)/(p^d-1)$, for $d$ in `nfacs'
lencpols, # `Length( cpols )'
ppmin, # list of $(p^n-1)/d$, for prime factors $d$ of $p^n-1$
found, # is the actual candidate compatible?
onelist, # `[ one ]'
pow, # powers of several polynomials
i, # loop over `ppmin'
xpownmodf, # power of `x', modulo `cpol'
c, # loop over `cpol'
e, # 1 or -1, used to compute the next candidate
linfac, # for a quick precheck
cachelist, # list of known Conway pols for given p
StoreConwayPol; # maybe move out?
# Check the arguments.
if not ( IsPrimeInt( p ) and IsInt( n ) and n > 0 ) then
Error( "<p> must be a prime, <n> a positive integer" );
fi;
# read data files if necessary
if 1 < p and p <= 109 and CONWAYPOLYNOMIALSINFO.conwdat1 = false then
ReadLib("conwdat1.g");
elif 109 < p and p < 1000 and CONWAYPOLYNOMIALSINFO.conwdat2 = false then
ReadLib("conwdat2.g");
elif 1000 < p and p < 110000 and CONWAYPOLYNOMIALSINFO.conwdat3 = false then
ReadLib("conwdat3.g");
fi;
if p < 110000 then
if not IsBound( CONWAYPOLDATA[p] ) then
CONWAYPOLDATA[p] := [];
fi;
cachelist := CONWAYPOLDATA[p];
else
if not IsBound( CONWAYPOLYNOMIALSINFO.cache.(String(p)) ) then
CONWAYPOLYNOMIALSINFO.cache.(String(p)) := [];
fi;
cachelist := CONWAYPOLYNOMIALSINFO.cache.(String(p));
fi;
if not IsBound( cachelist[n] ) then
Info( InfoWarning, 1,
"computing Conway polynomial for p = ", p, " and n = ", n );
F:= GF(p);
one:= One( F );
zero:= Zero( F );
if n mod 2 = 1 then
eps:= AdditiveInverse( one );
else
eps:= one;
fi;
# polynomial `x' (as coefficients list)
x:= [ zero, one ];
ConvertToVectorRep(x, p);
# Initialize the smallest polynomial of degree `n' that is a candidate
# for being the Conway polynomial.
# This is `x^n + (-1)^n \*\ z' for the smallest primitive root `z'.
# If the field can be realized in {\GAP} then `z' is just `Z(p)'.
# Note that we enumerate monic polynomials with constant term
# $(-1)^n \alpha$ where $\alpha$ is the smallest primitive element in
# $GF(p)$ by the compatibility condition (and by existence of such a
# polynomial).
cpol:= ListWithIdenticalEntries( n, zero );
cpol[ n+1 ]:= one;
cpol[1]:= eps * PrimitiveRootMod( p );
ConvertToVectorRep(cpol, p);
if n > 1 then
# Compute the list of all `n / l' for `l' a prime divisor of `n'
nfacs:= List( Set( Factors( n ) ), d -> n / d );
if nfacs = [ 1 ] then
# `n' is a prime, we have to check compatibility only with
# the degree 1 Conway polynomial.
# But this condition is satisfied by choice of the constant term
# of the candidates.
cpols:= [];
else
# Compute the Conway polynomials for all values $<n> / d$
# where $d$ is a prime divisor of <n>.
# They are used for checking compatibility.
cpols:= List( nfacs, d -> ConwayPol( p, d ) * one );
List(cpols, f-> ConvertToVectorRep(f, p));
fi;
pp:= p^n-1;
quots:= List( nfacs, x -> pp / ( p^x -1 ) );
lencpols:= Length( cpols );
ppmin:= List( Set( Factors( pp ) ), d -> pp/d );
found:= false;
onelist:= [ one ];
# many random polynomials have linear factors, for small p we check
# this before trying to check primitivity
if p < 256 then
linfac := List([0..p-2], i-> List([0..n], k-> Z(p)^(i*k)));
List(linfac, a-> ConvertToVectorRep(a,p));
else
linfac := [];
fi;
while not found do
# Test whether `cpol' is primitive.
# $f$ is primitive if and only if
# 0. (check first for small p) there is no zero in GF(p),
# 1. $f$ divides $X^{p^n-1} -1$, and
# 2. $f$ does not divide $X^{(p^n-1)/l} - 1$ for every
# prime divisor $l$ of $p^n - 1$.
found := ForAll(linfac, a-> a * cpol <> zero);
if found then
pow:= PowerModCoeffs( x, 2, pp, cpol, n+1 );
ShrinkRowVector( pow );
found:= ( pow = onelist );
fi;
i:= 1;
while found and ( i <= Length( ppmin ) ) do
pow:= PowerModCoeffs( x, 2, ppmin[i], cpol, n+1 );
ShrinkRowVector( pow );
found:= pow <> onelist;
i:= i+1;
od;
# Test compatibility with polynomials in `cpols'.
i:= 1;
while found and i <= lencpols do
# Compute $`cpols[i]'( x^{\frac{p^n-1}{p^m-1}} ) mod `cpol'$.
xpownmodf:= PowerModCoeffs( x, quots[i], cpol );
pow:= PowerModEvalPol( cpol, cpols[i], xpownmodf );
# Note that we need *not* call `ShrinkRowVector'
# since the list `cpols[i]' has always length at least 2,
# and a final `ShrinkRowVector' call is done by `PowerModEvalPol'.
# ShrinkRowVector( pow );
found:= IsEmpty( pow );
i:= i+1;
od;
if not found then
# Compute the next candidate according to the chosen ordering.
# We have $f$ smaller than $g$ for two polynomials $f$, $g$ of
# degree $n$ with
# $f = \sum_{i=0}^n (-1)^{n-i} f_i x^i$ and
# $g = \sum_{i=0}^n (-1)^{n-i} g_i x^i$ if and only if exists
# $m\leq n$ such that $f_m \< g_m$,
# and $f_i = g_i$ for all $i > m$.
# (Note that the thesis of W. Nickel gives a wrong definition.)
c:= 0;
e:= eps;
repeat
c:= c+1;
e:= -1*e;
cpol[c+1]:= cpol[c+1] + e;
until cpol[c+1] <> zero;
fi;
od;
fi;
StoreConwayPol := function(cpol, cachelist)
local found, p, n;
if IsUnivariatePolynomial(cpol) then
cpol := CoefficientsOfUnivariatePolynomial(cpol);
fi;
p := Characteristic(cpol[1]);
n := Length(cpol)-1;
cpol:= List( cpol, IntFFE );
# Subtract `x^n', strip leading zeroes,
# and store this polynomial in the global list.
found:= ShallowCopy( cpol );
Unbind( found[ n+1 ] );
ShrinkRowVector( found );
cachelist[n]:= [List([0..Length(found)-1], k-> p^k) * found,
"GAP"];
end;
StoreConwayPol(cpol, cachelist);
else
# Decode the polynomial stored in the list (see description of
# CONWAYPOLDATA above).
c := cachelist[n][1];
cpol:= [];
while c <> 0 do
Add(cpol, c mod p);
c := (c - cpol[Length(cpol)]) / p;
od;
while Length( cpol ) < n do
Add( cpol, 0 );
od;
Add( cpol, 1 );
fi;
# Return the coefficients list.
return cpol;
end );
############################################################################
##
#F ConwayPolynomial( <p>, <n> ) . <n>-th Conway polynomial in charact. <p>
##
InstallGlobalFunction( ConwayPolynomial, function( p, n )
local F, res;
if IsPrimeInt( p ) and IsPosInt( n ) then
F:= GF(p);
res := UnivariatePolynomial( F, One( F ) * ConwayPol( p, n ) );
if p < 110000 then
Setter(InfoText)(res, CONWAYPOLYNOMIALSINFO.(
CONWAYPOLDATA[p][n][2]));
else
Setter(InfoText)(res, CONWAYPOLYNOMIALSINFO.cache.(
String(p))[n][2]);
fi;
return res;
else
Error( "<p> must be a prime, <n> a positive integer" );
fi;
end );
InstallGlobalFunction( IsCheapConwayPolynomial, function( p, n )
if IsPrimeInt( p ) and IsPosInt( n ) then
# read data files if necessary
if 1 < p and p <= 109 and CONWAYPOLYNOMIALSINFO.conwdat1 = false then
ReadLib("conwdat1.g");
elif 109 < p and p < 1000 and CONWAYPOLYNOMIALSINFO.conwdat2 = false then
ReadLib("conwdat2.g");
elif 1000 < p and p < 110000 and CONWAYPOLYNOMIALSINFO.conwdat3 = false then
ReadLib("conwdat3.g");
fi;
if p < 110000 and IsBound(CONWAYPOLDATA[p]) and IsBound(CONWAYPOLDATA[p][n]) then
return true;
fi;
if p >= 110000 and IsBound(CONWAYPOLYNOMIALSINFO.cache.(String(p)))
and IsBound(CONWAYPOLYNOMIALSINFO.cache.(String(p))[n]) then
return true;
fi;
# this is not very precise, hopefully good enough for the moment
if p < 41 then
if n < 100 and IsPrimeInt(n) then
return true;
fi;
elif p < 100 then
if n < 40 and IsPrimeInt(n) then
return true;
fi;
elif p < 1000 then
if n < 14 and IsPrimeInt(n) then
return true;
fi;
elif p < 2^48 then
if n in [1,2,3,5,7] then
return true;
fi;
elif p < 2^60 then
if n in [1,2,3,5] then
return true;
fi;
elif p < 2^120 then
if n in [1,2,3] then
return true;
fi;
elif p < 2^200 then
if n in [1,2] then
return true;
fi;
elif n = 1 then
return false;
fi;
fi;
return false;
end );
# arg: F, n[, i]
InstallGlobalFunction( RandomPrimitivePolynomial, function(arg)
local F, n, i, pol, FF, one, fac, a;
F := arg[1];
n := arg[2];
if Length(arg) > 2 then
i := arg[3];
else
i := 1;
fi;
if IsUnivariatePolynomial(i) then
i := IndeterminateNumberOfUnivariateRationalFunction(i);
fi;
if IsInt(F) then
F := GF(F);
fi;
repeat pol := RandomPol(F, n, i);
until IsIrreducibleRingElement(PolynomialRing(F), pol);
FF := AlgebraicExtension(F, pol);
one := One(FF);
fac:=List(Set(Factors(Size(FF)-1)), p-> (Size(FF)-1)/p);
repeat
a := Random(FF);
until ForAll(fac, d-> a^d <> one);
return MinimalPolynomial(F, a);
end );
## # utility to write new data files in case of extensions
## printConwayData := function(f)
## local i, j, v;
## for i in [1..Length(CONWAYPOLDATA)] do
## if IsBound(CONWAYPOLDATA[i]) then
## PrintTo(f, "CONWAYPOLDATA[",i,"]:=[\n");
## for j in [1..Length(CONWAYPOLDATA[i])] do
## if IsBound(CONWAYPOLDATA[i][j]) then
## PrintTo(f,"[",CONWAYPOLDATA[i][j][1],",\"",CONWAYPOLDATA[i][j][2],
## "\"]");
## fi;
## PrintTo(f,",");
## od;
## PrintTo(f,"];\n");
## fi;
## od;
## end;
## f := OutputTextFile("guck.g", false);
## SetPrintFormattingStatus(f, false);
## printConwayData(f);
## CloseStream(f);
## # and then distribute into conwdat?.g
#############################################################################
##
#E
|