This file is indexed.

/usr/share/gap/lib/polyfinf.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
#############################################################################
##
#W  polyfinf.gi                 GAP Library                      Frank Celler
#W                                                         & Alexander Hulpke
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains functions for polynomials over finite fields
##


#############################################################################
##
#F  FactorsCommonDegreePol( <R>, <f>, <d> ) . . . . . . . . . . . . . factors
##
##  <f> must be a  square free product of  irreducible factors of  degree <d>
##  and leading coefficient 1.  <R>  must be a polynomial  ring over a finite
##  field of size p^k.
##
InstallGlobalFunction(FactorsCommonDegreePol,function( R, f, d )
local   c,  ind,  br,  g,  h,  k,  i,dou;

  # if <f> has degree 0, return f
  dou:=DegreeOfLaurentPolynomial(f);
  if dou<d then
      return [];
  # if <f> has degree <d>, return irreducible <f>
  elif dou=d  then
      return [f];
  fi;

  c   := CoefficientsOfLaurentPolynomial(f);
  ind := IndeterminateNumberOfLaurentPolynomial(f);
  br  := CoefficientsRing(R);

  # if <f> has a trivial constant term signal an error
  if c[2] <> 0  then
      Error("<f> must have a non-trivial constant term");
  fi;

  # choose a random polynomial <g> of degree less than 2*<d>
  repeat
    g := RandomPol(br,2*d-1,ind);
  until DegreeOfLaurentPolynomial(g)<>DEGREE_ZERO_LAURPOL;

  # if p = 2 take <g> + <g>^2 + <g>^(2^2) + ... + <g>^(2^(k*<d>-1))
  if Characteristic(br) = 2  then
      g := CoefficientsOfLaurentPolynomial(g);
      h := ShiftedCoeffs(g[1],g[2]);
      k := ShiftedCoeffs(c[1],c[2]);
      g := g[1];
      for i  in [1..DegreeOverPrimeField(br)*d-1]  do
	  g := ProductCoeffs(g,g);
	  ReduceCoeffs(g,k);
	  ShrinkRowVector(g);
	  AddCoeffs(h,g);
      od;
      h := LaurentPolynomialByCoefficients(
		FamilyObj(h[1]), h, 0, ind );

  # if p > 2 take <g> ^ ((p ^ (k*<d>) - 1) / 2) - 1
  else
      h:=PowerMod(g,(Characteristic(br)^(DegreeOverPrimeField(br)*d)-1)/2,f)
	    - One(br);
  fi;

  # gcd of <f> and <h> is with probability > 1/2 a proper factor
  g := GcdOp(f,h);
  return Concatenation(
      FactorsCommonDegreePol( R, Quotient(R,f,g), d ),
      FactorsCommonDegreePol( R, g, d ) );
end);


#############################################################################
##
#M  FactorsSquarefree( <R>, <f>, <opt> )  . . . . . . . . . . . . . . factors
##
##  <f> must be square free and must have  leading coefficient 1. <R> must be
##  a polynomial ring over a finite field of size q.
##
InstallMethod( FactorsSquarefree,"univariate polynomial over finite field",
    true, [ IsFiniteFieldPolynomialRing, IsUnivariatePolynomial, IsRecord ],0,
function( R, f, opt )
local   br,  ind,  c,  facs,  deg,  px,  pow,  cyc,  gcd,d,powc,fc,fam;

  br  := CoefficientsRing(R);
  ind := IndeterminateNumberOfLaurentPolynomial(f);
  c   := CoefficientsOfLaurentPolynomial(f);

  # if <f> has a trivial constant term signal an error
  if c[2] <> 0  then
      Error("<f> must have a non-trivial constant term");
  fi;

  # <facs> will contain factorisation
  facs := [];

  # in the following <pow> = x ^ (q ^ (<deg>+1))
  deg := 0;
  #px  := LaurentPolynomialByExtRepNC(
  #	      FamilyObj(f), [One(br)],1, ind );
  #  pow := px;
  px:=[Zero(br),-One(br)];
  ConvertToVectorRep(px,br);
  powc:=-px;
  fc:=CoefficientsOfLaurentPolynomial(f)[1];
  fam:=FamilyObj(One(br));

  # while <f> could still have two irreducible factors
  while 2*(deg+1) <= DegreeOfLaurentPolynomial(f)  do

      #pow := PowerMod(pow,Size(br),f);
      powc:=PowerModCoeffs(powc,Length(powc),Size(br),fc,Length(fc));
      # next degree and next cyclotomic polynomial x^(q^(<deg>+1))-x
      deg := deg + 1;
      if not IsBound(opt.onlydegs) or deg in opt.onlydegs  then
	#cyc := pow - px;
	cyc:=ShallowCopy(powc);
	AddCoeffs(cyc,px);
	cyc:=LaurentPolynomialByCoefficients(fam,cyc,0,ind);
	# compute the gcd of <f> and <cyc>
	gcd := GcdOp( f, cyc );

	# split the gcd with 'FactorsCommonDegree'
	d:=DegreeOfLaurentPolynomial(gcd);
	if 0<d and d>=deg then
	    Info(InfoPoly,3,"Factor Common Deg.",deg );
	    Append(facs,FactorsCommonDegreePol(R,gcd,deg));
	    f := Quotient(f,gcd);
	fi;
      fi;
  od;

  # if neccessary add irreducible <f> to the list of factors
  if 0 < DegreeOfLaurentPolynomial(f)  then
      Add(facs,f);
  fi;

  # return the factorisation
  return facs;

end );

#############################################################################
##
#F  RootsRepresentativeFFPol( <R>, <f>, <n> )
##
InstallGlobalFunction(RootsRepresentativeFFPol,function( R, f, n )
local   r,  br,  nu,  ind,  p,  d,  z,  v,  o,  i,  e;

  r   := [];
  br  := CoefficientsRing(R);
  nu  := Zero(br);
  ind := IndeterminateNumberOfLaurentPolynomial(f);

  p := Characteristic(br);
  d := DegreeOverPrimeField(br);
  z := PrimitiveRoot(br);
  f := CoefficientsOfLaurentPolynomial(f);
  v := f[2];
  f := f[1];
  o := p^d-1;
  for i  in [0..(Length(f)-1)/n] do
      e := f[i*n+1];
      if e = nu then
	  r[i+1] := nu;
      else
	  r[i+1] := z ^ ((LogFFE(e,z) / n) mod o);
      fi;
  od;
  return LaurentPolynomialByCoefficients(
	      FamilyObj(nu), r, v/n, ind );

end);


#############################################################################
##
#M  Factors( <R>, <f>  )  . . . . . . . . . . . . . .  factors of <f>
##
InstallMethod( Factors, "polynomial over a finite field",
    IsCollsElms, [ IsFiniteFieldPolynomialRing, IsUnivariatePolynomial ],0,

function(R,f)
local   cr,  opt,  irf,  i,  ind,  v,  l,  g,  k,  d,  
	facs,  h,  q,  char,  r;

  # parse the arguments
  cr := CoefficientsRing(R);

  opt:=ValueOption("factoroptions");
  PushOptions(rec(factoroptions:=rec())); # options do not hold for
                                          # subsequent factorizations
  if opt=fail then
    opt:=rec();
  fi;

  # check if we already know a factorisation
  irf := IrrFacsPol(f);
  i   := PositionProperty( irf, i -> i[1] = cr );
  if i <> fail  then
    PopOptions();
    return ShallowCopy(irf[i][2]);
  fi;

  # handle the trivial cases
  ind := IndeterminateNumberOfLaurentPolynomial(f);
  v   := CoefficientsOfLaurentPolynomial(f);
  #fam := FamilyObj(v[1][1]);

  if DegreeOfLaurentPolynomial(f) < 2 
    or DegreeOfLaurentPolynomial(f)=DEGREE_ZERO_LAURPOL  then
      Add( irf, [cr,[f]] );
      PopOptions();
      return [f];

  elif Length(v[1]) = 1  then
      l:= ListWithIdenticalEntries( v[2],
	      IndeterminateOfUnivariateRationalFunction( f ) );
      l[1] := l[1]*v[1][1];
      Add( irf, [cr,l] );
      PopOptions();
      return l;
  fi;

  # make the polynomial normed, remember the leading coefficient for later
  l:=LeadingCoefficient(f);
  #g   := StandardAssociate(R,f);
  #l   := Quotient(f,g);

  v   := CoefficientsOfLaurentPolynomial(f);
  if v[2]=0 then
    k:=1/l*f;
  else
    k:=LaurentPolynomialByExtRepNC( FamilyObj(f), 1/l*v[1],0, ind );
  fi;
  v   := v[2];

  # compute the derivative
  d := Derivative(k);

  # if the derivative is nonzero then $k / Gcd(k,d)$ is squarefree
  if d <> Zero(R)  then

    # compute the gcd of <k> and the derivative <d>
    g := GcdOp( k, d );
    if DegreeOfLaurentPolynomial(g)>0 then

      # factor the squarefree quotient and the remainder
      facs := FactorsSquarefree( R, Quotient(k,g), opt );
    else
      facs := FactorsSquarefree( R, k, opt );
    fi;

    if not (IsBound(opt.onlydegs) or IsBound(opt.stopdegs)) then
      # tell the factors they are factors
      for h in facs  do
	StoreFactorsPol(cr,h,[h]);
      od;
    fi;

    if DegreeOfLaurentPolynomial(g)>0 then
      for h in ShallowCopy(facs)  do
	q := Quotient( g, h );
	while q <> fail  do
	  Add( facs, h );
	  g := q;
	  q := Quotient( g, h );
	od;
      od;
    fi;
    if 0=DegreeOfLaurentPolynomial(g) then
      if not IsOne(g) then
	facs[1]:=facs[1]*g;
      fi;
    else
#T how shall this ever happen?
      Append( facs, Factors(R,g:factoroptions:=opt) );
    fi;

  # otherwise <k> is the <p>-th power of another polynomial <r>
  else

    # compute the <p>-th root of <f>
    char := Characteristic(cr);
    r    := RootsRepresentativeFFPol( R, k, char );

    # factor this polynomial
    h := Factors( R, r: factoroptions:=opt );

    # each factor appears <p> times in <k>
    facs := [];
    for i  in [ 1 .. char ]  do
      Append( facs, h );
    od;

  fi;

  # Sort the factorization
  Sort(facs);
  if v>0 then
    ind := IndeterminateOfUnivariateRationalFunction(f);
    facs:=Concatenation(List( [ 1 .. v ], x -> ind ),facs );
  fi;

  # return the factorization and store it
  if l<>l^0 then
    facs[1] := facs[1]*l;
  fi;
  if not (IsBound(opt.onlydegs) or IsBound(opt.stopdegs))  then
    StoreFactorsPol(cr,f,facs);
  fi;
  Assert(2,Product(facs)=f);
  PopOptions();
  return facs;

end);

#############################################################################
##
#F  ProductPP( <l>, <r> ) . . . . . . . . . . . . product of two prime powers
##
BindGlobal("ProductPP",function( l, r )
    local   res, p1, p2, ps, p, i, n;

    if IsEmpty(l)  then
	return r;
    elif IsEmpty(r)  then
	return l;
    fi;
    res := [];
    p1  := l{ 2 * [ 1 .. Length( l ) / 2 ] - 1 };
    p2  := r{ 2 * [ 1 .. Length( r ) / 2 ] - 1 };
    ps  := Set( Union( p1, p2 ) );
    for p  in ps  do
    	n := 0;
	Add( res, p );
        i := Position( p1, p );
        if i <> fail   then
	    n := l[ 2*i ];
        fi;
        i := Position( p2, p );
        if i <> fail  then
	    n := n + r[ 2*i ];
        fi;
        Add( res, n );
    od;
    return res;

end);


#############################################################################
##
#F  LcmPP( <l>, <r> ) . . . . . . . . . . . . lcm of prime powers <l> and <r>
##
BindGlobal("LcmPP",function( l, r )
    local   res, p1, p2, ps, p, i, n;

    if l = []  then
	return r;
    elif r = []  then
	return l;
    fi;
    res := [];
    p1  := l{ 2 * [ 1 .. Length( l ) / 2 ] - 1 };
    p2  := r{ 2 * [ 1 .. Length( r ) / 2 ] - 1 };
    ps  := Set( Union( p1, p2 ) );
    for p  in ps  do
    	n := 0;
	Add( res, p );
        i := Position( p1, p );
        if i <> false   then
	    n := l[ 2*i ];
        fi;
        i := Position( p2, p );
        if i <> false and n < r[ 2*i ]  then
	    n := r[ 2*i ];
        fi;
        Add( res, n );
    od;
    return res;

end);


#############################################################################
##
#F  FFPPowerModCheck(<g>, <pp>, <f> ) . . . . . . . . . . . . . . local
##
BindGlobal("FFPPowerModCheck",function( g, pp, f )
local   qq,  i;

  qq := [];
  for i  in [ 1 .. Length(pp)/2 ]  do
      Add( qq, pp[2*i-1] );
      Add( qq, pp[2*i] );
      g := PowerMod( g, pp[2*i-1] ^ pp[2*i], f );
      if DegreeOfLaurentPolynomial(g) = 0  then
	  return [ g, qq ];
      fi;
  od;
  return [ g, qq ];

end);


#############################################################################
##
#F  OrderKnownDividendList( <l>, <pp> )	. . . . . . . . . . . . . . . . local
##
##  Computes  an  integer  n  such  that  OnSets( <l>, n ) contains  only one
##  element e.  <pp> must be a list of prime powers of an integer d such that
##  n divides d. The functions returns the integer n and the element e.
##
InstallGlobalFunction(OrderKnownDividendList,function( l, pp )
local   pp1,	# first half of <pp>
	pp2,        # second half of <pp>
	a,          # half exponent of first prime power
	k,          # power of <l>
	o,  o1,     # computed order of <k>
	i;          # loop

  # if <pp> contains no element return order 1
  if Length(pp) = 0  then
      return [ 1, l[1] ];

  # if <l> contains only one element return order 1
  elif Length(l) = 1  then
      return [ 1, l[1] ];

  # if the dividend is a prime return
  elif Length(pp) = 2 and pp[2] = 1  then
      return [ pp[1], l[1]^pp[1] ];

  # if the dividend is a prime power divide and conquer
  elif Length(pp) = 2  then
      pp := ShallowCopy(pp);
      a  := QuoInt( pp[2], 2 );
      k  := OnSets( l, pp[1]^a );

      # if <k> is trivial try smaller dividend
      if Length(k) = 1  then
	  pp[2] := a;
	  return OrderKnownDividendList( l, pp );

      # otherwise try to find order of <h>
      else
	  pp[2] := pp[2] - a;
	  o := OrderKnownDividendList( k, pp );
	  return [ pp[1]^a*o[1], o[2] ];
      fi;

  # split different primes into two parts
  else
      a   := 2 * QuoInt( Length(pp), 4 );
      pp1 := pp{[ 1 .. a ]};
      pp2 := pp{[ a+1 .. Length(pp) ]};

      # compute the order of <l>^<pp1>
      k := l;
      for i  in [ 1 .. Length(pp2)/2 ]  do
	  k := OnSets( k, pp2[2*i-1]^pp2[2*i] );
      od;
      o1 := OrderKnownDividendList( k, pp1 );

      # compute the order of <l>^<o1> and return
      o := OrderKnownDividendList( OnSets( l, o1[1] ), pp2 );
      return [ o1[1]*o[1], o[2] ];
  fi;

end);


#############################################################################
##
#F  FFPOrderKnownDividend( <R>, <g>, <f>, <pp> )  . . . . . . . . . . . local
##
##  Computes an integer n such that <g>^n = const  mod <f> where <g>  and <f>
##  are polynomials in <R> and <pp> is list  of prime powers of  an integer d
##  such that n divides  d.   The  functions  returns  the integer n  and the
##  element const.
##
InstallGlobalFunction(FFPOrderKnownDividend,function ( R, g, f, pp )
local   l,  a,  h,  n1,  pp1,  pp2,  k,  o,  q;

  #Info( InfoPoly, 3, "FFPOrderKnownDividend started with:" );
  #Info( InfoPoly, 3, "  <g>  = ", g );
  #Info( InfoPoly, 3, "  <f>  = ", f );
  #Info( InfoPoly, 3, "  <pp> = ", pp );

  # if <g> is constant return order 1
  if 0 = DegreeOfLaurentPolynomial(g)  then
      #Info( InfoPoly, 3, "  <g> is constant" );
      l := CoefficientsOfUnivariatePolynomial(g);
      l := [ 1, l[1] ];
      #Info( InfoPoly, 3, "FFPOrderKnownDividend returns ", l );
      return l;

  # if the dividend is a prime, we must compute g^pp[1] to get the constant
  elif Length(pp) = 2 and pp[2] = 1  then
      k := PowerMod( g, pp[1], f );
      l := CoefficientsOfUnivariatePolynomial(k);
      l := [ pp[1], l[1] ];
      #Info( InfoPoly, 3, "FFPOrderKnownDividend returns ", l );
      return l;

  # if the dividend is a prime power find the necessary power
  elif Length(pp) = 2  then
      #Info( InfoPoly, 3, "prime power, divide and conquer" );
      pp := ShallowCopy( pp );
      a  := QuoInt( pp[2], 2 );
      q  := pp[1] ^ a;
      h  := PowerMod( g, q, f );

      # if <h> is constant try again with smaller dividend
      if 0 = DegreeOfLaurentPolynomial(h)  then
	  pp[2] := a;
	  o := FFPOrderKnownDividend( R, g, f, pp );
      else
	  pp[2] := pp[2] - a;
	  l := FFPOrderKnownDividend( R, h, f, pp );
	  o := [ q*l[1], l[2] ];
      fi;
      #Info( InfoPoly, 3, "FFPOrderKnownDividend returns ", o );
      return o;

  # split different primes.
  else

    # divide primes
    #Info( InfoPoly, 3, "  ", Length(pp)/2, " different primes" );
    n1  := QuoInt( Length(pp), 4 );
    pp1 := pp{[ n1*2+1 .. Length(pp) ]};
    pp2 := pp{[ 1 .. n1*2 ]};
    #Info( InfoPoly, 3, "    <pp1> = ", pp1 );
    #Info( InfoPoly, 3, "    <pp2> = ", pp2 );

      # raise <g> to the power <pp2>
      k   := FFPPowerModCheck( g, pp2, f );
      pp2 := k[2];
      k   := k[1];

      # compute order for <pp1>
      o := FFPOrderKnownDividend( R, k, f, pp1 );

      # compute order for <pp2>
      k := PowerMod( g, o[1], f );
      l := FFPOrderKnownDividend( R, k, f, pp2 );
      o := [ o[1]*l[1], l[2] ];
      #Info( InfoPoly, 3, "FFPOrderKnownDividend returns ", o );
      return o;
  fi;

end);


#############################################################################
##
#F  FFPUpperBoundOrder( <R>, <f> )  . . . . . . . . . . . . . . . . . . local
##
##  Computes the  irreducible factors f_i  of a polynomial  <f>  over a field
##  with  p^n  elements. It returns a list l of quadruples (f_i,a_i,pp_i,pb_i) such
##  that the p-part  of x  mod  f_i is p^a_i and  the p'-part divides d_i for
##  which the prime powers pp_i and not-yet-prime powers pb_i (in case
##  factorization fails) are given.
##
BindGlobal("FFPUpperBoundOrder",function( R, f )
local   fs,  F,  L,  phi,  B,  i,  d,  pp,  a,  deg,t,pb;

  # factorize <f> into irreducible factors
  fs := Collected( Factors( R, f ) );

  # get the field over which the polynomials are written
  F := CoefficientsRing(R);

  # <phi>(m) gives ( minpol of 1^(1/m) )( F.char )
  # cache values
  if not IsBound(F!.FFPUBOVAL) then
    F!.FFPUBOVAL:=[ [PrimePowersInt( Characteristic(F)-1 ),[]] ];
  fi;

  L:=F!.FFPUBOVAL;
  phi := function( m )
      local x, pp, a, good,bad, d, i,primes;
      if not IsBound( L[m] )  then
	  bad:=[];
	  x := Characteristic(F)^m-1;
	  primes:=Set(Factors(x)); # use the Cunningham tables, and then store the prime
	  # factors such that they end up cached below. In fact, since we
	  # only divide off some known primes, this factorization really
	  # shouldn't be harder than the one below.
	  for d  in Difference( DivisorsInt( m ), [m] )  do
	      pp := phi( d );
	      if Length(pp[2])>0 then
		bad:=ProductPP(pp[2],bad);
	      fi;
	      pp:=pp[1]; # nothing bad can happen here as d is small
	      for i  in [ 1 .. Length(pp)/2 ]  do
		  x := x / pp[2*i-1]^pp[2*i];
	      od;
	  od;
	  a := PrimePowersInt( x:quiet );
	  good:=[];
	  for i in [1,3..Length(a)-1] do
	    if a[i] in primes # we assume that the factorization above really gave
	      # prime factors. 
	      or IsPrimeInt(a[i]) then
	      Add(good,a[i]);
	      Add(good,a[i+1]);
	    else
	      Add(bad,a[i]);
	      Add(bad,a[i+1]);
	    fi;
	  od;
	  good:=[good,bad];
	  if Length(good[1])<Length(a) then
	    Info(InfoWarning,1,"disregarded nonfactorable",bad);
	  else
	    L[m]:=good;
	  fi;
      else
	good:=L[m];
      fi;
      return good;
  end;

  # compute a_i and pp_i
  B := [];
  for i  in [ 1 .. Length(fs) ]  do

      # p-part is p^Roof(Log_p(e_i)) where e_i is the multiplicity of f_i
      a := 0;
      if fs[i][2] > 1  then
	  a := 1+LogInt(fs[i][2]-1,Characteristic(F));
      fi;

      # p'-part: (p^n)^d_i-1/(p^n-1) where d_i is the degree of f_i
      d   := DegreeOfLaurentPolynomial(fs[i][1]);
      pp  := [];
      pb:=[];
      deg := DegreeOverPrimeField(F);
      for f  in DivisorsInt( d*deg )  do
	  if deg mod f <> 0  then
	      t:=phi(f);
	      pp := ProductPP( t[1], pp );
	      pb := ProductPP( t[2], pb );
	  fi;
      od;

      # add <a> and <pp> to <B>
      Add( B, [fs[i][1],a,pp,pb] );
  od;

  # OK, that's it
  return B;

end);


#############################################################################
##
#M  ProjectiveOrder( <f> )  . . . . . . . . . . . . . projective order of <f>
##
##  Return an  integer n  and a finite field element  const  such that x^n  =
##  const mod <f>.
##
InstallOtherMethod( ProjectiveOrder,
    "divide and conquer for univariate polynomials", true,
    [ IsUnivariatePolynomial ],0,
function( f )
local   v,  R,  U,  x,  O,  n,  g,  q,  o,rem,bas;

  # <f> must not be divisible by x.
  v := CoefficientsOfLaurentPolynomial(f);
  if 0 < v[2]  then
      Error( "<f> must have a non zero constant term" );
  fi;

  # if degree is zero, return
  if 0 = DegreeOfLaurentPolynomial(f)  then
      return [ 1, v[1][1] ];
  fi;

  # use 'UpperBoundOrder' to split <f> into irreducibles
  #R := DefaultRing(f);
  R:=PolynomialRing(
        DefaultField(CoefficientsOfUnivariateLaurentPolynomial(f)[1]),
       [IndeterminateNumberOfLaurentPolynomial(f)]);
  U := FFPUpperBoundOrder( R, f );

  # run through the irrducibles and compute their order
  x := IndeterminateOfUnivariateRationalFunction(f);
  O := [];
  n := 1;
  for g  in U  do
      if Length(g[3])=0 and Length(g[4])>0 then
	# in this case `FFPOrderKnownDividend' might run in an infinite
	# recursion.
  Error("cannot compute order due to limits in the integer factorization!");
      fi;
      #o := FFPOrderKnownDividend(R,EuclideanRemainder(R,x,g[1]),g[1],g[3]);
      bas:=QuotRemLaurpols(x,g[1],2);
      o := FFPOrderKnownDividend(R,bas,g[1],g[3]);
      if Length(g[4])>0 then
	q:=DegreeOfLaurentPolynomial(PowerMod(bas,o[1],g[1]));
	if not(q=0 or q=DEGREE_ZERO_LAURPOL) then
  # in fact x^o[1] is not congruent to a constant -- we really need the
  # primes.
  Error("cannot compute order due to limits in the integer factorization!");
	fi;
      fi;
      q := Characteristic(CoefficientsRing(R))^g[2];
      n := LcmInt( n, o[1]*q );
      Add( O, [ o[1]*q, o[2]^q ] );
  od;

  # try to get the same constant in each block
  U := [];
  q := Size( CoefficientsRing(R) ) - 1;
  for g  in O  do
      AddSet( U, g[2]^((n/g[1]) mod q) );
  od;

  # return the order <n> times the order of <U>
  o := OrderKnownDividendList( U, PrimePowersInt(q) );
  return [ n*o[1], o[2] ];

end );

RedispatchOnCondition(ProjectiveOrder,true,
  [IsRationalFunction],[IsUnivariatePolynomial],0);

#############################################################################
##
#M  SplittingField( <f> )
##
InstallMethod( SplittingField,"finite field polynomials",true,
    [ IsUnivariatePolynomial ],0,
function( f )
local c,b,l;
  if Characteristic(f)=0 then
    TryNextMethod();
  fi;
  c:=CoefficientsOfUnivariatePolynomial(f);
  if Length(c)=0 then
    return GF(Characteristic(f));
  fi;
  b:=DefaultField(c);
  l:=List(Factors(PolynomialRing(b),f),DegreeOfLaurentPolynomial);
  l:=Filtered(l,i->i>0); # lcm otherwise returns 0
  l:=Lcm(l);
  return GF(Characteristic(f)^(l*DegreeOverPrimeField(b)));
end);

#############################################################################
##
#E  polyfinf.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##