/usr/share/gap/lib/randiso.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | #############################################################################
##
#W randiso.gd GAP library Bettina Eick
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
DeclareInfoClass( "InfoRandIso" );
DeclareAttribute( "OmegaAndLowerPCentralSeries", IsGroup );
#############################################################################
##
#F CodePcgs( <pcgs> )
##
## <#GAPDoc Label="CodePcgs">
## <ManSection>
## <Func Name="CodePcgs" Arg='pcgs'/>
##
## <Description>
## returns the code corresponding to <A>pcgs</A>.
## <Example><![CDATA[
## gap> G := CyclicGroup(512);;
## gap> p := Pcgs( G );;
## gap> CodePcgs( p );
## 162895587718739690298008513020159
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CodePcgs" );
#############################################################################
##
#F CodePcGroup( <G> )
##
## <#GAPDoc Label="CodePcGroup">
## <ManSection>
## <Func Name="CodePcGroup" Arg='G'/>
##
## <Description>
## returns the code for a pcgs of <A>G</A>.
## <Example><![CDATA[
## gap> G := DihedralGroup(512);;
## gap> CodePcGroup( G );
## 2940208627577393070560341803949986912431725641726
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CodePcGroup" );
#############################################################################
##
#F PcGroupCode( <code>, <size> )
##
## <#GAPDoc Label="PcGroupCode">
## <ManSection>
## <Func Name="PcGroupCode" Arg='code, size'/>
##
## <Description>
## returns a pc group of size <A>size</A> corresponding to <A>code</A>.
## The argument <A>code</A> must be a valid code for a pcgs,
## otherwise anything may happen.
## Valid codes are usually obtained by one of the functions
## <Ref Func="CodePcgs"/> or <Ref Func="CodePcGroup"/>.
## <Example><![CDATA[
## gap> G := SmallGroup( 24, 12 );;
## gap> p := Pcgs( G );;
## gap> code := CodePcgs( p );
## 5790338948
## gap> H := PcGroupCode( code, 24 );
## <pc group of size 24 with 4 generators>
## gap> map := GroupHomomorphismByImages( G, H, p, FamilyPcgs(H) );
## Pcgs([ f1, f2, f3, f4 ]) -> Pcgs([ f1, f2, f3, f4 ])
## gap> IsBijective(map);
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PcGroupCode" );
#############################################################################
##
#F PcGroupCodeRec( <rec> )
##
## <ManSection>
## <Func Name="PcGroupCodeRec" Arg='record'/>
##
## <Description>
## Here <A>record</A> needs to have entries .code and .order.
## Then <Ref Func="PcGroupCode"/> returns a pc group of size .order
## corresponding to .code.
## <Example><![CDATA[
## gap> G := SmallGroup( 24, 12 );;
## gap> p := Pcgs( G );;
## gap> coderec:=rec( code:=CodePcgs(p), order:=Size(G) );
## rec( code := 5790338948, order := 24 )
## gap> H := PcGroupCodeRec( coderec );
## <pc group of size 24 with 4 generators>
## gap> map := GroupHomomorphismByImages( G, H, p, FamilyPcgs(H) );
## Pcgs([ f1, f2, f3, f4 ]) -> Pcgs([ f1, f2, f3, f4 ])
## gap> IsBijective(map);
## true
## ]]></Example>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "PcGroupCodeRec" );
#############################################################################
##
#F RandomSpecialPcgsCoded( <G> )
##
## <ManSection>
## <Func Name="RandomSpecialPcgsCoded" Arg='G'/>
##
## <Description>
## returns a code for a random special pcgs of <A>G</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "RandomSpecialPcgsCoded" );
#############################################################################
##
#F RandomIsomorphismTest( <list>, <n> )
##
## <#GAPDoc Label="RandomIsomorphismTest">
## <ManSection>
## <Func Name="RandomIsomorphismTest" Arg='coderecs, n'/>
##
## <Description>
## The first argument is a list <A>coderecs</A> containing records describing
## groups, and the second argument is a non-negative integer <A>n</A>.
## <P/>
## The test returns a sublist of <A>coderecs</A> where isomorphic copies
## detected by the probabilistic test have been removed.
## <P/>
## The list <A>coderecs</A> should contain records with two components,
## <C>code</C> and <C>order</C>, describing a group via
## <C>PcGroupCode( code, order )</C> (see <Ref Func="PcGroupCode"/>).
## <P/>
## The integer <A>n</A> gives a certain amount of control over the
## probability to detect all isomorphisms. If it is <M>0</M>, then nothing
## will be done at all. The larger <A>n</A> is, the larger is the probability
## of finding all isomorphisms. However, due to the underlying method we can
## not guarantee that the algorithm finds all isomorphisms, no matter how
## large <A>n</A> is.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "RandomIsomorphismTest" );
#############################################################################
##
#F ReducedByIsomorphism( <list>, <n> )
##
## <ManSection>
## <Func Name="ReducedByIsomorphism" Arg='list, n'/>
##
## <Description>
## returns a list of disjoint sublist of <A>list</A> such that no two isomorphic
## groups can be in the same sublist.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ReducedByIsomorphisms" );
#############################################################################
##
#E
|