This file is indexed.

/usr/share/gap/lib/randiso.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#############################################################################
##
#W  randiso.gd                GAP library                      Bettina Eick
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##

DeclareInfoClass( "InfoRandIso" );
DeclareAttribute( "OmegaAndLowerPCentralSeries", IsGroup );

#############################################################################
##
#F  CodePcgs( <pcgs> )
##
##  <#GAPDoc Label="CodePcgs">
##  <ManSection>
##  <Func Name="CodePcgs" Arg='pcgs'/>
##
##  <Description>
##  returns the code corresponding to <A>pcgs</A>.
##  <Example><![CDATA[
##  gap> G := CyclicGroup(512);;
##  gap> p := Pcgs( G );;
##  gap> CodePcgs( p );  
##  162895587718739690298008513020159
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CodePcgs" );

#############################################################################
##
#F  CodePcGroup( <G> )
##
##  <#GAPDoc Label="CodePcGroup">
##  <ManSection>
##  <Func Name="CodePcGroup" Arg='G'/>
##
##  <Description>
##  returns the code for a pcgs of <A>G</A>.
##  <Example><![CDATA[
##  gap> G := DihedralGroup(512);;
##  gap> CodePcGroup( G );       
##  2940208627577393070560341803949986912431725641726
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CodePcGroup" );

#############################################################################
##
#F  PcGroupCode( <code>, <size> )
##
##  <#GAPDoc Label="PcGroupCode">
##  <ManSection>
##  <Func Name="PcGroupCode" Arg='code, size'/>
##
##  <Description>
##  returns a pc group of size <A>size</A> corresponding to <A>code</A>.
##  The argument <A>code</A> must be a valid code for a pcgs,
##  otherwise anything may happen.
##  Valid codes are usually obtained by one of the functions
##  <Ref Func="CodePcgs"/> or <Ref Func="CodePcGroup"/>.
##  <Example><![CDATA[
##  gap> G := SmallGroup( 24, 12 );;
##  gap> p := Pcgs( G );;
##  gap> code := CodePcgs( p );
##  5790338948
##  gap> H := PcGroupCode( code, 24 );
##  <pc group of size 24 with 4 generators>
##  gap> map := GroupHomomorphismByImages( G, H, p, FamilyPcgs(H) );
##  Pcgs([ f1, f2, f3, f4 ]) -> Pcgs([ f1, f2, f3, f4 ])
##  gap> IsBijective(map);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PcGroupCode" );

#############################################################################
##
#F  PcGroupCodeRec( <rec> )
##
##  <ManSection>
##  <Func Name="PcGroupCodeRec" Arg='record'/>
##
##  <Description>
##  Here <A>record</A> needs to have entries .code and .order.
##  Then <Ref Func="PcGroupCode"/> returns a pc group of size .order
##  corresponding to .code.
##  <Example><![CDATA[
##  gap> G := SmallGroup( 24, 12 );;
##  gap> p := Pcgs( G );;
##  gap> coderec:=rec( code:=CodePcgs(p), order:=Size(G) );
##  rec( code := 5790338948, order := 24 )
##  gap> H := PcGroupCodeRec( coderec );
##  <pc group of size 24 with 4 generators>
##  gap> map := GroupHomomorphismByImages( G, H, p, FamilyPcgs(H) );
##  Pcgs([ f1, f2, f3, f4 ]) -> Pcgs([ f1, f2, f3, f4 ])
##  gap> IsBijective(map);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "PcGroupCodeRec" );


#############################################################################
##
#F  RandomSpecialPcgsCoded( <G> )
##
##  <ManSection>
##  <Func Name="RandomSpecialPcgsCoded" Arg='G'/>
##
##  <Description>
##  returns a code for a random special pcgs of <A>G</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "RandomSpecialPcgsCoded" );

#############################################################################
##
#F  RandomIsomorphismTest( <list>, <n> )
##
##  <#GAPDoc Label="RandomIsomorphismTest">
##  <ManSection>
##  <Func Name="RandomIsomorphismTest" Arg='coderecs, n'/>
##
##  <Description>
##  The first argument is a list <A>coderecs</A> containing records describing 
##  groups, and the second argument is a non-negative integer <A>n</A>.
##  <P/>
##  The test returns a sublist of <A>coderecs</A> where isomorphic copies 
##  detected by the probabilistic test have been removed.
##  <P/>
##  The list <A>coderecs</A> should contain records with two components,
##  <C>code</C> and <C>order</C>, describing a group via 
##  <C>PcGroupCode( code, order )</C> (see <Ref Func="PcGroupCode"/>).
##  <P/>
##  The integer <A>n</A> gives a certain amount of control over the 
##  probability to detect all isomorphisms. If it is <M>0</M>, then nothing 
##  will be done at all. The larger <A>n</A> is, the larger is the probability
##  of finding all isomorphisms. However, due to the underlying method we can
##  not guarantee that the algorithm finds all isomorphisms, no matter how
##  large <A>n</A> is.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RandomIsomorphismTest" );

#############################################################################
##
#F  ReducedByIsomorphism( <list>, <n> )
##
##  <ManSection>
##  <Func Name="ReducedByIsomorphism" Arg='list, n'/>
##
##  <Description>
##  returns a list of disjoint sublist of <A>list</A> such that no two isomorphic
##  groups can be in the same sublist.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ReducedByIsomorphisms" );


#############################################################################
##
#E