This file is indexed.

/usr/share/gap/lib/random.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#############################################################################
##
#W  random.gi                     GAP library                    Frank Lübeck
#W                                                             Max Neunhöffer
##
##
#Y  Copyright (C) 2006 The GAP Group
##
##  This file implements the basic operations for some types of random
##  sources.
##

###########################################################################
##  Generic methods for random sources.
##  
# The generic initializer of a random source creates a dummy object of the
# right type and then calls 'Init'.
InstallMethod(RandomSource, [IsOperation, IsObject], function(rep, seed)
  local res;
  res := Objectify(NewType(RandomSourcesFamily, rep), rec());
  return Init (res, seed);
end);
InstallMethod(RandomSource, [IsOperation], function(rep)
  return RandomSource(rep, 1);
end);

# A generic Reset if no seed is given (then seed=1 is chosen).
InstallMethod(Reset, [IsRandomSource], function(rs)
  return Reset(rs, 1);
end);

# Generic fallback methods, such that it is sufficient to install Random for 
# lists or for pairs of integers.
InstallMethod(Random, [IsRandomSource, IsInt, IsInt], function(rs, a, b)
  local  d, x, r, y;
  d := b - a;
  if d < 0  then
    return fail;
  elif a = b  then
    return a;
  else
    x := LogInt( d, 2 ) + 1;
    r := 0;
    while 0 < x  do
        y := Minimum( 10, x );
        x := x - y;
        r := r * 2 ^ y + Random( rs, [ 0 .. (2 ^ y - 1) ] );
    od;
    if d < r  then
        return Random( rs, a, b );
    else
        return a + r;
    fi;
  fi;
end);

InstallMethod(Random, [IsRandomSource, IsList], function(rs, list)
  return list[Random(rs, 1, Length(list))];
end);

# A print method.
InstallMethod(PrintObj, [IsRandomSource], function(rs)
  local cat;
  cat := Difference(CategoriesOfObject(rs), [ "IsRandomSource" ]);
  Print("<RandomSource in ", JoinStringsWithSeparator(cat, " and "), ">");
end);

############################################################################
##  We provide the "classical" GAP random generator via a random source.
##  
InstallValue(GlobalRandomSource, Objectify(NewType(RandomSourcesFamily,
                                                  IsGlobalRandomSource),rec()));
InstallMethod(Init, [IsGlobalRandomSource, IsObject], function(rs, seed)
  if IsInt(seed) then
    RANDOM_SEED(seed);
  else
    R_N := seed[1];
    R_X := ShallowCopy(seed[2]);
  fi;
  return GlobalRandomSource;
end);
Init(GlobalRandomSource, 1);

InstallMethod(State, [IsGlobalRandomSource], function(rs)
  return [R_N, ShallowCopy(R_X)];
end);

InstallMethod(Reset, [IsGlobalRandomSource, IsObject], function(rs, seed)
  local old;
  old := State(GlobalRandomSource);
  Init(rs, seed);
  return old;
end);

InstallMethod(Random, [IsGlobalRandomSource, IsList], function(rs, l)
  return RANDOM_LIST(l);
end);

############################################################################
##  The classical GAP random generator as independent random sources.
##  
InstallMethod(Init, [IsGAPRandomSource, IsObject], function(rs, seed)
  local old;
  if seed = 1 then
    rs!.R_N := 45;
    rs!.R_X  :=   [  66318732,  86395905,  22233618,   21989103,  237245480,
    264566285,  240037038, 264902875,  9274660,  180361945, 94688010,  24032135,
    106293216,  27264613,  126456102,  243761907, 80312412,  2522186,  59575208,
    70682510, 228947516,  173992210, 175178224, 250788150,  73030390, 210575942,
    128491926, 194508966,  201311350, 63569414, 185485910,  62786150, 213986102,
    88913350,  94904086, 252860454,  247700982, 233113990,  75685846, 196780518,
    74570934,  7958751,  130274620,  247708693, 183364378,  82600777,  28385464,
    184547675,  20423483, 75041763,  235736203,  54265107, 49075195,  100648387,
    114539755 ];
  elif IsInt(seed) then
    old := Reset(GlobalRandomSource, seed);
    rs!.R_N := R_N;
    rs!.R_X := ShallowCopy(R_X);
    Reset(GlobalRandomSource, old);
  else
    rs!.R_N := seed[1];
    rs!.R_X := ShallowCopy(seed[2]);
  fi;
  return rs;
end);

InstallMethod(State, [IsGAPRandomSource], function(rs)
  return [rs!.R_N, ShallowCopy(rs!.R_X)];
end);

InstallMethod(Reset, [IsGAPRandomSource, IsObject], function(rs, seed)
  local old;
  old := State(rs);
  Init(rs, seed);
  return old;
end);

InstallMethod(Random, [IsGAPRandomSource, IsList], function(rs, list)
  local rx, rn;
  # we need to repeat the code of RANDOM_LIST
  rx := rs!.R_X;
  rn := rs!.R_N mod 55 + 1;
  rs!.R_N := rn;
  rx[rn] := (rx[rn] + rx[(rn+30) mod 55+1]) mod R_228;
  return list[ QUO_INT( rx[rn] * LEN_LIST(list), R_228 ) + 1 ];
end);


##############################################################################
##  Random source using the Mersenne twister kernel functions.
##  
InstallMethod(Init, [IsMersenneTwister, IsObject], function(rs, seed)
  local st, endianseed, endiansys, perm, tmp, i;
  if IsPlistRep(seed) and IsString(seed[1]) and Length(seed[1]) = 2504 then
    st := ShallowCopy(seed[1]);
    # maybe adjust endianness if seed comes from different machine:
    endianseed := st{[2501..2504]};
    endiansys := GlobalMersenneTwister!.state{[2501..2504]};
    if endianseed <> endiansys then
      perm := List(endiansys, c-> Position(endianseed, c));
      tmp := "";
      for i in [0..625] do
        tmp{[4*i+1..4*i+4]} := st{4*i+perm};
      od;
      st := tmp;
    fi;
    rs!.state := st;
  else
    if not IsString(seed) then
      seed := ShallowCopy(String(seed));
      # padding such that length is positive and divisible by 4
      while Length(seed) = 0 or Length(seed) mod 4 <> 0 do
        Add(seed, CHAR_INT(0));
      od;
    fi;
    rs!.state := InitRandomMT(seed);
  fi;
  return rs;
end);

InstallMethod(State, [IsMersenneTwister], function(rs)
  return [ShallowCopy(rs!.state)];
end);

InstallMethod(Reset, [IsMersenneTwister, IsObject], function(rs, seed)
  local old;
  old := State(rs);
  Init(rs, seed);
  return old;
end);

InstallMethod(Random, [IsMersenneTwister, IsList], function(rs, list)
  return RandomListMT(rs!.state, list);
end);

InstallMethod(Random, [IsMersenneTwister, IsInt, IsInt], function(rs, a, b)
  local d, nrbits, res;
  d := b-a+1;
  if d < 0 then
    return fail;
  elif d = 0 then
    return a;
  fi;
  nrbits := Log2Int(d) + 1;
  repeat
    res := RandomIntegerMT(rs!.state, nrbits);
  until res < d;
  return res + a;
end);

# One global Mersenne twister random source, can be used to overwrite
# the library Random(list) and Random(a,b) methods.
InstallValue(GlobalMersenneTwister, RandomSource(IsMersenneTwister, "1"));

# default random method for lists and pairs of integers using the Mersenne
# twister
InstallMethod( Random, "for an internal list",
    [ IsList and IsInternalRep ], 100,
    function(l) return Random(GlobalMersenneTwister, l); end );

InstallMethod( Random,
    "for two integers",
    IsIdenticalObj,
    [ IsInt,
      IsInt ],
    0,
function(low, high)
  return Random(GlobalMersenneTwister, low, high);
end );