/usr/share/gap/lib/ratfun1.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 | #############################################################################
##
#W ratfun1.gi GAP Library Frank Celler
#W Andrew Solomon
#W Juergen Mueller
#W Alexander Hulpke
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains those methods for rational functions, laurent
## polynomials and polynomials and their families which are time critical
## and will benefit from compilation.
##
# Functions to create objects
LAUR_POL_BY_EXTREP:=function(rfam,coeff,val,inum)
local f,typ,lc;
# trap code for unreduced coeffs.
# if Length(coeffs[1])>0
# and (IsZero(coeffs[1][1]) or IsZero(coeffs[1][Length(coeffs[1])])) then
# Error("zero coeff!");
# fi;
# check for constants and zero
lc:=Length(coeff);
if 0 = val and 1 = lc then
# unshifted and one coefficient - constant
typ := rfam!.threeLaurentPolynomialTypes[2];
elif 0 = lc then
# it is the zero polynomial
val:=0; # special case: result is 0.
typ := rfam!.threeLaurentPolynomialTypes[2];
elif 0 <= val then
# possibly shifted left - polynomial
typ := rfam!.threeLaurentPolynomialTypes[3];
else
typ := rfam!.threeLaurentPolynomialTypes[1];
fi;
# slightly better to do this after the Length has been determined
if IsFFECollection(coeff) and IS_PLIST_REP(coeff) then
ConvertToVectorRep(coeff);
fi;
# objectify. We have to be *fast*. Thus we don't even call
# `ObjectifyWithAttributes' but `Objectify' itself.
# note that `IndNum.LaurentPol. is IndnumUnivRatFun !
f := rec(IndeterminateNumberOfUnivariateRationalFunction:=inum,
CoefficientsOfLaurentPolynomial:=Immutable([coeff,val]));
Objectify(typ,f);
# ObjectifyWithAttributes(f,typ,
# IndeterminateNumberOfLaurentPolynomial, inum,
# CoefficientsOfLaurentPolynomial, coeffs);
# and return the polynomial
return f;
end;
# conversion
EXTREP_POLYNOMIAL_LAURENT:=function(f)
local coefs, ind, extrep, i, shift,fam;
fam:=FamilyObj(f);
coefs := CoefficientsOfLaurentPolynomial(f);
ind := IndeterminateNumberOfLaurentPolynomial(f);
extrep := [];
shift := coefs[2];
for i in [1 .. Length(coefs[1])] do
if coefs[1][i]<>fam!.zeroCoefficient then
if 1-i<>shift then
Append(extrep,[[ind, i + shift -1], coefs[1][i]]);
else
Append(extrep,[[], coefs[1][i]]);
fi;
fi;
od;
return extrep;
end;
UNIVARTEST_RATFUN:=function(f)
local fam,notuniv,cannot,num,den,hasden,indn,col,dcol,val,i,j,nud,pos;
fam:=FamilyObj(f);
notuniv:=[false,fail,false,fail]; # answer if know to be not univariate
cannot:=[fail,fail,fail,fail]; # answer if the test fails because
# there is no multivariate GCD.
# try to become a polynomial if possible. In particular we know the
# denominator to be cancelled out if possible.
if IsPolynomial(f) then
num := ExtRepPolynomialRatFun(f);
den:=[[],fam!.oneCoefficient];
else
num := ExtRepNumeratorRatFun(f);
den := ExtRepDenominatorRatFun(f);
fi;
if Length(den[1])> 0 then
# try a GCD cancellation
i:=TryGcdCancelExtRepPolynomials(fam,num,den);
if i<>fail then
num:=i[1];
den:=i[2];
fi;
#T: must do multivariate GCD (otherwise a `false' answer is not guaranteed)
fi;
hasden:=true;
indn:=false; # the indeterminate number we want to get
if Length(den)=2 and Length(den[1])=0 then
if not IsOne(den[2]) then
# take care of denominator so that we can throw it away afterwards.
den:=den[2];
num:=ShallowCopy(num);
for i in [2,4..Length(num)] do
num[i]:=num[i]/den;
od;
fi;
hasden:=false;
val:=0;
elif Length(den)=2 then
# this is the case in which we can spot a laurent polynomial
# We assume that the cancellation test will have dealt properly with
# denominators which are monomials. So what we need here is only one
# indeterminate, otherwise we must fail
if Length(den[1])>2 then
return cannot; # or: notuniv?
fi;
indn:=den[1][1]; # this is the indeterminate number we need to have
val:=-den[1][2];
if not IsOne(den[2]) then
# take care of denominator so that we can throw it away afterwards.
den:=den[2];
num:=ShallowCopy(num);
for i in [2,4..Length(num)] do
num[i]:=num[i]/den;
od;
fi;
hasden:=false;
fi;
col:=[];
nud:=1; # last position isto which we can assign without holes
# now process the numerator
for i in [2,4..Length(num)] do
if Length(num[i-1])>0 then
if indn=false then
#set the indeterminate
indn:=num[i-1][1];
elif indn<>num[i-1][1] then
# inconsistency:
if hasden then
return cannot;
else
return notuniv;
fi;
fi;
fi;
if Length(num[i-1])>2 then
if hasden then
return cannot;
else
return notuniv;
fi;
fi;
# now we know the monomial to be [indn,exp]
# set the coefficient
if Length(num[i-1])=0 then
# exp=0
pos:=1;
else
pos:=num[i-1][2]+1;
fi;
# fill zeroes in the coefficient list
for j in [nud..pos-1] do
col[j]:=fam!.zeroCoefficient;
od;
col[pos]:=num[i];
nud:=pos+1;
od;
if hasden then
dcol:=[];
nud:=1; # last position isto which we can assign without holes
# because we have a special hook above for laurent polynomials, we know
# it cannot be a laurent polynomial any longer.
# now process the denominator
for i in [2,4..Length(den)] do
if Length(den[i-1])>0 then
if indn=false then
#set the indeterminate
indn:=den[i-1][1];
elif indn<>den[i-1][1] then
# inconsistency:
return cannot;
fi;
fi;
if Length(den[i-1])>2 then
return cannot;
fi;
# now we know the monomial to be [indn,exp]
# set the coefficient
if Length(den[i-1])=0 then
# exp=0
pos:=1;
else
pos:=den[i-1][2]+1;
fi;
# fill zeroes in the coefficient list
for j in [nud..pos-1] do
dcol[j]:=fam!.zeroCoefficient;
od;
dcol[pos]:=den[i];
nud:=pos+1;
od;
val:=RemoveOuterCoeffs(col,fam!.zeroCoefficient);
val:=val-RemoveOuterCoeffs(dcol,fam!.zeroCoefficient);
# the indeterminate number must be set, we have a nonvanishing
# denominator
return [true,indn,false,Immutable([col,dcol,val])];
else
# no denominator to deal with: We are univariate laurent
# shift properly
val:=val+RemoveOuterCoeffs(col,fam!.zeroCoefficient);
if indn=false then
indn:=1; #default value
fi;
return [true,indn,true,Immutable([col,val])];
fi;
end;
EXTREP_COEFFS_LAURENT:=function(cofs,val,ind,zero)
local ext, i, j;
ext := [];
for i in [ 0 .. Length(cofs)-1 ] do
if cofs[i+1] <> zero then
j := val + i;
if j <> 0 then
Add( ext, [ ind, j ] );
Add( ext, cofs[i+1] );
else
Add( ext, [] );
Add( ext, cofs[i+1] );
fi;
fi;
od;
return ext;
end;
UNIV_FUNC_BY_EXTREP:=function(rfam,ncof,dcof,val,inum)
local f;
# constant denominator -> ratfun
if Length(dcof)=1 then
if not IsOne(dcof[1]) then
return LAUR_POL_BY_EXTREP(rfam,1/dcof[1]*ncof,val,inum);
else
return LAUR_POL_BY_EXTREP(rfam,ncof,val,inum);
fi;
fi;
# slightly better to do this after the Length id determined
if IsFFECollection(ncof) and IS_PLIST_REP(ncof) then
ConvertToVectorRep(ncof);
fi;
if IsFFECollection(dcof) and IS_PLIST_REP(dcof) then
ConvertToVectorRep(dcof);
fi;
# objectify. We have to be *fast*. Thus we don't even call
# `ObjectifyWithAttributes' but `Objectify' itself.
# note that `IndNum.LaurentPol. is IndnumUnivRatFun !
f := rec(IndeterminateNumberOfUnivariateRationalFunction:=inum,
CoefficientsOfUnivariateRationalFunction:=Immutable([ncof,dcof,val]));
Objectify(rfam!.univariateRatfunType,f);
# ObjectifyWithAttributes(f,typ,...
# and return the polynomial
return f;
end;
#############################################################################
#
# Functions for dealing with monomials
# The monomials are represented as Zipped Lists.
# i.e. sorted lists [i1,e1,i2, e2,...] where i1<i2<...are the indeterminates
# from smallest to largest
#
#############################################################################
#############################################################################
##
#F MonomialRevLexicoLess(mon1,mon2) . . . . reverse lexicographic ordering
##
MONOM_REV_LEX:=function(m,n)
local x,y;
# assume m and n are lexicographically sorted (otherwise we have to do
# further work)
x:=Length(m)-1;
y:=Length(n)-1;
while x>0 and y>0 do
if m[x]>n[y] then
return false;
elif m[x]<n[y] then
return true;
# now m[x]=n[y]
elif m[x+1]>n[y+1] then
return false;
elif m[x+1]<n[y+1] then
return true;
fi;
# thus same coeffs, step down
x:=x-2;
y:=y-2;
od;
if x<=0 and y>0 then
return true;
else
return false;
fi;
end;
## Low level workhorse for operations with monomials in Zipped form
## ZippedSum( <z1>, <z2>, <czero>, <funcs> )
ZIPPED_SUM_LISTS_LIB:= function( z1, z2, zero, f )
local sum, i1, i2, i;
sum := [];
i1 := 1;
i2 := 1;
while i1 <= Length(z1) and i2 <= Length(z2) do
## are the two monomials equal ?
if z1[i1] = z2[i2] then
## compute the sum of the coefficients
i := f[2]( z1[i1+1], z2[i2+1] );
if i <> zero then
## Add the term to the sum if the coefficient is not zero
Add( sum, z1[i1] );
Add( sum, i );
fi;
i1 := i1+2;
i2 := i2+2;
elif f[1]( z1[i1], z2[i2] ) then ## z1[i1] < z2[i2] ?
## z1[i1] is the smaller of the two monomials and gets added to
## the sum. We have to apply the sum function to the
## coefficient and zero.
if z1[i1+1] <> zero then
Add( sum, z1[i1] );
Add( sum, f[2]( z1[i1+1], zero ) );
fi;
i1 := i1+2;
else
## z1[i1] is the smaller of the two monomials
if z2[i2+1] <> zero then
Add( sum, z2[i2] );
Add( sum, f[2]( zero, z2[i2+1] ) );
fi;
i2 := i2+2;
fi;
od;
## Now append the rest of the longer polynomial to the sum. Note that
## only one of the following loops is executed.
for i in [ i1, i1+2 .. Length(z1)-1 ] do
if z1[i+1] <> zero then
Add( sum, z1[i] );
Add( sum, f[2]( z1[i+1], zero ) );
fi;
od;
for i in [ i2, i2+2 .. Length(z2)-1 ] do
if z2[i+1] <> zero then
Add( sum, z2[i] );
Add( sum, f[2]( zero, z2[i+1] ) );
fi;
od;
return sum;
end;
## ZippedProduct( <z1>, <z2>, <czero>, <funcs> )
ZIPPED_PRODUCT_LISTS:=function( z1, z2, zero, f )
local mons, cofs, i, j, c, prd;
# check for constant factors
if Length(z1)=2 and IsList(z1[1]) and Length(z1[1])=0 then
c:=z1[2];
prd:=ShallowCopy(z2);
cofs:=[2,4..Length(prd)];
if not IsOne(c) then
prd{cofs}:=c*prd{cofs};
fi;
return prd;
elif Length(z2)=2 and IsList(z2[1]) and Length(z2[1])=0 then
c:=z2[2];
prd:=ShallowCopy(z1);
cofs:=[2,4..Length(prd)];
if not IsOne(c) then
prd{cofs}:=c*prd{cofs};
fi;
return prd;
fi;
# fold the product
mons := [];
cofs := [];
for i in [ 1, 3 .. Length(z1)-1 ] do
for j in [ 1, 3 .. Length(z2)-1 ] do
## product of the coefficients.
c := f[4]( z1[i+1], z2[j+1] );
if c <> zero then
## add the product of the monomials
Add( mons, f[1]( z1[i], z2[j] ) );
## and the coefficient
Add( cofs, c );
fi;
od;
od;
# sort monomials
SortParallel( mons, cofs, f[2] );
# sum coeffs
prd := [];
i := 1;
while i <= Length(mons) do
c := cofs[i];
while i < Length(mons) and mons[i] = mons[i+1] do
i := i+1;
c := f[3]( c, cofs[i] ); ## add coefficients
od;
if c <> zero then
## add the term to the product
Add( prd, mons[i] );
Add( prd, c );
fi;
i := i+1;
od;
# and return the product
return prd;
end;
#############################################################################
##
#F ZippedListQuotient . . . . . . . . . . . . divide a monomial by another
##
BindGlobal("ZippedListQuotient",function( a, b )
local l, m, i, j, c, e;
l:=Length(a);
m:=Length(b);
i:=1;
j:=1;
c:=[];
while i<l and j<m do
if a[i]=b[j] then
e:=a[i+1]-b[j+1];
if e<>0 then
Add(c,a[i]);
Add(c,e);
fi;
i:=i+2;
j:=j+2;
elif a[i]<b[j] then
Add(c,a[i]);
Add(c,a[i+1]);
i:=i+2;
else
Add(c,b[j]);
Add(c,-b[j+1]);
j:=j+2;
fi;
od;
while i<l do
Add(c,a[i]);
Add(c,a[i+1]);
i:=i+2;
od;
while j<m do
Add(c,b[j]);
Add(c,-b[j+1]);
j:=j+2;
od;
return c;
end);
# Arithmetic
ADDITIVE_INV_RATFUN:=function( obj )
local fam, i, newnum;
fam := FamilyObj(obj);
newnum := ShallowCopy(ExtRepNumeratorRatFun(obj));
for i in [ 2, 4 .. Length(newnum) ] do
newnum[i] := -newnum[i];
od;
return RationalFunctionByExtRepNC(fam,newnum,ExtRepDenominatorRatFun(obj));
end;
ADDITIVE_INV_POLYNOMIAL:=function( obj )
local fam, i, newnum;
fam := FamilyObj(obj);
newnum := ShallowCopy(ExtRepNumeratorRatFun(obj));
for i in [ 2, 4 .. Length(newnum) ] do
newnum[i] := -newnum[i];
od;
return PolynomialByExtRepNC(fam,newnum);
end;
SMALLER_RATFUN:=function(left,right)
local a,b,fam,i, j,ln,ld,rn,rd;
if HasIsPolynomial(left) and IsPolynomial(left)
and HasIsPolynomial(right) and IsPolynomial(right) then
a:=ExtRepPolynomialRatFun(left);
b:=ExtRepPolynomialRatFun(right);
else
fam:=FamilyObj(left);
ln:=ExtRepNumeratorRatFun(left);
ld:=ExtRepDenominatorRatFun(left);
# avoid negative leading coefficients in the denominator
i:=Length(ld);
if ld[i]<0*ld[i] then
ld:=ShallowCopy(ld);
for i in [2,4..Length(ld)] do
ld[i]:=-ld[i];
od;
ln:=ShallowCopy(ln);
for i in [2,4..Length(ln)] do
ln[i]:=-ln[i];
od;
fi;
rn:=ExtRepNumeratorRatFun(right);
rd:=ExtRepDenominatorRatFun(right);
# avoid negative leading coefficients in the denominator
i:=Length(rd);
if rd[i]<0*rd[i] then
rd:=ShallowCopy(rd);
for i in [2,4..Length(rd)] do
rd[i]:=-rd[i];
od;
rn:=ShallowCopy(rn);
for i in [2,4..Length(rn)] do
rn[i]:=-rn[i];
od;
fi;
a := ZippedProduct(ln,rd,fam!.zeroCoefficient,fam!.zippedProduct);
b := ZippedProduct(rn,ld,fam!.zeroCoefficient,fam!.zippedProduct);
fi;
i:=Length(a)-1;
j:=Length(b)-1;
while i>0 and j>0 do
# compare the last monomials
if a[i]=b[j] then
# the monomials are the same, compare the coefficients
if a[i+1]=b[j+1] then
# the coefficients are also the same. Must continue
i:=i-2;
j:=j-2;
else
# let the coefficients decide
return a[i+1]<b[j+1];
fi;
elif MonomialExtGrlexLess(a[i],b[j]) then
# a is strictly smaller
return true;
else
# a is strictly larger
return false;
fi;
od;
# is there an a-remainder (then a is larger)
# or are both polynomials equal?
if i>0 or i=j then
return false;
else
return true;
fi;
end;
#############################################################################
##
#M <polynomial> + <coeff>
##
SUM_COEF_POLYNOMIAL:=function( cf, rf )
local fam, extrf;
if IsZero(cf) then
return rf;
fi;
fam := FamilyObj(rf);
extrf := ExtRepPolynomialRatFun(rf);
# assume the constant term is in the first position
if Length(extrf)>0 and Length(extrf[1])=0 then
if extrf[2]=-cf then
extrf:=extrf{[3..Length(extrf)]};
else
extrf:=ShallowCopy(extrf);
extrf[2]:=extrf[2]+cf;
fi;
else
extrf:=Concatenation([[],cf],extrf);
fi;
return PolynomialByExtRepNC(fam,extrf);
end;
QUOTIENT_POLYNOMIALS_EXT:=function(fam, p, q )
local quot, lcq, lmq, mon, i, coeff;
if Length(q)=0 then
return fail; #safeguard
fi;
quot := [];
lcq := q[Length(q)];
lmq := q[Length(q)-1];
p:=ShallowCopy(p);
while Length(p)>0 do
## divide the leading monomial of q by the leading monomial of p
mon := ZippedListQuotient( p[Length(p)-1], lmq );
## check if mon has negative exponents
for i in [2,4..Length(mon)] do
if mon[i] < 0 then return fail; fi;
od;
## now add the quotient of the coefficients
coeff := p[Length(p)] / lcq;
## Add coeff, mon to quot, the result is sorted in reversed order.
Add( quot, coeff );
Add( quot, mon );
## p := p - mon * q;
# compute -q*mon;
mon := ZippedProduct(q,[mon,-coeff],
fam!.zeroCoefficient,fam!.zippedProduct);
# add it to p
p:=ZippedSum(p,mon,fam!.zeroCoefficient,fam!.zippedSum);
od;
quot := Reversed(quot);
return quot;
end;
SUM_LAURPOLS:=function( left, right )
local indn, fam, zero, l, r, val, sum;
# this method only works for the same indeterminate
# to be *Fast* we don't even call `CIUnivPols' but work directly.
if HasIndeterminateNumberOfLaurentPolynomial(left) and
HasIndeterminateNumberOfLaurentPolynomial(right) then
indn:=IndeterminateNumberOfLaurentPolynomial(left);
if indn<>IndeterminateNumberOfLaurentPolynomial(right) then
TryNextMethod();
fi;
else
indn:=CIUnivPols(left,right);
if indn=fail then
TryNextMethod();
fi;
fi;
# get the coefficients
fam := FamilyObj(left);
zero := fam!.zeroCoefficient;
l := CoefficientsOfLaurentPolynomial(left);
r := CoefficientsOfLaurentPolynomial(right);
# catch zero cases
if Length(l[1])=0 then
return right;
elif Length(r[1])=0 then
return left;
fi;
if l[2]=r[2] then
sum:=ShallowCopy(l[1]);
AddCoeffs(sum,r[1]);
# only in this case the initial coefficient might be cancelled out
# (assuming that f and g are proper)
val:=l[2]+RemoveOuterCoeffs(sum,zero);
elif l[2]<r[2] then
sum:=ShallowCopy(r[1]);
RightShiftRowVector(sum,r[2]-l[2],zero);
AddCoeffs(sum,l[1]);
ShrinkRowVector(sum);
val:=l[2];
else #l[2]>r[2]
sum:=ShallowCopy(l[1]);
RightShiftRowVector(sum,l[2]-r[2],zero);
AddCoeffs(sum,r[1]);
ShrinkRowVector(sum);
val:=r[2];
fi;
# and return the polynomial (we might get a new valuation!)
return LaurentPolynomialByExtRepNC(fam, sum, val, indn );
end;
DIFF_LAURPOLS:=
function( left, right )
local indn, fam, zero, l, r, val, sum;
# this method only works for the same indeterminate
# to be *Fast* we don't even call `CIUnivPols' but work directly.
if HasIndeterminateNumberOfLaurentPolynomial(left) and
HasIndeterminateNumberOfLaurentPolynomial(right) then
indn:=IndeterminateNumberOfLaurentPolynomial(left);
if indn<>IndeterminateNumberOfLaurentPolynomial(right) then
TryNextMethod();
fi;
else
indn:=CIUnivPols(left,right);
if indn=fail then
TryNextMethod();
fi;
fi;
# get the coefficients
fam := FamilyObj(left);
zero := fam!.zeroCoefficient;
l := CoefficientsOfLaurentPolynomial(left);
r := CoefficientsOfLaurentPolynomial(right);
# catch zero cases
if Length(l[1])=0 then
return AdditiveInverseOp(right);
elif Length(r[1])=0 then
return left;
fi;
if l[2]=r[2] then
sum:=ShallowCopy(l[1]);
AddCoeffs(sum,r[1],-fam!.oneCoefficient);
# only in this case the initial coefficient might be cancelled out
# (assuming that f and g are proper)
val:=l[2]+RemoveOuterCoeffs(sum,zero);
elif l[2]<r[2] then
sum:=ShallowCopy(AdditiveInverseOp(r[1]));
RightShiftRowVector(sum,r[2]-l[2],zero);
AddCoeffs(sum,l[1]);
ShrinkRowVector(sum);
val:=l[2];
else #l[2]>r[2]
sum:=ShallowCopy(l[1]);
RightShiftRowVector(sum,l[2]-r[2],zero);
# was: AddCoeffs(sum,AdditiveInverseOp(r[1]));
AddCoeffs(sum,r[1],-fam!.oneCoefficient);
ShrinkRowVector(sum);
val:=r[2];
fi;
# and return the polynomial (we might get a new valuation!)
return LaurentPolynomialByExtRepNC(fam, sum, val, indn );
end;
PRODUCT_LAURPOLS:= function( left, right )
local indn, fam, prd, l, r, m, n, val;
# this method only works for the same indeterminate
# to be *Fast* we don't even call `CIUnivPols' but work directly.
if HasIndeterminateNumberOfLaurentPolynomial(left) and
HasIndeterminateNumberOfLaurentPolynomial(right) then
indn:=IndeterminateNumberOfLaurentPolynomial(left);
if indn<>IndeterminateNumberOfLaurentPolynomial(right) then
TryNextMethod();
fi;
else
indn:=CIUnivPols(left,right);
if indn=fail then
TryNextMethod();
fi;
fi;
fam := FamilyObj(left);
# special treatment of zero
l := CoefficientsOfLaurentPolynomial(left);
m := Length(l[1]);
if m=0 then
return left;
fi;
r := CoefficientsOfLaurentPolynomial(right);
n := Length(r[1]);
if n=0 then
return right;
fi;
# fold the coefficients
prd:=ProductCoeffs(l[1],m,r[1],n);
val := l[2] + r[2];
val:=val+RemoveOuterCoeffs(prd,fam!.zeroCoefficient);
# return the polynomial
return LaurentPolynomialByExtRepNC(fam,prd, val, indn );
end;
GCD_COEFFS:=function(u,v)
local w;
# perform a Euclidean algorithm
u:=ShallowCopy(u);
v:=ShallowCopy(v);
while 0<Length(v) do
w:=v;
ReduceCoeffs(u,v);
ShrinkRowVector(u);
v:=u;
u:=w;
od;
if Length(u)>0 then
return u*u[Length(u)]^-1;
else
return u;
fi;
end;
# This function is destructive on the first argument!
QUOTREM_LAURPOLS_LISTS:=function(fc,gc)
local q,m,n,i,c,k,f;
# try to divide
q:=[];
n:=Length(gc);
m:=Length(fc)-n;
# try to keep a compressed field
if IsGF2VectorRep(fc) and IsGF2VectorRep(gc) then
f:=2;
elif Is8BitVectorRep(fc) then
f:=Q_VEC8BIT(fc);
if (not Is8BitVectorRep(gc)) or Q_VEC8BIT(gc)<>f then
f:=0;
fi;
else
f:=0;
fi;
for i in [0..m] do
c:=fc[m-i+n]/gc[n];
k:=[1..n]+m-i;
fc{k}:=fc{k}-c*gc;
q[m-i+1]:=c;
od;
if f>0 then
ConvertToVectorRep(q,f);
fi;
return [q,fc];
end;
ADDCOEFFS_GENERIC_3:=function( l1, l2, m )
local a1,a2, zero, n1;
a1:=Length(l1);a2:=Length(l2);
if a1>=a2 then
n1:=[1..a2];
l1{n1}:=l1{n1}+m*l2;
else
n1:=[1..a1];
l1{n1}:=l1+m*l2{n1};
Append(l1,m*l2{[a1+1..a2]});
fi;
if 0 < Length(l1) then
zero := Zero(l1[1]);
n1 := Length(l1);
while 0 < n1 and l1[n1] = zero do
n1 := n1 - 1;
od;
else
n1 := 0;
fi;
return n1;
end;
PRODUCT_COEFFS_GENERIC_LISTS:=
function( l1,m,l2,n )
local i,j,p,z,s,u,o;
if m=0 or n=0 then
return [];
fi;
# this is faster than calling only `Zero'.
s:=FamilyObj(l1[1]);
if HasZero(s) then
z:=Zero(s);
else
z:=Zero(l1[1]);
fi;
p:=[];
for i in [ 1 .. m+n-1 ] do
s := z;
if m<i then
o:=m;
else
o:=i;
fi;
if i<n then
u:=1;
else
u:=i+1-n;
fi;
for j in [ u .. o ] do
s := s + l1[j] * l2[i+1-j];
od;
p[i] := s;
od;
return p;
end;
## RemoveOuterCoeffs( <list>, <coef> )
REMOVE_OUTER_COEFFS_GENERIC:=function( l, c )
local n, m, i;
n := Length(l);
if 0 = n then
return 0;
fi;
while 0 < n and l[n] = c do
Unbind(l[n]);
n := n-1;
od;
if n = 0 then
return 0;
fi;
m := 0;
while m < n and l[m+1] = c do
m := m+1;
od;
if 0 = m then
return 0;
fi;
for i in [ m+1 .. n ] do
l[i-m]:=l[i];
od;
for i in [1 .. m] do
Unbind(l[n-i+1]);
od;
return m;
end;
PRODUCT_UNIVFUNCS:=function(left,right)
local indn,l,r,ln,ld,rn,rd,g,m,n;
# this method only works for the same indeterminate
# to be *Fast* we don't even call `CIUnivPols' but work directly.
if HasIndeterminateNumberOfUnivariateRationalFunction(left) and
HasIndeterminateNumberOfUnivariateRationalFunction(right) then
indn:=IndeterminateNumberOfUnivariateRationalFunction(left);
if indn<>IndeterminateNumberOfUnivariateRationalFunction(right) then
TryNextMethod();
fi;
else
indn:=CIUnivPols(left,right);
if indn=fail then
TryNextMethod();
fi;
fi;
l:=CoefficientsOfUnivariateRationalFunction(left);
r:=CoefficientsOfUnivariateRationalFunction(right);
ln:=l[1];
rd:=r[2];
g:=GcdCoeffs(ln,rd);
if Length(g)>1 then
ln:=QUOTREM_LAURPOLS_LISTS(ShallowCopy(ln),g)[1];
rd:=QUOTREM_LAURPOLS_LISTS(ShallowCopy(rd),g)[1];
fi;
rn:=r[1];
ld:=l[2];
g:=GcdCoeffs(rn,ld);
if Length(g)>1 then
rn:=QUOTREM_LAURPOLS_LISTS(ShallowCopy(rn),g)[1];
ld:=QUOTREM_LAURPOLS_LISTS(ShallowCopy(ld),g)[1];
fi;
m := Length(ln);
if m=0 then
return left;
fi;
n:=Length(rn);
if n=0 then
return right;
fi;
# product
ln:=ProductCoeffs(ln,m,rn,n);
ld:=ProductCoeffs(ld,rd);
return UnivariateRationalFunctionByExtRepNC(FamilyObj(left),
ln,ld,l[3]+r[3],indn);
end;
QUOT_UNIVFUNCS:=function(left,right)
local indn,l,r,ln,ld,rn,rd,g,m,n;
# this method only works for the same indeterminate
# to be *Fast* we don't even call `CIUnivPols' but work directly.
if HasIndeterminateNumberOfUnivariateRationalFunction(left) and
HasIndeterminateNumberOfUnivariateRationalFunction(right) then
indn:=IndeterminateNumberOfUnivariateRationalFunction(left);
if indn<>IndeterminateNumberOfUnivariateRationalFunction(right) then
TryNextMethod();
fi;
else
indn:=CIUnivPols(left,right);
if indn=fail then
TryNextMethod();
fi;
fi;
l:=CoefficientsOfUnivariateRationalFunction(left);
r:=CoefficientsOfUnivariateRationalFunction(right);
ln:=l[1];
rd:=r[1];
g:=GcdCoeffs(ln,rd);
if Length(g)>1 then
ln:=QUOTREM_LAURPOLS_LISTS(ShallowCopy(ln),g)[1];
rd:=QUOTREM_LAURPOLS_LISTS(ShallowCopy(rd),g)[1];
fi;
rn:=r[2];
ld:=l[2];
g:=GcdCoeffs(rn,ld);
if Length(g)>1 then
rn:=QUOTREM_LAURPOLS_LISTS(ShallowCopy(rn),g)[1];
ld:=QUOTREM_LAURPOLS_LISTS(ShallowCopy(ld),g)[1];
fi;
m := Length(ln);
if m=0 then
return left;
fi;
n:=Length(rn); #cannot be zero since former denominator
# product
ln:=ProductCoeffs(ln,m,rn,n);
ld:=ProductCoeffs(ld,rd);
return UnivariateRationalFunctionByExtRepNC(FamilyObj(left),
ln,ld,l[3]-r[3],indn);
end;
SUM_UNIVFUNCS:=function(left,right)
local l,r,indn,ld,rd,ln,rn,g,fam,zero,val;
# this method only works for the same indeterminate
# to be *Fast* we don't even call `CIUnivPols' but work directly.
if HasIndeterminateNumberOfUnivariateRationalFunction(left) and
HasIndeterminateNumberOfUnivariateRationalFunction(right) then
indn:=IndeterminateNumberOfUnivariateRationalFunction(left);
if indn<>IndeterminateNumberOfUnivariateRationalFunction(right) then
TryNextMethod();
fi;
else
indn:=CIUnivPols(left,right);
if indn=fail then
TryNextMethod();
fi;
fi;
fam := FamilyObj(left);
zero := fam!.zeroCoefficient;
l:=CoefficientsOfUnivariateRationalFunction(left);
r:=CoefficientsOfUnivariateRationalFunction(right);
# catch zero cases
if Length(l[1])=0 then
return right;
elif Length(r[1])=0 then
return left;
fi;
ln:=l[1];
ld:=l[2];
rn:=r[1];
rd:=r[2];
# take care of valuation
if l[3]<r[3] then
val:=l[3];
rn:=ShallowCopy(rn);
RightShiftRowVector(rn,r[3]-l[3],zero);
elif l[3]>r[3] then
val:=r[3];
ln:=ShallowCopy(ln);
RightShiftRowVector(ln,l[3]-r[3],zero);
else
val:=l[3];
fi;
if ld=rd then
ln:=ShallowCopy(ln);
AddCoeffs(ln,rn);
else
# different denominators
g:=GcdCoeffs(ld,rd);
if Length(g)=1 then
# coprime
ln:=ProductCoeffs(ln,rd);
rn:=ProductCoeffs(rn,ld);
# new denominator
ld:=ProductCoeffs(ld,rd);
else
rd:=QUOTREM_LAURPOLS_LISTS(ShallowCopy(rd),g)[1];
ln:=ProductCoeffs(ln,rd);
# left divided denominator
g:=QUOTREM_LAURPOLS_LISTS(ShallowCopy(ld),g)[1];
rn:=ProductCoeffs(rn,g);
# new denominator
ld:=ProductCoeffs(ld,rd);
fi;
AddCoeffs(ln,rn);
fi;
val:=val+RemoveOuterCoeffs(ln,zero);
g:=GcdCoeffs(ln,ld);
if Length(g)>1 then
ln:=QUOTREM_LAURPOLS_LISTS(ln,g)[1];
ld:=QUOTREM_LAURPOLS_LISTS(ShallowCopy(ld),g)[1];
fi;
return UnivariateRationalFunctionByExtRepNC(fam,ln,ld,val,indn);
end;
DIFF_UNIVFUNCS:=function(f,g)
TryNextMethod();
end;
#############################################################################
##
#F SpecializedExtRepPol(<fam>,<ext>,<ind>,<val>)
##
SPECIALIZED_EXTREP_POL:= function(fam,ext,ind,val)
local e,i,p,m,c;
e:=[];
for i in [1,3..Length(ext)-1] do
# is the indeterminate used in the monomial
p:=PositionProperty([1,3..Length(ext[i])-1],j->ext[i][j]=ind);
if p=fail then
m:=ext[i];
c:=ext[i+1];
else
# yes, compute changed monomial and coefficient
p:=2*p-1; #actual position 1,3..
m:=ext[i]{Concatenation([1..p-1],[p+2..Length(ext[i])])};
c:=ext[i+1]*val^ext[i][p+1];
fi;
e:=ZippedSum(e,[m,c],fam!.zeroCoefficient,fam!.zippedSum);
od;
return e;
end;
TRY_GCD_CANCEL_EXTREP_POL:=
function(fam,num,den)
local q,p,e,i,j,cnt,sel,si;
q:=QuotientPolynomialsExtRep(fam,num,den);
if q<>fail then
# true quotient
return [q,[[],fam!.oneCoefficient]];
fi;
q:=QuotientPolynomialsExtRep(fam,den,num);
if q<>fail then
# true quotient
return [[[],fam!.oneCoefficient],q,num];
fi;
q:=HeuristicCancelPolynomialsExtRep(fam,num,den);
if IsList(q) then
# we got something
num:=q[1];
den:=q[2];
fi;
# special treatment if the denominator is a monomial
if Length(den)=2 then
# is the denominator a constant?
if Length(den[1])>0 then
q:=den[1];
e:=q{[2,4..Length(q)]}; # the exponents exponents
q:=q{[1,3..Length(q)-1]}; # the indeterminant occuring
IsSSortedList(q);
i:=1;
while i<Length(num) and ForAny(e,j->j>0) do
cnt:=0; # how many indeterminants did we find
for j in [1,3..Length(num[i])-1] do
p:=Position(q,num[i][j]); # uses PositionSorted
if p<>fail then
cnt:=cnt+1; # found one
e[p]:=Minimum(e[p],num[i][j+1]); # gcd via exponents
fi;
od;
if cnt<Length(e) then
e:=[0,0]; # not all indets found: cannot cancel!
fi;
i:=i+2;
od;
if ForAny(e,j->j>0) then
# found a common monomial
num:=ShallowCopy(num);
for i in [1,3..Length(num)-1] do
num[i]:=ShallowCopy(num[i]);
for j in [1,3..Length(num[i])-1] do
p:=Position(q,num[i][j]); # uses PositionSorted
# is this an indeterminate, which gets reduced?
if p<>fail then
num[i][j+1]:=num[i][j+1]-e[p]; #reduce
fi;
od;
# remove indeterminates with exponent zero
sel:=[];
for si in [2,4..Length(num[i])] do
if num[i][si]>0 then
Add(sel,si-1);
Add(sel,si);
fi;
od;
num[i]:=num[i]{sel};
od;
p:=ShallowCopy(den[1]);
i:=[2,4..Length(p)];
p{i}:=p{i}-e; # reduce exponents
# remove indeterminates with exponent zero
sel:=[];
for si in i do
if p[si]>0 then
Add(sel,si-1);
Add(sel,si);
fi;
od;
p:=p{sel};
den:=[p,den[2]]; #new denominator
fi;
fi;
# remove the denominator coefficient
if not IsOne(den[2]) then
num:=ShallowCopy(num);
for i in [2,4..Length(num)] do
num[i]:=num[i]/den[2];
od;
den:=[den[1],fam!.oneCoefficient];
fi;
fi;
return [num,den];
end;
DEGREE_INDET_EXTREP_POL:=function(e,ind)
local d,i,j;
e:=Filtered(e,IsList);
d:=0; #the maximum degree so far
for i in e do
j:=1;
while j<Length(i) do # searching the monomial
if i[j]=ind then
if i[j+1]>d then
d:=i[j+1];
fi;
j:=Length(i);
fi;
j:=j+2;
od;
od;
return d;
end;
# LeadingCoefficient( pol, ind )
LEAD_COEF_POL_IND_EXTREP:=function(e,ind)
local c,d,i,p;
d:=0;
c:=[];
for i in [1,3..Length(e)-1] do
# test whether the indeterminate does occur
p:=PositionProperty([1,3..Length(e[i])-1],j->e[i][j]=ind);
if p<>fail then
p:=p*2-1; # from indext in [1,3..] to number
if e[i][p+1]>d then
d:=e[i][p+1]; # new, higher degree
c:=[]; # start anew
fi;
if e[i][p+1]=d then
# remaining monomial with coefficient
Append(c,[e[i]{Difference([1..Length(e[i])],[p,p+1])},e[i+1]]);
fi;
fi;
od;
return c;
end;
# PolynomialCoefficientsOfPolynomial(<pol>,<ind>)
POL_COEFFS_POL_EXTREP:=function(e,ind)
local c,i,j,m,ex;
c:=[];
for i in [1,3..Length(e)-1] do
m:=e[i];
j:=1;
while j<=Length(m) and m[j]<>ind do
j:=j+2;
od;
if j<Length(m) then
ex:=m[j+1]+1;
m:=m{Concatenation([1..j-1],[j+2..Length(m)])};
else
ex:=1;
fi;
if not IsBound(c[ex]) then
c[ex]:=[];
fi;
Add(c[ex],m);
Add(c[ex],e[i+1]);
od;
return c;
end;
|