This file is indexed.

/usr/share/gap/lib/rational.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#############################################################################
##
#W  rational.gi                 GAP library                  Martin Schönert
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains methods for rationals.
##


#############################################################################
##
#V  Rationals . . . . . . . . . . . . . . . . . . . . . .  field of rationals
##
InstallValue( Rationals, Objectify( NewType(
    CollectionsFamily( CyclotomicsFamily ),
    IsRationals and IsAttributeStoringRep ), rec() ) );
SetName( Rationals, "Rationals" );
SetLeftActingDomain( Rationals, Rationals );
SetSize( Rationals, infinity );
SetConductor( Rationals, 1 );
SetDimension( Rationals, 1 );
SetGaloisStabilizer( Rationals, [ 1 ] );
SetGeneratorsOfLeftModule( Rationals, [ 1 ] );
SetIsWholeFamily( Rationals, false );


#############################################################################
##
#V  GaussianRationals . . . . . . . . . . . . . . field of Gaussian rationals
##
InstallValue( GaussianRationals, Objectify( NewType(
    CollectionsFamily( CyclotomicsFamily ),
    IsGaussianRationals and IsAttributeStoringRep ), rec() ) );
SetName( GaussianRationals, "GaussianRationals" );
SetLeftActingDomain( GaussianRationals, Rationals );
SetIsPrimeField( GaussianRationals, false );
SetIsCyclotomicField( GaussianRationals, true );
SetSize( GaussianRationals, infinity );
SetConductor( GaussianRationals, 4 );
SetDimension( GaussianRationals, 2 );
SetDegreeOverPrimeField( GaussianRationals, 2 );
SetGaloisStabilizer( GaussianRationals, [ 1 ] );
SetGeneratorsOfLeftModule( GaussianRationals, [ 1, E(4) ] );
SetIsWholeFamily( GaussianRationals, false );


#############################################################################
##
#M  \in( <x>, <Rationals> ) . . . . . . . . . . membership test for rationals
##
InstallMethod( \in,
    "for cyclotomic and Rationals",
    [ IsCyclotomic, IsRationals ],
    function( x, Rationals ) return IsRat( x ); end );


#############################################################################
##
#M  Random( Rationals ) . . . . . . . . . . . . . . . . . . . random rational
##
InstallMethod( Random,
    "for Rationals",
    [ IsRationals ],
    function( Rationals )
    local den;
    repeat den := Random( Integers ); until den <> 0;
    return Random( Integers ) / den;
    end );


#############################################################################
##
#M  Conjugates( Rationals, Rationals, <x> )   . . .  conjugates of a rational
##
InstallMethod( Conjugates,
    "for Rationals, Rationals, and a rational",
    IsCollsXElms,
    [ IsRationals, IsRationals, IsRat ],
    function( L, K, x )
    return [ x ];
    end );


#############################################################################
##
#R  IsCanonicalBasisRationals
##
DeclareRepresentation( "IsCanonicalBasisRationals",
    IsAttributeStoringRep,
    [] );
#T is this needed at all?


#############################################################################
##
#M  CanonicalBasis( Rationals )
##
InstallMethod( CanonicalBasis,
    "for Rationals",
    [ IsRationals ],
    function( Rationals )
    local B;
    B:= Objectify( NewType( FamilyObj( Rationals ),
                                IsFiniteBasisDefault
                            and IsCanonicalBasis
                            and IsCanonicalBasisRationals ),
                   rec() );
    SetUnderlyingLeftModule( B, Rationals );
    SetBasisVectors( B, [ 1 ] );
    return B;
    end );

InstallMethod( Coefficients,
    "method for canonical basis of Rationals",
    IsCollsElms,
    [ IsBasis and IsCanonicalBasis and IsCanonicalBasisRationals, IsVector ],
    function( B, v )
    if IsRat( v ) then
      return [ v ];
    else
      return fail;
    fi;
    end );


#T ############################################################################
#T ##
#T #M  Denominator( <rat> )
#T #M  Numerator( <rat> )
#T ##
#T InstallMethod( Denominator, true, [ IsRat ], 0, DenominatorRat );
#T InstallMethod( Numerator, true, [ IsRat ], 0, NumeratorRat );


############################################################################
##
#M  Iterator( Rationals )
##
##  Let $A_n = \{ \frac{p}{q} ; p,q \in\{ 1, \ldots, n \} \}$
##      $B_n = A_n \setminus \bigcup_{i<n} A_i$,
##      $B_0 = \{ 0 \}$, and
##      $B_{-n} = \{ -x; x\in B_n \}$ for $n \in\N$.
##  Then $\Q = \bigcup_{n\in\Z} B_n$ as a disjoint union.
##
##  $\|B_n\| = 2 ( n - 1 ) - 2 ( \tau(n) - 2 ) = 2 ( n - \tau(n) + 1 )$
##  where $\tau(n)$ denotes the number of divisors of $n$.
##  Now define the ordering on $\Q$ by the ordering of the sets $B_n$
##  as defined in 'IntegersOps.Iterator', by the natural ordering of
##  elements in each $B_n$ for positive $n$, and the reverse of this
##  ordering for negative $n$.
##
BindGlobal( "NextIterator_Rationals", function( iter )
    local value;

    if iter!.actualn = 1 then

      # Catch the special case that numerator and denominator are
      # allowed to be equal.
      value:= iter!.sign;
      if iter!.sign = -1 then
        iter!.actualn := 2;
        iter!.len     := 1;
        iter!.pos     := 1;
        iter!.coprime := [ 1 ];
      fi;
      iter!.sign:= - iter!.sign;

    elif iter!.up then

      # We are in the first half (proper fractions).
      value:= iter!.sign * iter!.coprime[ iter!.pos ] / iter!.actualn;

      # Check whether we reached the last element of the first half.
      if iter!.pos = iter!.len then
        iter!.up:= false;
      else
        iter!.pos:= iter!.pos + 1;
      fi;

    else

      # We are in the second half.
      value:= iter!.sign * iter!.actualn / iter!.coprime[ iter!.pos ];

      # Check whether we reached the last element of the second half.
      if iter!.pos = 1 then
        if iter!.sign = -1 then
          iter!.actualn := iter!.actualn + 1;
          iter!.coprime := PrimeResidues( iter!.actualn );
          iter!.len     := Length( iter!.coprime );
        fi;
        iter!.sign := - iter!.sign;
        iter!.up   := true;
      else
        iter!.pos:= iter!.pos - 1;
      fi;

    fi;

    return value;
    end );

BindGlobal( "ShallowCopy_Rationals",
    iter -> rec(
                actualn   := iter!.actualn,
                up        := iter!.up,
                sign      := iter!.sign,
                pos       := iter!.pos,
                coprime   := ShallowCopy( iter!.coprime ),
                len       := Length( iter!.coprime ) ) );

InstallMethod( Iterator,
    "for `Rationals'",
    [ IsRationals ],
    Rationals -> IteratorByFunctions( rec(
        NextIterator := NextIterator_Rationals,
        IsDoneIterator := ReturnFalse,
        ShallowCopy := ShallowCopy_Rationals,
                                    
        actualn   := 0,
        up        := false,
        sign      := -1,
        pos       := 1,
        coprime   := [ 1 ],
        len       := 1 ) ) );


#############################################################################
##
#M  Enumerator( Rationals )
##
BindGlobal( "NumberElement_Rationals",
    function( enum, elm )
    local num,
          den,
          max,
          number,
          residues;

    if not IsRat( elm ) then
      return fail;
    fi;
    num:= NumeratorRat( elm);
    den:= DenominatorRat( elm );
    max:= AbsInt( num );
    if max < den then
      max:= den;
    fi;

    if   elm =  0 then
      number:= 1;
    elif elm =  1 then
      number:= 2;
    elif elm = -1 then
      number:= 3;
    else

      # Take the sum over all inner squares.
      # For $i > 1$, the positive half of the $i$-th square has
      # $n_i = 2 \varphi(i)$ elements, $n_1 = 1$, so the sum is
      # \[ 1 + \sum_{j=1}^{max-1} 2 n_j =
      #    4 \sum_{j=1}^{max-1} \varphi(j) - 1 . \]
      number:= 4 * Sum( [ 1 .. max-1 ], Phi ) - 1;

      # Add the part in the actual square.
      residues:= PrimeResidues( max );
      if num < 0 then
        # Add $n_{max}$.
        number:= number + 2 * Length( residues );
        num:= - num;
      fi;
      if num > den then
        number:= number + 2 * Length( residues )
                 - Position( residues, den ) + 1;
      else
        number:= number + Position( residues, num );
      fi;

    fi;

    # Return the result.
    return number;
    end );

BindGlobal( "ElementNumber_Rationals",
    function( enum, number )
    local elm,
          max,
          4phi,
          sign;

    if number <= 3 then

      if   number = 1 then
        elm:=  0;
      elif number = 2 then
        elm:=  1;
      else
        elm:= -1;
      fi;

    else

      # Compute the maximum of numerator and denominator,
      # and subtract the number of inner sqares from 'number'.

      number:= number - 3;

      max:= 2;
      4phi:= 4 * Phi( max );
      while number > 4phi do
        number := number - 4phi;
        max    := max + 1;
        4phi   := 4 * Phi( max );
      od;
      if number > 4phi / 2 then
        sign:= -1;
        number:= number - 4phi / 2;
      else
        sign:= 1;
      fi;
      if number > 4phi / 4 then
        elm:= sign * max / PrimeResidues( max )[ 4phi / 2 - number + 1 ];
      else
        elm:= sign * PrimeResidues( max )[ number ] / max;
      fi;

    fi;

    return elm;
    end );

InstallMethod( Enumerator,
    "for `Rationals'",
    [ IsRationals ],
    function( Rationals )
    return EnumeratorByFunctions( Rationals, rec(
               ElementNumber := ElementNumber_Rationals,
               NumberElement := NumberElement_Rationals ) );
    end );


#############################################################################
##
#F  EvalF(<number>) . . . . . .  floating point evaluation of rational number
##
BindGlobal( "EvalF", function(arg)
local r,f,i,s;
  r:=arg[1];
  if r<0 then
    r:=-r;
    s:=['-'];
  else
    s:=[];
  fi;
  if Length(arg)>1 then 
    f:=arg[2];
  else
    f:=10;
  fi;
  i:=Int(r);
  s:=Concatenation(s,String(i));
  if r<>i then
    Add(s,'.');
    r:=String(Int((r-i)*10^f));
    while Length(r)<f do
      Add(s,'0');
      f:=f-1;
    od;
    s:=Concatenation(s,String(r));
  fi;
  ConvertToStringRep(s);
  return s;
end );


#############################################################################
##
#M  RoundCyc( <cyc> ) . . . . . . . . . . cyclotomic integer near to <cyc>
##
InstallMethod( RoundCyc,
    "Rational",
    [ IsRat],
    function( r )
    if r < 0  then
        return Int( r - 1 / 2 );
    else
        return Int( r + 1 / 2 );
    fi;
end );


#############################################################################
##
#M  RoundCycDown( <cyc> ) . . . . . . . . . . cyclotomic integer near to <cyc>
##
InstallMethod( RoundCycDown,
    "Rational",
    [ IsRat],
    function ( r )
    if DenominatorRat( r ) = 2  then
        return Int( r );
    fi;

    if r < 0  then
        return Int( r - 1 / 2 );
    else
        return Int( r + 1 / 2 );
    fi;
end );


#############################################################################
##
#M  PadicValuation( <rat>, <p> ) . . . . . . . . . . . . . . .  for rationals
##
InstallMethod( PadicValuation,
               "for rationals", ReturnTrue, [ IsRat, IsPosInt ], 0,

  function( rat, p )

    local  a, i;

    if not IsPrimeInt(p) then TryNextMethod(); fi;
    if rat = 0 then return infinity; fi;
    a := NumeratorRat(rat)/p;
    i := 0;
    while IsInt(a) do
      i := i+1;
      a := a/p;
    od;
    if i > 0 or IsInt(rat) then
      return i;
    fi;
    a := DenominatorRat(rat)/p;
    i := 0;
    while IsInt(a) do
      i := i+1;
      a := a/p;
    od;
    return -i;
  end );


InstallMethod( ViewString, "for rationals", [IsRat], function(r)
  return Concatenation(ViewString(NumeratorRat(r)), "/\>\<",
                       ViewString(DenominatorRat(r)));
end);
#############################################################################
##
#E