This file is indexed.

/usr/share/gap/lib/ring.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
#############################################################################
##
#W  ring.gd                     GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file declares the operations for rings.
##


#############################################################################
##
#P  IsNearRing( <R> )
##
##  <ManSection>
##  <Prop Name="IsNearRing" Arg='R'/>
##
##  <Description>
##  A <E>near-ring</E> in &GAP; is a near-additive group
##  (see&nbsp;<Ref Func="IsNearAdditiveGroup"/>) that is also a semigroup (see&nbsp;<Ref Func="IsSemigroup"/>),
##  such that addition <C>+</C> and multiplication <C>*</C> are right distributive
##  (see&nbsp;<Ref Func="IsRDistributive"/>).
##  Any associative ring (see&nbsp;<Ref Func="IsRing"/>) is also a near-ring.
##  </Description>
##  </ManSection>
##
DeclareSynonymAttr( "IsNearRing",
    IsNearAdditiveGroup and IsMagma and IsRDistributive and IsAssociative );


#############################################################################
##
#P  IsNearRingWithOne( <R> )
##
##  <ManSection>
##  <Prop Name="IsNearRingWithOne" Arg='R'/>
##
##  <Description>
##  A <E>near-ring-with-one</E> in &GAP; is a near-ring (see&nbsp;<Ref Prop="IsNearRing"/>)
##  that is also a magma-with-one (see&nbsp;<Ref Func="IsMagmaWithOne"/>).
##  <P/>
##  Note that the identity and the zero of a near-ring-with-one need <E>not</E> be
##  distinct.
##  This means that a near-ring that consists only of its zero element can be
##  regarded as a near-ring-with-one.
##  </Description>
##  </ManSection>
##
DeclareSynonymAttr( "IsNearRingWithOne", IsNearRing and IsMagmaWithOne );


#############################################################################
##
#A  AsNearRing( <C> )
##
##  <ManSection>
##  <Attr Name="AsNearRing" Arg='C'/>
##
##  <Description>
##  If the elements in the collection <A>C</A> form a near-ring then <C>AsNearRing</C>
##  returns this near-ring, otherwise <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "AsNearRing", IsNearRingElementCollection );


#############################################################################
##
#P  IsRing( <R> )
##
##  <#GAPDoc Label="IsRing">
##  <ManSection>
##  <Prop Name="IsRing" Arg='R'/>
##
##  <Description>
##  A <E>ring</E> in &GAP; is an additive group
##  (see&nbsp;<Ref Func="IsAdditiveGroup"/>)
##  that is also a magma (see&nbsp;<Ref Func="IsMagma"/>),
##  such that addition <C>+</C> and multiplication <C>*</C> are distributive,
##  see <Ref Func="IsDistributive"/>.
##  <P/>
##  The multiplication need <E>not</E> be associative
##  (see&nbsp;<Ref Func="IsAssociative"/>).
##  For example, a Lie algebra (see&nbsp;<Ref Chap="Lie Algebras"/>)
##  is regarded as a ring in &GAP;.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsRing",
    IsAdditiveGroup and IsMagma and IsDistributive );


#############################################################################
##
#P  IsRingWithOne( <R> )
##
##  <#GAPDoc Label="IsRingWithOne">
##  <ManSection>
##  <Prop Name="IsRingWithOne" Arg='R'/>
##
##  <Description>
##  A <E>ring-with-one</E> in &GAP; is a ring (see&nbsp;<Ref Func="IsRing"/>)
##  that is also a magma-with-one (see&nbsp;<Ref Func="IsMagmaWithOne"/>).
##  <P/>
##  Note that the identity and the zero of a ring-with-one need <E>not</E> be
##  distinct.
##  This means that a ring that consists only of its zero element can be
##  regarded as a ring-with-one.
##  <!-- shall we force <E>every</E> trivial ring to be a ring-with-one-->
##  <!-- by installing an implication?-->
##  <P/>
##  This is especially useful in the case of finitely presented rings,
##  in the sense that each factor of a ring-with-one is again a
##  ring-with-one.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsRingWithOne", IsRing and IsMagmaWithOne );


#############################################################################
##
#A  AsRing( <C> )
##
##  <#GAPDoc Label="AsRing">
##  <ManSection>
##  <Attr Name="AsRing" Arg='C'/>
##
##  <Description>
##  If the elements in the collection <A>C</A> form a ring then
##  <Ref Func="AsRing"/> returns this ring,
##  otherwise <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "AsRing", IsRingElementCollection );


#############################################################################
##
#A  GeneratorsOfRing( <R> )
##
##  <#GAPDoc Label="GeneratorsOfRing">
##  <ManSection>
##  <Attr Name="GeneratorsOfRing" Arg='R'/>
##
##  <Description>
##  <Ref Func="GeneratorsOfRing"/> returns a list of elements such that the
##  ring <A>R</A> is the closure of these elements under addition,
##  multiplication, and taking additive inverses.
##  <Example><![CDATA[
##  gap> R:=Ring( 2, 1/2 );
##  <ring with 2 generators>
##  gap> GeneratorsOfRing( R );
##  [ 2, 1/2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfRing", IsRing );


#############################################################################
##
#A  GeneratorsOfRingWithOne( <R> )
##
##  <#GAPDoc Label="GeneratorsOfRingWithOne">
##  <ManSection>
##  <Attr Name="GeneratorsOfRingWithOne" Arg='R'/>
##
##  <Description>
##  <Ref Func="GeneratorsOfRingWithOne"/> returns a list of elements
##  such that the ring <A>R</A> is the closure of these elements
##  under addition, multiplication, taking additive inverses, and taking
##  the identity element <C>One( <A>R</A> )</C>.
##  <P/>
##  <A>R</A> itself need <E>not</E> be known to be a ring-with-one.
##  <P/>
##  <Example><![CDATA[
##  gap> R:= RingWithOne( [ 4, 6 ] );
##  Integers
##  gap> GeneratorsOfRingWithOne( R );
##  [ 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfRingWithOne", IsRingWithOne );


#############################################################################
##
#O  RingByGenerators( <C> ) . . . . . . .  ring gener. by elements in a coll.
##
##  <#GAPDoc Label="RingByGenerators">
##  <ManSection>
##  <Oper Name="RingByGenerators" Arg='C'/>
##
##  <Description>
##  <Ref Func="RingByGenerators"/> returns the ring generated by the elements
##  in the collection <A>C</A>,
##  i.&nbsp;e., the closure of <A>C</A> under addition, multiplication,
##  and taking additive inverses.
##  <Example><![CDATA[
##  gap> RingByGenerators([ 2, E(4) ]);
##  <ring with 2 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "RingByGenerators", [ IsCollection ] );


#############################################################################
##
#O  DefaultRingByGenerators( <coll> ) . . . . default ring containing a coll.
##
##  <#GAPDoc Label="DefaultRingByGenerators">
##  <ManSection>
##  <Oper Name="DefaultRingByGenerators" Arg='coll'/>
##  
##  <Description>
##  For a collection <A>coll</A>, returns a default ring in which
##  <A>coll</A> is contained.
##  <Example><![CDATA[
##  gap> DefaultRingByGenerators([ 2, E(4) ]);
##  GaussianIntegers
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DefaultRingByGenerators", [ IsCollection ] );


#############################################################################
##
#F  Ring( <r>, <s>, ... )  . . . . . . . . . . ring generated by a collection
#F  Ring( <coll> ) . . . . . . . . . . . . . . ring generated by a collection
##
##  <#GAPDoc Label="Ring">
##  <ManSection>
##  <Heading>Ring</Heading>
##  <Func Name="Ring" Arg='r, s, ...' Label="for ring elements"/>
##  <Func Name="Ring" Arg='coll' Label="for a collection"/>
##
##  <Description>
##  In the first form <Ref Func="Ring" Label="for ring elements"/>
##  returns the smallest ring that contains all the elements
##  <A>r</A>, <A>s</A>, <M>\ldots</M>
##  In the second form <Ref Func="Ring" Label="for a collection"/> returns
##  the smallest ring that contains all the elements in the collection
##  <A>coll</A>.
##  If any element is not an element of a ring or if the elements lie in no
##  common ring an error is raised.
##  <P/>
##  <Ref Func="Ring" Label="for ring elements"/> differs from
##  <Ref Func="DefaultRing" Label="for ring elements"/> in that it returns
##  the smallest ring in which the elements lie,
##  while <Ref Func="DefaultRing" Label="for ring elements"/>
##  may return a larger ring if that makes sense.
##  <Example><![CDATA[
##  gap> Ring( 2, E(4) );
##  <ring with 2 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Ring" );


#############################################################################
##
#O  RingWithOneByGenerators( <coll> )
##
##  <#GAPDoc Label="RingWithOneByGenerators">
##  <ManSection>
##  <Oper Name="RingWithOneByGenerators" Arg='coll'/>
##
##  <Description>
##  <Ref Oper="RingWithOneByGenerators"/> returns the ring-with-one
##  generated by the elements in the collection <A>coll</A>,
##  i.&nbsp;e., the closure of <A>coll</A> under
##  addition, multiplication, taking additive inverses,
##  and taking the identity of an element.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "RingWithOneByGenerators", [ IsCollection ] );


#############################################################################
##
#F  RingWithOne( <r>, <s>, ... )  . . ring-with-one generated by a collection
#F  RingWithOne( <C> )  . . . . . . . ring-with-one generated by a collection
##
##  <#GAPDoc Label="RingWithOne">
##  <ManSection>
##  <Heading>RingWithOne</Heading>
##  <Func Name="RingWithOne" Arg='r, s, ...' Label="for ring elements"/>
##  <Func Name="RingWithOne" Arg='coll' Label="for a collection"/>
##
##  <Description>
##  In the first form <Ref Func="RingWithOne" Label="for ring elements"/>
##  returns the smallest ring with one that contains all the elements
##  <A>r</A>, <A>s</A>, <M>\ldots</M>
##  In the second form <Ref Func="RingWithOne" Label="for a collection"/>
##  returns the smallest ring with one that contains all the elements
##  in the collection <A>C</A>.
##  If any element is not an element of a ring or if the elements lie in no
##  common ring an error is raised.
##  <Example><![CDATA[
##  gap> RingWithOne( [ 4, 6 ] );
##  Integers
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RingWithOne" );


#############################################################################
##
#F  DefaultRing( <r>, <s>, ... )  . . .  default ring containing a collection
#F  DefaultRing( <coll> ) . . . . . . .  default ring containing a collection
##
##  <#GAPDoc Label="DefaultRing">
##  <ManSection>
##  <Heading>DefaultRing</Heading>
##  <Func Name="DefaultRing" Arg='r, s, ...' Label="for ring elements"/>
##  <Func Name="DefaultRing" Arg='coll' Label="for a collection"/>
##
##  <Description>
##  In the first form <Ref Func="DefaultRing" Label="for ring elements"/>
##  returns a ring that contains all the elements <A>r</A>, <A>s</A>,
##  <M>\ldots</M> etc.
##  In the second form <Ref Func="DefaultRing" Label="for a collection"/>
##  returns a ring that contains all the elements in the collection
##  <A>coll</A>.
##  If any element is not an element of a ring or if the elements lie in no
##  common ring an error is raised.
##  <P/>
##  The ring returned by <Ref Func="DefaultRing" Label="for ring elements"/>
##  need not be the smallest ring in which the elements lie.
##  For example for elements from cyclotomic fields,
##  <Ref Func="DefaultRing" Label="for ring elements"/> may return the ring
##  of integers of the smallest cyclotomic field in which the elements lie,
##  which need not be the smallest ring overall,
##  because the elements may in fact lie in a smaller number field
##  which is itself not a cyclotomic field.
##  <P/>
##  (For the exact definition of the default ring of a certain type of
##  elements, look at the corresponding method installation.)
##  <P/>
##  <Ref Func="DefaultRing" Label="for ring elements"/> is used
##  by ring functions such as <Ref Func="Quotient"/>, <Ref Func="IsPrime"/>,
##  <Ref Func="Factors"/>,
##  or <Ref Func="Gcd" Label="for (a ring and) several elements"/>
##  if no explicit ring is given.
##  <P/>
##  <Ref Func="Ring" Label="for ring elements"/> differs from
##  <Ref Func="DefaultRing" Label="for ring elements"/> in that it returns
##  the smallest ring in which the elements lie,
##  while <Ref Func="DefaultRing" Label="for ring elements"/> may return
##  a larger ring if that makes sense.
##  <P/>
##  <Example><![CDATA[
##  gap> DefaultRing( 2, E(4) );
##  GaussianIntegers
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DefaultRing" );


#############################################################################
##
#F  Subring( <R>, <gens> ) . . . . . . . . subring of <R> generated by <gens>
#F  SubringNC( <R>, <gens> ) . . . . . . . subring of <R> generated by <gens>
##
##  <#GAPDoc Label="Subring">
##  <ManSection>
##  <Func Name="Subring" Arg='R, gens'/>
##  <Func Name="SubringNC" Arg='R, gens'/>
##
##  <Description>
##  returns the ring with parent <A>R</A> generated by the elements in
##  <A>gens</A>.
##  When the second form, <Ref Func="SubringNC"/> is used,
##  it is <E>not</E> checked whether all elements in <A>gens</A> lie in
##  <A>R</A>. 
##  <P/>
##  <Example><![CDATA[
##  gap> R:= Integers;
##  Integers
##  gap> S:= Subring( R, [ 4, 6 ] );
##  <ring with 1 generators>
##  gap> Parent( S );
##  Integers
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Subring" );
DeclareGlobalFunction( "SubringNC" );


#############################################################################
##
#F  SubringWithOne( <R>, <gens> )   .  subring-with-one of <R> gen. by <gens>
#F  SubringWithOneNC( <R>, <gens> ) .  subring-with-one of <R> gen. by <gens>
##
##  <#GAPDoc Label="SubringWithOne">
##  <ManSection>
##  <Func Name="SubringWithOne" Arg='R, gens'/>
##  <Func Name="SubringWithOneNC" Arg='R, gens'/>
##
##  <Description>
##  returns the ring with one with parent <A>R</A> generated by the elements
##  in <A>gens</A>.
##  When the second form, <Ref Func="SubringWithOneNC"/> is used,
##  it is <E>not</E> checked whether all elements in <A>gens</A> lie in
##  <A>R</A>. 
##  <P/>
##  <Example><![CDATA[
##  gap> R:= SubringWithOne( Integers, [ 4, 6 ] );
##  Integers
##  gap> Parent( R );
##  Integers
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SubringWithOne" );
DeclareGlobalFunction( "SubringWithOneNC" );


#############################################################################
##
#O  ClosureRing( <R>, <r> )
#O  ClosureRing( <R>, <S> )
##
##  <#GAPDoc Label="ClosureRing">
##  <ManSection>
##  <Heading>ClosureRing</Heading>
##  <Oper Name="ClosureRing" Arg='R, r'
##   Label="for a ring and a ring element"/>
##  <Oper Name="ClosureRing" Arg='R, S' Label="for two rings"/>
##
##  <Description>
##  For a ring <A>R</A> and either an element <A>r</A> of its elements family
##  or a ring <A>S</A>,
##  <Ref Func="ClosureRing" Label="for a ring and a ring element"/>
##  returns the ring generated by both arguments.
##  <P/>
##  <Example><![CDATA[
##  gap> ClosureRing( Integers, E(4) );
##  <ring-with-one, with 2 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ClosureRing", [ IsRing, IsObject ] );


#############################################################################
##
#C  IsUniqueFactorizationRing( <R> )
##
##  <#GAPDoc Label="IsUniqueFactorizationRing">
##  <ManSection>
##  <Filt Name="IsUniqueFactorizationRing" Arg='R' Type='Category'/>
##
##  <Description>
##  A ring <A>R</A> is called a <E>unique factorization ring</E> if it is an
##  integral ring (see&nbsp;<Ref Func="IsIntegralRing"/>),
##  and every nonzero element has a unique factorization into
##  irreducible elements,
##  i.e., a  unique representation as product of irreducibles
##  (see <Ref Func="IsIrreducibleRingElement"/>).
##  Unique in this context means unique up to permutations of the factors and
##  up to multiplication of the factors by units
##  (see&nbsp;<Ref Func="Units"/>).
##  <P/>
##  Mathematically, a field should therefore also be a unique factorization
##  ring, since every nonzero element is a unit.
##  In &GAP;, however,
##  at least at present fields do not lie in the filter
##  <Ref Func="IsUniqueFactorizationRing"/>,
##  since operations such as <Ref Func="Factors"/>,
##  <Ref Func="Gcd" Label="for (a ring and) several elements"/>,
##  <Ref Func="StandardAssociate"/> and so on do
##  not apply to fields (the results would be trivial, and not
##  especially useful) and methods which require their arguments to
##  lie in <Ref Func="IsUniqueFactorizationRing"/> expect these operations
##  to work.
##  <P/>
##  (Note that we cannot install a subset maintained method for this filter
##  since the factorization of an element needs not exist in a subring.
##  As an example, consider the subring <M>4 &NN; + 1</M> of the ring
##  <M>4 &ZZ; + 1</M>;
##  in the subring, the element <M>3 \cdot 3 \cdot 11 \cdot 7</M> has the two
##  factorizations <M>33 \cdot 21 = 9 \cdot 77</M>,
##  but in the large ring there is the unique factorization
##  <M>(-3) \cdot (-3) \cdot (-11) \cdot (-7)</M>,
##  and it is easy to see that every element in <M>4 &ZZ; + 1</M> has a
##  unique factorization.)
##  <P/>
##  <Example><![CDATA[
##  gap> IsUniqueFactorizationRing( PolynomialRing( Rationals, 1 ) );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsUniqueFactorizationRing", IsRing );


#############################################################################
##
#C  IsEuclideanRing( <R> )
##
##  <#GAPDoc Label="IsEuclideanRing">
##  <ManSection>
##  <Filt Name="IsEuclideanRing" Arg='R' Type='Category'/>
##
##  <Description>
##  A ring <M>R</M> is called a Euclidean ring if it is an integral ring and
##  there exists a function <M>\delta</M>, called the Euclidean degree, from
##  <M>R-\{0_R\}</M> to the nonnegative integers,
##  such that for every pair <M>r \in R</M> and <M>s \in  R-\{0_R\}</M> there
##  exists an element <M>q</M> such that either
##  <M>r - q s = 0_R</M> or <M>\delta(r - q s) &lt; \delta( s )</M>.
##  In &GAP; the Euclidean degree <M>\delta</M> is implicitly built into a
##  ring and cannot be changed.
##  The existence of this division with remainder implies that the
##  Euclidean algorithm can be applied to compute a greatest common divisor
##  of two elements,
##  which in turn implies that <M>R</M> is a unique factorization ring.
##  <P/>
##  <!-- more general: new category <Q>valuated domain</Q>?-->
##  <Example><![CDATA[
##  gap> IsEuclideanRing( GaussianIntegers );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsEuclideanRing",
    IsRingWithOne and IsUniqueFactorizationRing );


#############################################################################
##
#P  IsAnticommutative( <R> )
##
##  <#GAPDoc Label="IsAnticommutative">
##  <ManSection>
##  <Prop Name="IsAnticommutative" Arg='R'/>
##
##  <Description>
##  is <K>true</K> if the relation <M>a * b = - b * a</M>
##  holds for all elements <M>a</M>, <M>b</M> in the ring <A>R</A>,
##  and <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsAnticommutative", IsRing );

InstallSubsetMaintenance( IsAnticommutative,
    IsRing and IsAnticommutative, IsRing );

InstallFactorMaintenance( IsAnticommutative,
    IsRing and IsAnticommutative, IsObject, IsRing );


#############################################################################
##
#P  IsIntegralRing( <R> )
##
##  <#GAPDoc Label="IsIntegralRing">
##  <ManSection>
##  <Prop Name="IsIntegralRing" Arg='R'/>
##
##  <Description>
##  A ring-with-one <A>R</A> is integral if it is commutative,
##  contains no nontrivial zero divisors,
##  and if its identity is distinct from its zero.
##  <Example><![CDATA[
##  gap> IsIntegralRing( Integers );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsIntegralRing", IsRing );

InstallSubsetMaintenance( IsIntegralRing,
    IsRing and IsIntegralRing, IsRing and IsNonTrivial );

InstallTrueMethod( IsIntegralRing,
    IsRing and IsMagmaWithInversesIfNonzero and IsNonTrivial );
InstallTrueMethod( IsIntegralRing,
    IsUniqueFactorizationRing and IsNonTrivial );


#############################################################################
##
#P  IsJacobianRing( <R> )
##
##  <#GAPDoc Label="IsJacobianRing">
##  <ManSection>
##  <Prop Name="IsJacobianRing" Arg='R'/>
##
##  <Description>
##  is <K>true</K> if the Jacobi identity holds in the ring <A>R</A>,
##  and <K>false</K> otherwise.
##  The Jacobi identity means that
##  <M>x * (y * z) + z * (x * y) +  y * (z * x)</M>
##  is the zero element of <A>R</A>,
##  for all elements <M>x</M>, <M>y</M>, <M>z</M> in <A>R</A>.
##  <Example><![CDATA[
##  gap> L:= FullMatrixLieAlgebra( GF( 5 ), 7 );
##  <Lie algebra over GF(5), with 13 generators>
##  gap> IsJacobianRing( L );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsJacobianRing", IsRing );

InstallTrueMethod( IsJacobianRing,
    IsJacobianElementCollection and IsRing );

InstallSubsetMaintenance( IsJacobianRing,
    IsRing and IsJacobianRing, IsRing );

InstallFactorMaintenance( IsJacobianRing,
    IsRing and IsJacobianRing, IsObject, IsRing );


#############################################################################
##
#P  IsZeroSquaredRing( <R> )
##
##  <#GAPDoc Label="IsZeroSquaredRing">
##  <ManSection>
##  <Prop Name="IsZeroSquaredRing" Arg='R'/>
##
##  <Description>
##  is <K>true</K> if <M>a * a</M> is the zero element of the ring <A>R</A>
##  for all <M>a</M> in <A>R</A>, and <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsZeroSquaredRing", IsRing );

InstallTrueMethod( IsAnticommutative, IsRing and IsZeroSquaredRing );

InstallTrueMethod( IsZeroSquaredRing,
    IsZeroSquaredElementCollection and IsRing );

InstallSubsetMaintenance( IsZeroSquaredRing,
    IsRing and IsZeroSquaredRing, IsRing );

InstallFactorMaintenance( IsZeroSquaredRing,
    IsRing and IsZeroSquaredRing, IsObject, IsRing );


#############################################################################
##
#P  IsZeroMultiplicationRing( <R> )
##
##  <ManSection>
##  <Prop Name="IsZeroMultiplicationRing" Arg='R'/>
##
##  <Description>
##  is <K>true</K> if <M>a * b</M> is the zero element of the ring <A>R</A>
##  for all <M>a, b</M> in <A>R</A>, and <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsZeroMultiplicationRing", IsRing );

InstallTrueMethod( IsZeroSquaredRing, IsRing and IsZeroMultiplicationRing );
InstallTrueMethod( IsAssociative, IsRing and IsZeroMultiplicationRing );
InstallTrueMethod( IsCommutative, IsRing and IsZeroMultiplicationRing );
# The implication to `IsAnticommutative' follows from `IsZeroSquaredRing'.

InstallSubsetMaintenance( IsZeroMultiplicationRing,
    IsRing and IsZeroMultiplicationRing, IsRing );

InstallFactorMaintenance( IsZeroMultiplicationRing,
    IsRing and IsZeroMultiplicationRing, IsObject, IsRing );


#############################################################################
##
#A  Units( <R> )
##
##  <#GAPDoc Label="Units">
##  <ManSection>
##  <Attr Name="Units" Arg='R'/>
##
##  <Description>
##  <Ref Attr="Units"/> returns the group of units of the ring <A>R</A>.
##  This may either be returned as a list or as a group.
##  <P/>
##  An element <M>r</M> is called a <E>unit</E> of a ring <M>R</M>
##  if <M>r</M> has an inverse in <M>R</M>.
##  It is easy to see that the set of units forms a multiplicative group.
##  <P/>
##  <Example><![CDATA[
##  gap> Units( GaussianIntegers );
##  [ -1, 1, -E(4), E(4) ]
##  gap> Units( GF( 16 ) );
##  <group with 1 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Units", IsRing );


#############################################################################
##
#O  Factors( [<R>, ]<r> )
##
##  <#GAPDoc Label="Factors">
##  <ManSection>
##  <Oper Name="Factors" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="Factors"/> returns the factorization of the ring element
##  <A>r</A> in the ring <A>R</A>, if given,
##  and otherwise in in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  The factorization is returned as a list of primes
##  (see <Ref Func="IsPrime"/>).
##  Each element in the list is a standard associate
##  (see <Ref Func="StandardAssociate"/>) except the first one,
##  which is multiplied by a unit as necessary to have
##  <C>Product( Factors( <A>R</A>, <A>r</A> )  )  = <A>r</A></C>.
##  This list is usually also sorted, thus smallest prime factors come first.
##  If <A>r</A> is a unit or zero,
##  <C>Factors( <A>R</A>, <A>r</A> ) = [ <A>r</A> ]</C>.
##  <P/>
##  <!-- Who does really need the additive structure?
##       We could define <C>Factors</C> for arbitrary commutative monoids.-->
##  <Example><![CDATA[
##  gap> x:= Indeterminate( GF(2), "x" );;
##  gap> pol:= x^2+x+1;
##  x^2+x+Z(2)^0
##  gap> Factors( pol );
##  [ x^2+x+Z(2)^0 ]
##  gap> Factors( PolynomialRing( GF(4) ), pol );
##  [ x+Z(2^2), x+Z(2^2)^2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Factors", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  IsAssociated( [<R>, ]<r>, <s> )
##
##  <#GAPDoc Label="IsAssociated">
##  <ManSection>
##  <Oper Name="IsAssociated" Arg='[R, ]r, s'/>
##
##  <Description>
##  <Ref Oper="IsAssociated"/> returns <K>true</K> if the two ring elements
##  <A>r</A> and <A>s</A> are associated in the ring <A>R</A>, if given,
##  and otherwise in their default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  If the two elements are not associated then <K>false</K> is returned.
##  <P/>
##  Two elements <A>r</A> and <A>s</A> of a ring <A>R</A> are called
##  <E>associated</E> if there is a unit <M>u</M> of <A>R</A> such that
##  <A>r</A> <M>u = </M><A>s</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsAssociated", [ IsRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  Associates( [<R>, ]<r> )
##
##  <#GAPDoc Label="Associates">
##  <ManSection>
##  <Oper Name="Associates" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="Associates"/> returns the set of associates of <A>r</A> in
##  the ring <A>R</A>, if given,
##  and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  <P/>
##  Two elements <A>r</A> and <M>s</M> of a ring <M>R</M> are called
##  <E>associated</E> if there is a unit <M>u</M> of <M>R</M> such that
##  <M><A>r</A> u = s</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> Associates( Integers, 2 );
##  [ -2, 2 ]
##  gap> Associates( GaussianIntegers, 2 );
##  [ -2, 2, -2*E(4), 2*E(4) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Associates", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  IsUnit( [<R>, ]<r> ). . . . . . . . .  check whether <r> is a unit in <R>
##
##  <#GAPDoc Label="IsUnit">
##  <ManSection>
##  <Oper Name="IsUnit" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="IsUnit"/> returns <K>true</K> if <A>r</A> is a unit in the
##  ring <A>R</A>, if given, and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  If <A>r</A> is not a unit then <K>false</K> is returned.
##  <P/>
##  An element <A>r</A> is called a <E>unit</E> in a ring <A>R</A>,
##  if <A>r</A> has an inverse in <A>R</A>.
##  <P/>
##  <Ref Oper="IsUnit"/> may call <Ref Oper="Quotient"/>.
##  <!-- really?-->
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsUnit", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  InterpolatedPolynomial( <R>, <x>, <y> ) . . . . . . . . . . interpolation
##
##  <#GAPDoc Label="InterpolatedPolynomial">
##  <ManSection>
##  <Oper Name="InterpolatedPolynomial" Arg='R, x, y'/>
##
##  <Description>
##  <Ref Oper="InterpolatedPolynomial"/> returns, for given lists <A>x</A>,
##  <A>y</A> of elements in a ring <A>R</A> of the same length <M>n</M>, say,
##  the unique  polynomial of  degree less than <M>n</M> which has value
##  <A>y</A>[<M>i</M>] at <A>x</A><M>[i]</M>,
##  for all <M>i \in \{ 1, \ldots, n \}</M>. 
##  Note that the elements in <A>x</A> must be distinct.
##  <Example><![CDATA[
##  gap> InterpolatedPolynomial( Integers, [ 1, 2, 3 ], [ 5, 7, 0 ] );
##  -9/2*x^2+31/2*x-6
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "InterpolatedPolynomial",
    [ IsRing, IsHomogeneousList, IsHomogeneousList ] );


#############################################################################
##
#O  Quotient( [<R>, ]<r>, <s> )
##
##  <#GAPDoc Label="Quotient">
##  <ManSection>
##  <Oper Name="Quotient" Arg='[R, ]r, s'/>
##
##  <Description>
##  <Ref Oper="Quotient"/> returns the quotient of the two ring elements
##  <A>r</A> and <A>s</A> in the ring <A>R</A>, if given,
##  and otherwise in their default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  It returns <K>fail</K> if the quotient does not exist in the respective
##  ring.
##  <P/>
##  (To perform the division in the quotient field of a ring, use the
##  quotient operator <C>/</C>.)
##  <Example><![CDATA[
##  gap> Quotient( 2, 3 );
##  fail
##  gap> Quotient( 6, 3 );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Quotient", [ IsRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  StandardAssociate( [<R>, ]<r> )
##
##  <#GAPDoc Label="StandardAssociate">
##  <ManSection>
##  <Oper Name="StandardAssociate" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="StandardAssociate"/> returns the standard associate of the
##  ring element <A>r</A> in the ring <A>R</A>, if given,
##  and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  <P/>
##  The <E>standard associate</E> of a ring element <A>r</A> of <A>R</A> is
##  an associated element of <A>r</A> which is, in a ring dependent way,
##  distinguished among the set of associates of <A>r</A>.
##  For example, in the ring of integers the standard associate is the
##  absolute value.
##  <P/>
##  <Example><![CDATA[
##  gap> x:= Indeterminate( Rationals, "x" );;
##  gap> StandardAssociate( -x^2-x+1 );
##  x^2+x-1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "StandardAssociate", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  StandardAssociateUnit( [<R>, ]<r> )
##
##  <#GAPDoc Label="StandardAssociateUnit">
##  <ManSection>
##  <Oper Name="StandardAssociateUnit" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="StandardAssociateUnit"/> returns a unit in the ring <A>R</A>
##  such that the ring element <A>r</A> times this unit equals the
##  standard associate of <A>r</A> in <A>R</A>.
##  <P/>
##  If <A>R</A> is not given, the default ring of <A>r</A> is used instead.
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  <P/>
##  <P/>
##  <Example><![CDATA[
##  gap> y:= Indeterminate( Rationals, "y" );;
##  gap> r:= -y^2-y+1;
##  -y^2-y+1
##  gap> StandardAssociateUnit( r );
##  -1
##  gap> StandardAssociateUnit( r ) * r = StandardAssociate( r );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "StandardAssociateUnit", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  IsPrime( [<R>, ]<r> )
##
##  <#GAPDoc Label="IsPrime">
##  <ManSection>
##  <Oper Name="IsPrime" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="IsPrime"/> returns <K>true</K> if the ring element <A>r</A> is
##  a prime in the ring <A>R</A>, if given,
##  and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  If <A>r</A> is not a prime then <K>false</K> is returned.
##  <P/>
##  An element <A>r</A> of a ring <A>R</A> is called <E>prime</E> if for each
##  pair <M>s</M> and <M>t</M> such that <A>r</A> divides <M>s t</M>
##  the element <A>r</A> divides either <M>s</M> or <M>t</M>.
##  Note that there are rings where not every irreducible element
##  (see <Ref Oper="IsIrreducibleRingElement"/>) is a prime.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsPrime", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  IsIrreducibleRingElement( [<R>, ]<r> )
##
##  <#GAPDoc Label="IsIrreducibleRingElement">
##  <ManSection>
##  <Oper Name="IsIrreducibleRingElement" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="IsIrreducibleRingElement"/> returns <K>true</K> if the ring
##  element <A>r</A> is irreducible in the ring <A>R</A>, if given,
##  and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  If <A>r</A> is not irreducible then <K>false</K> is returned.
##  <P/>
##  An element <A>r</A> of a ring <A>R</A> is called <E>irreducible</E>
##  if <A>r</A> is not a unit in <A>R</A> and if there is no nontrivial
##  factorization of <A>r</A> in <A>R</A>,
##  i.e., if there is no representation of <A>r</A> as product <M>s t</M>
##  such that neither <M>s</M> nor <M>t</M> is a unit
##  (see <Ref Oper="IsUnit"/>).
##  Each prime element (see <Ref Oper="IsPrime"/>) is irreducible.
##  <Example><![CDATA[
##  gap> IsIrreducibleRingElement( Integers, 2 );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsIrreducibleRingElement", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  EuclideanDegree( [<R>, ]<r> )
##
##  <#GAPDoc Label="EuclideanDegree">
##  <ManSection>
##  <Oper Name="EuclideanDegree" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="EuclideanDegree"/> returns the Euclidean degree of the
##  ring element <A>r</A> in the ring <A>R</A>, if given,
##  and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  <P/>
##  The ring <A>R</A> must be a Euclidean ring
##  (see <Ref Func="IsEuclideanRing"/>).
##  <Example><![CDATA[
##  gap> EuclideanDegree( GaussianIntegers, 3 );
##  9
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EuclideanDegree", [ IsEuclideanRing, IsRingElement ] );


#############################################################################
##
#O  EuclideanRemainder( [<R>, ]<r>, <m> )
##
##  <#GAPDoc Label="EuclideanRemainder">
##  <ManSection>
##  <Oper Name="EuclideanRemainder" Arg='[R, ]r, m'/>
##
##  <Description>
##  <Ref Oper="EuclideanRemainder"/> returns the Euclidean remainder of the
##  ring element <A>r</A> modulo the ring element <A>m</A>
##  in the ring <A>R</A>, if given,
##  and otherwise in their default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  <P/>
##  The ring <A>R</A> must be a Euclidean ring
##  (see <Ref Func="IsEuclideanRing"/>), otherwise an error is signalled.
##  <Example><![CDATA[
##  gap> EuclideanRemainder( 8, 3 );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EuclideanRemainder",
    [ IsEuclideanRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  EuclideanQuotient( [<R>, ]<r>, <m> )
##
##  <#GAPDoc Label="EuclideanQuotient">
##  <ManSection>
##  <Oper Name="EuclideanQuotient" Arg='[R, ]r, m'/>
##
##  <Description>
##  <Ref Oper="EuclideanQuotient"/> returns the Euclidean quotient of the
##  ring elements <A>r</A> and <A>m</A> in the ring <A>R</A>, if given,
##  and otherwise in their default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  <P/>
##  The ring <A>R</A> must be a Euclidean ring
##  (see <Ref Func="IsEuclideanRing"/>), otherwise an error is signalled.
##  <Example><![CDATA[
##  gap> EuclideanQuotient( 8, 3 );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EuclideanQuotient",
    [ IsEuclideanRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  QuotientRemainder( [<R>, ]<r>, <m> )
##
##  <#GAPDoc Label="QuotientRemainder">
##  <ManSection>
##  <Oper Name="QuotientRemainder" Arg='[R, ]r, m'/>
##
##  <Description>
##  <Ref Oper="QuotientRemainder"/> returns the Euclidean quotient
##  and the Euclidean remainder of the ring elements <A>r</A> and <A>m</A>
##  in the ring <A>R</A>, if given,
##  and otherwise in their default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  The result is a pair of ring elements.
##  <P/>
##  The ring <A>R</A> must be a Euclidean ring
##  (see <Ref Func="IsEuclideanRing"/>), otherwise an error is signalled.
##  <Example><![CDATA[
##  gap> QuotientRemainder( GaussianIntegers, 8, 3 );
##  [ 3, -1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "QuotientRemainder",
    [ IsRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  QuotientMod( [<R>, ]<r>, <s>, <m> )
##
##  <#GAPDoc Label="QuotientMod">
##  <ManSection>
##  <Oper Name="QuotientMod" Arg='[R, ]r, s, m'/>
##
##  <Description>
##  <Ref Oper="QuotientMod"/> returns the quotient of the ring
##  elements <A>r</A> and <A>s</A> modulo the ring element <A>m</A>
##  in the ring <A>R</A>, if given,
##  and otherwise in their default ring, see
##  <Ref Func="DefaultRing" Label="for ring elements"/>.
##  <P/>
##  <A>R</A> must be a Euclidean ring (see <Ref Func="IsEuclideanRing"/>)
##  so that <Ref Func="EuclideanRemainder"/> can be applied.
##  If the modular quotient does not exist (i.e. when <A>s</A> and <A>m</A>
##  are not coprime), <K>fail</K> is returned.
##  <P/>
##  The quotient <M>q</M> of <A>r</A> and <A>s</A> modulo <A>m</A> is
##  an element of <A>R</A>
##  such that <M>q <A>s</A> = <A>r</A></M> modulo <M>m</M>, i.e.,
##  such that <M>q <A>s</A> - <A>r</A></M> is divisible by <A>m</A> in
##  <A>R</A> and that <M>q</M> is either zero (if <A>r</A> is divisible by
##  <A>m</A>) or the Euclidean degree of <M>q</M> is strictly smaller than
##  the Euclidean degree of <A>m</A>.
##  <Example><![CDATA[
##  gap> QuotientMod( 7, 2, 3 );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "QuotientMod",
    [ IsRing, IsRingElement, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  PowerMod( [<R>, ]<r>, <e>, <m> )
##
##  <#GAPDoc Label="PowerMod">
##  <ManSection>
##  <Oper Name="PowerMod" Arg='[R, ]r, e, m'/>
##
##  <Description>
##  <Ref Oper="PowerMod"/> returns the <A>e</A>-th power of the ring
##  element <A>r</A> modulo the ring element <A>m</A>
##  in the ring <A>R</A>, if given,
##  and otherwise in their default ring, see
##  <Ref Func="DefaultRing" Label="for ring elements"/>.
##  <A>e</A> must be an integer.
##  <P/>
##  <A>R</A> must be a Euclidean ring (see <Ref Func="IsEuclideanRing"/>)
##  so that <Ref Func="EuclideanRemainder"/> can be applied to its elements.
##  <P/>
##  If <A>e</A> is positive the result is <A>r</A><C>^</C><A>e</A> modulo
##  <A>m</A>.
##  If <A>e</A> is negative then <Ref Oper="PowerMod"/> first tries to find
##  the inverse of <A>r</A> modulo <A>m</A>, i.e.,
##  <M>i</M> such that <M>i <A>r</A> = 1</M> modulo <A>m</A>.
##  If the inverse does not exist an error is signalled.
##  If the inverse does exist <Ref Oper="PowerMod"/> returns
##  <C>PowerMod( <A>R</A>, <A>i</A>, -<A>e</A>, <A>m</A> )</C>.
##  <P/>
##  <Ref Oper="PowerMod"/> reduces the intermediate values modulo <A>m</A>,
##  improving performance drastically when <A>e</A> is large and <A>m</A>
##  small.
##  <Example><![CDATA[
##  gap> PowerMod( 12, 100000, 7 );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PowerMod",
    [ IsRing, IsRingElement, IsInt, IsRingElement ] );


#############################################################################
##
#F  Gcd( [<R>, ]<r1>, <r2>, ... )
#F  Gcd( [<R>, ]<list> )
##
##  <#GAPDoc Label="Gcd">
##  <ManSection>
##  <Heading>Gcd</Heading>
##  <Func Name="Gcd" Arg='[R, ]r1, r2, ...'
##   Label="for (a ring and) several elements"/>
##  <Func Name="Gcd" Arg='[R, ]list'
##   Label="for (a ring and) a list of elements"/>
##
##  <Description>
##  <Ref Func="Gcd" Label="for (a ring and) several elements"/> returns
##  the greatest common divisor of the ring elements <A>r1</A>, <A>r2</A>,
##  <M>\ldots</M> resp. of the ring elements in the list <A>list</A>
##  in the ring <A>R</A>, if given, and otherwise in their default ring,
##  see <Ref Func="DefaultRing" Label="for ring elements"/>.
##  <P/>
##  <Ref Func="Gcd" Label="for (a ring and) several elements"/> returns
##  the standard associate (see <Ref Oper="StandardAssociate"/>) of the
##  greatest common divisors.
##  <P/>
##  A divisor of an element <M>r</M> in the ring <M>R</M> is an element
##  <M>d\in R</M> such that <M>r</M> is a multiple of <M>d</M>.
##  A common divisor of the elements <M>r_1, r_2, \ldots</M> in the
##  ring <M>R</M> is an element <M>d\in R</M> which is a divisor of
##  each <M>r_1, r_2, \ldots</M>.
##  A greatest common divisor <M>d</M> in addition has the property that every
##  other common divisor of <M>r_1, r_2, \ldots</M> is a divisor of <M>d</M>.
##  <P/>
##  Note that this in particular implies the following:
##  For the zero element <M>z</M> of <A>R</A>, we have 
##  <C>Gcd( <A>r</A>, </C><M>z</M><C> ) = Gcd( </C><M>z</M><C>, <A>r</A> )
##  = StandardAssociate( <A>r</A> )</C>
##  and <C>Gcd( </C><M>z</M><C>, </C><M>z</M><C> ) = </C><M>z</M>.
##  <Example><![CDATA[
##  gap> Gcd( Integers, [ 10, 15 ] );
##  5
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Gcd" );


#############################################################################
##
#O  GcdOp( [<R>, ]<r>, <s> )
##
##  <#GAPDoc Label="GcdOp">
##  <ManSection>
##  <Oper Name="GcdOp" Arg='[R, ]r, s'/>
##
##  <Description>
##  <Ref Oper="GcdOp"/> is the operation to compute
##  the greatest common divisor of two ring elements <A>r</A>, <A>s</A>
##  in the ring <A>R</A> or in their default ring.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "GcdOp",
    [ IsUniqueFactorizationRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#F  GcdRepresentation( [<R>, ]<r1>, <r2>, ... )
#F  GcdRepresentation( [<R>, ]<list> )
##
##  <#GAPDoc Label="GcdRepresentation">
##  <ManSection>
##  <Heading>GcdRepresentation</Heading>
##  <Func Name="GcdRepresentation" Arg='[R, ]r1, r2, ...'
##   Label="for (a ring and) several elements"/>
##  <Func Name="GcdRepresentation" Arg='[R, ]list'
##   Label="for (a ring and) a list of elements"/>
##
##  <Description>
##  <Ref Func="GcdRepresentation" Label="for (a ring and) several elements"/>
##  returns a representation of
##  the greatest common divisor of the ring elements
##  <A>r1</A>, <A>r2</A>, <M>\ldots</M> resp. of the ring elements
##  in the list <A>list</A> in the Euclidean ring <A>R</A>, if given,
##  and otherwise in their default ring,
##  see <Ref Func="DefaultRing" Label="for ring elements"/>.
##  <P/>
##  A representation of the gcd <M>g</M> of the elements
##  <M>r_1, r_2, \ldots</M> of a ring <M>R</M> is a list of ring elements
##  <M>s_1, s_2, \ldots</M> of <M>R</M>,
##  such that <M>g = s_1 r_1 + s_2  r_2 + \cdots</M>.
##  Such representations do not exist in all rings, but they
##  do exist in Euclidean rings (see <Ref Func="IsEuclideanRing"/>),
##  which can be shown using the Euclidean algorithm, which in fact can
##  compute those coefficients.
##  <Example><![CDATA[
##  gap> a:= Indeterminate( Rationals, "a" );;
##  gap> GcdRepresentation( a^2+1, a^3+1 );
##  [ -1/2*a^2-1/2*a+1/2, 1/2*a+1/2 ]
##  ]]></Example>
##  <P/>
##  <Ref Func="Gcdex"/> provides similar functionality over the integers.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "GcdRepresentation" );


#############################################################################
##
#O  GcdRepresentationOp( [<R>, ]<r>, <s> )
##
##  <#GAPDoc Label="GcdRepresentationOp">
##  <ManSection>
##  <Oper Name="GcdRepresentationOp" Arg='[R, ]r, s'/>
##
##  <Description>
##  <Ref Oper="GcdRepresentationOp"/> is the operation to compute
##  the representation of the greatest common divisor of two ring elements
##  <A>r</A>, <A>s</A> in the Euclidean ring <A>R</A> or in their default ring,
##  respectively.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "GcdRepresentationOp",
    [ IsEuclideanRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#F  Lcm( [<R>, ]<r1>, <r2>, ... )
#F  Lcm( [<R>, ]<list> )
##
##  <#GAPDoc Label="Lcm">
##  <ManSection>
##  <Heading>Lcm</Heading>
##  <Func Name="Lcm" Arg='[R, ]r1, r2, ...'
##   Label="for (a ring and) several elements"/>
##  <Func Name="Lcm" Arg='[R, ]list'
##   Label="for (a ring and) a list of elements"/>
##
##  <Description>
##  <Ref Func="Lcm" Label="for (a ring and) several elements"/> returns
##  the least common multiple of the ring elements
##  <A>r1</A>, <A>r2</A>, <M>\ldots</M> resp. of the ring elements
##  in the list <A>list</A> in the ring <A>R</A>, if given,
##  and otherwise in their default ring,
##  see <Ref Func="DefaultRing" Label="for ring elements"/>.
##  <P/>
##  <Ref Func="Lcm" Label="for (a ring and) several elements"/> returns
##  the standard associate (see&nbsp;<Ref Func="StandardAssociate"/>)
##  of the least common multiples.
##  <P/>
##  A least common multiple of the elements <M>r_1, r_2, \ldots</M> of the
##  ring <M>R</M> is an element <M>m</M> that is a multiple of <M>r_1, r_2, \ldots</M>,
##  and every other multiple of these elements is a multiple of <M>m</M>.
##  <P/>
##  Note that this in particular implies the following:
##  For the zero element <M>z</M> of <A>R</A>, we have 
##  <C>Lcm( <A>r</A>, </C><M>z</M><C> ) = Lcm( </C><M>z</M><C>, <A>r</A> )
##  = StandardAssociate( <A>r</A> )</C>
##  and <C>Lcm( </C><M>z</M><C>, </C><M>z</M><C> ) = </C><M>z</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Lcm" );


#############################################################################
##
#O  LcmOp( [<R>, ]<r>, <s> )
##
##  <#GAPDoc Label="LcmOp">
##  <ManSection>
##  <Oper Name="LcmOp" Arg='[R, ]r, s'/>
##
##  <Description>
##  <Ref Oper="LcmOp"/> is the operation to compute the least common multiple
##  of two ring elements <A>r</A>, <A>s</A> in the ring <A>R</A>
##  or in their default ring, respectively.
##  <P/>
##  The default methods for this uses the equality
##  <M>lcm( m, n ) = m*n / gcd( m, n )</M> (see&nbsp;<Ref Func="GcdOp"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "LcmOp",
    [ IsUniqueFactorizationRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  PadicValuation( <r>, <p> )
##
##  <#GAPDoc Label="PadicValuation">
##  <ManSection>
##  <Oper Name="PadicValuation" Arg='r, p'/>
##
##  <Description>
##  <Ref Oper="PadicValuation"/> is the operation to compute
##  the <A>p</A>-adic valuation of a ring element <A>r</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PadicValuation", [ IsRingElement, IsPosInt ] );


#############################################################################
##  
#E