/usr/share/gap/lib/ringhom.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | #############################################################################
##
#W ringhom.gd GAP library Alexander Hulpke
##
##
#Y Copyright (C) 2008 The GAP Group
##
## This file contains declarations of operations for ring general mappings
## and homomorphisms. It is based on alghom.gd
##
##
DeclareInfoClass("InfoRingHom");
#############################################################################
##
#O RingGeneralMappingByImages( <R>, <S>, <gens>, <imgs> )
##
## <#GAPDoc Label="RingGeneralMappingByImages">
## <ManSection>
## <Oper Name="RingGeneralMappingByImages" Arg='R, S, gens, imgs'/>
##
## <Description>
## is a general mapping from the ring <A>A</A> to the ring <A>S</A>.
## This general mapping is defined by mapping the entries in the list
## <A>gens</A> (elements of <A>R</A>) to the entries in the list <A>imgs</A>
## (elements of <A>S</A>),
## and taking the additive and multiplicative closure.
## <P/>
## <A>gens</A> need not generate <A>R</A> as a ring,
## and if the specification does not define an additive and multiplicative
## mapping then the result will be multivalued.
## Hence, in general it is not a mapping.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RingGeneralMappingByImages",
[ IsRing, IsRing, IsHomogeneousList, IsHomogeneousList ] );
#############################################################################
##
#F RingHomomorphismByImages( <R>, <S>, <gens>, <imgs> )
##
## <#GAPDoc Label="RingHomomorphismByImages">
## <ManSection>
## <Func Name="RingHomomorphismByImages" Arg='R, S, gens, imgs'/>
##
## <Description>
## <Ref Func="RingHomomorphismByImages"/> returns the ring homomorphism with
## source <A>R</A> and range <A>S</A> that is defined by mapping the list
## <A>gens</A> of generators of <A>R</A> to the list <A>imgs</A> of images
## in <A>S</A>.
## <P/>
## If <A>gens</A> does not generate <A>R</A> or if the homomorphism does not
## exist (i.e., if mapping the generators describes only a multi-valued
## mapping) then <K>fail</K> is returned.
## <P/>
## One can avoid the checks by calling
## <Ref Oper="RingHomomorphismByImagesNC"/>,
## and one can construct multi-valued mappings with
## <Ref Func="RingGeneralMappingByImages"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "RingHomomorphismByImages" );
#############################################################################
##
#O RingHomomorphismByImagesNC( <R>, <S>, <gens>, <imgs> )
##
## <#GAPDoc Label="RingHomomorphismByImagesNC">
## <ManSection>
## <Oper Name="RingHomomorphismByImagesNC" Arg='R, S, gens, imgs'/>
##
## <Description>
## <Ref Oper="RingHomomorphismByImagesNC"/> is the operation that is called
## by the function <Ref Func="RingHomomorphismByImages"/>.
## Its methods may assume that <A>gens</A> generates <A>R</A> as a ring
## and that the mapping of <A>gens</A> to <A>imgs</A> defines a ring
## homomorphism.
## Results are unpredictable if these conditions do not hold.
## <P/>
## For creating a possibly multi-valued mapping from <A>R</A> to <A>S</A>
## that respects addition and multiplication,
## <Ref Func="RingGeneralMappingByImages"/> can be used.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RingHomomorphismByImagesNC",
[ IsRing, IsRing, IsHomogeneousList, IsHomogeneousList ] );
#############################################################################
##
#O NaturalHomomorphismByIdeal( <R>, <I> ) . . . . . . . map onto factor ring
##
## <#GAPDoc Label="NaturalHomomorphismByIdeal">
## <ManSection>
## <Oper Name="NaturalHomomorphismByIdeal" Arg='R, I'/>
##
## <Description>
## is the homomorphism of rings provided by the natural
## projection map of <A>R</A> onto the quotient ring <A>R</A>/<A>I</A>.
## This map can be used to take pre-images in the original ring from
## elements in the quotient.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "NaturalHomomorphismByIdeal",
[ IsRing, IsRing ] );
#############################################################################
##
#E
|