This file is indexed.

/usr/share/gap/lib/rwsdt.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
#############################################################################
##
#W  rwsdt.gi                   GAP Library                  Wolfgang Merkwitz
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file implements a deep thought collector as representation of a 
##  polycyclic collector with power/conjugate presentation.


#############################################################################
##
#R  IsDeepThoughtCollectorRep( <obj> )
##
DeclareRepresentation(
         "IsDeepThoughtCollectorRep",
         IsPositionalObjectRep,   
         [1..PC_DEFAULT_TYPE],
         IsPowerConjugateCollector);



#############################################################################
##
#M DeepThoughtCollector( <fgrp>, <orders> )
##

InstallMethod( DeepThoughtCollector,
    true,
    [ IsFreeGroup and IsWholeFamily,
      IsList ],
    0,

function( fgrp, orders )
    local   gens;

    gens := GeneratorsOfGroup(fgrp);
    if Length(orders) > Length(gens)  then
        Error( "need ", Length(gens), " orders, not ", Length(orders) );
    fi;

    # create a new deep thought collector
    return DeepThoughtCollectorByGenerators(
        ElementsFamily(FamilyObj(fgrp)), gens, orders );

end );


#############################################################################

InstallMethod( DeepThoughtCollector,
    true,
    [ IsFreeGroup and IsWholeFamily,
      IsInt ],
    0,

function( fgrp, i )
    local   gens, orders;

    gens := GeneratorsOfGroup(fgrp);
    if  i < 0  or  i = 1  then
	Error("need zero or integer greater than ",1);
    fi;
    orders := i + 0*[1..Length(gens)];

    # create a new deep thought collector
    return DeepThoughtCollectorByGenerators(
        ElementsFamily(FamilyObj(fgrp)), gens, orders );

end );



#############################################################################
##
#M DeepThoughtCollectorByGenerators( <fam>, <gens>, <orders> )
##

InstallMethod( DeepThoughtCollectorByGenerators,
    true,
    [ IsFamily,
      IsList,
      IsList ],
    0,

function( efam, gens, orders )
    local   i,  dt,  m,  bits,  type,  fam;

    # create the correct family
    fam := NewFamily( "PowerConjugateCollectorFamily",
                      IsPowerConjugateCollector );
    fam!.underlyingFamily := efam;

    # check the generators
    for i  in [ 1 .. Length(gens) ]  do
        if 1 <> NumberSyllables(gens[i])  then
            Error( gens[i], " must be a word of length 1" );
        elif 1 <> ExponentSyllable( gens[i], 1 )  then
            Error( gens[i], " must be a word of length 1" );
        elif i <> GeneratorSyllable( gens[i], 1 )  then
            Error( gens[i], " must be generator number ", i );
        fi;
    od;

    # construct a deep thought collector as positional object
    dt := [];

    # and a default type 
    dt[PC_DEFAULT_TYPE] := efam!.types[4];

    # the generators must have IsInfBitsAssocWord
    gens := ShallowCopy(gens);
    for i  in [ 1 .. Length(gens) ]  do
        if not IsInfBitsAssocWord(gens[i])  then
            gens[i] := AssocWord( dt[PC_DEFAULT_TYPE], ExtRepOfObj(gens[i]) );
        fi;
    od;
    # the rhs of the powers
    dt[PC_POWERS] := [];

    # and the rhs of the conjugates
    dt[ PC_CONJUGATES ] := List( gens, g -> [] );

    # convert into a positional object
    type := NewType( fam, IsDeepThoughtCollectorRep and IsMutable );
    Objectify( type, dt );

    # underlying family vermutlich nicht n"otig

    # and the generators
    SetGeneratorsOfRws( dt, gens );
    SetNumberGeneratorsOfRws( dt, Length(gens) );

    # and the relative orders
    SetRelativeOrders( dt, ShallowCopy(orders) );

    # we haven't computed the deep thought polynomials and the generator orders
    OutdatePolycyclicCollector(dt);

    # test whether dtrws is finite and set the corresponding feature
    # and return
    return dt;

end );


#############################################################################
##
#M Rules( <dtrws> )
##

InstallMethod( Rules,
    "Deep Thought",
    true,
    [ IsPowerConjugateCollector and IsDeepThoughtCollectorRep ],
    0,

function( dtrws )
    local   rels,  gens,  ords,  i,  j;

    # first the power relators
    rels := [];
    gens := dtrws![PC_GENERATORS];
    ords := dtrws![PC_EXPONENTS];
    for i  in [ 1 .. dtrws![PC_NUMBER_OF_GENERATORS] ]  do
	if IsBound( ords[i] )  then
            if IsBound( dtrws![PC_POWERS][i] )  then
                Add( rels, gens[i]^ords[i] / 
                           InfBits_AssocWord( dtrws![PC_DEFAULT_TYPE], 
                                              dtrws![PC_POWERS][i] ) );
            else
                Add( rels, gens[i]^ords[i] );
            fi;
	fi;
    od;

    # and now the conjugates
    for i  in [ 2 .. dtrws![PC_NUMBER_OF_GENERATORS] ]  do
        for j  in [ 1 .. i-1 ]  do
            if IsBound( dtrws![PC_CONJUGATES][i][j] )  then
                Add( rels, gens[i]^gens[j] / 
                           InfBits_AssocWord( dtrws![PC_DEFAULT_TYPE],
                                              dtrws![PC_CONJUGATES][i][j] ) );
            else
                Add( rels, gens[i]^gens[j] / gens[i] );
            fi;
        od;
    od;

    # and return
    return rels;

end );


#############################################################################
##
#M  SetRelativeOrders( <dtrws>, <orders> )
##

InstallMethod( SetRelativeOrders, 
       true,
       [ IsDeepThoughtCollectorRep and IsPowerConjugateCollector, IsList ],
       0,

function( dtrws, orders )
    local  i;

    # check the orders
    for  i in orders  do
        if  (not IsInt(i)  and  i <> infinity)  or  i < 0  or  i=1  then
            Error( "relative orders must be zero or infinity or integers greater than 1" );
	fi;
    od;
    orders := ShallowCopy(orders);
    for  i in [1..Length(orders)]  do
	if  IsBound(orders[i])  then
	    if  orders[i] = 0  or  orders[i] = infinity  then
	        Unbind(orders[i]);
	    fi;
	fi;
    od;
    dtrws![PC_EXPONENTS] := orders;
    if  Length(orders) < dtrws![PC_NUMBER_OF_GENERATORS]  or  
        not IsHomogeneousList( orders )                        then
	SetFeatureObj( dtrws, IsFinite, false );
    else
	SetFeatureObj( dtrws, IsFinite, true );
    fi;
end   );


#############################################################################
##
#M  SetRelativeOrder( <dtrws>, <i>, <ord> )
##

InstallMethod( SetRelativeOrder,
      true,
      [ IsDeepThoughtCollectorRep and IsPowerConjugateCollector and
        IsMutable,
        IsInt,
        IsObject  ],
      0,

function( dtrws, i, ord )

    if  i <= 0  then
	Error("<i> must be positive");
    fi;
    if  i > dtrws![PC_NUMBER_OF_GENERATORS]  then
	Error( "<i> must be at most ", dtrws![PC_NUMBER_OF_GENERATORS] );
    fi;
    if  (not IsInt(ord)  and  ord <> infinity)  or  ord < 0  or  ord=1  then
	Error( "relative order must be zero or infinity or an integer greater than 1" );
    fi;
    if  ord = infinity  or  ord = 0  then
	if  IsBound( dtrws![PC_EXPONENTS][i] )  then
	    Unbind( dtrws![PC_EXPONENTS][i] );
	    SetFeatureObj( dtrws, IsFinite, false );
	fi;
    else
	dtrws![PC_EXPONENTS][i] := ord;
	if  0 in RelativeOrders( dtrws )  then
	    SetFeatureObj( dtrws, IsFinite, false );
	else
	    SetFeatureObj( dtrws, IsFinite, true );
	fi;
    fi;
end   );
    



#############################################################################
##
#M  RelativeOrders( <dtrws> )
##

InstallMethod( RelativeOrders,"Method for Deep Thought",
      true,
      [ IsDeepThoughtCollectorRep  and  IsPowerConjugateCollector ],
      0,

function( dtrws )
    local  orders, i;
    
    orders := ShallowCopy( dtrws![PC_EXPONENTS] );
    for  i in [1..Length(orders)]  do
	if  not IsBound(orders[i])  then
	    orders[i] := 0;
	fi;
    od;
    for  i in [ Length(orders)+1..dtrws![PC_NUMBER_OF_GENERATORS] ]  do
	orders[i] := 0;
    od;
    return orders;
end
);


#############################################################################
##
#M  SetNumberGeneratorsOfRws( <dtrws>, <num> )
##

InstallMethod( SetNumberGeneratorsOfRws,
      true, 
      [ IsDeepThoughtCollectorRep  and  IsPowerConjugateCollector, IsInt ],
      0,

function( dtrws, num )
    dtrws![PC_NUMBER_OF_GENERATORS] := num;
end
);


#############################################################################
##
#M  NumberGeneratorsOfRws( <dtrws> )
##

InstallMethod( NumberGeneratorsOfRws,
    true,
    [ IsDeepThoughtCollectorRep  and  IsPowerConjugateCollector ],
    0,

function( dtrws )
    return dtrws![PC_NUMBER_OF_GENERATORS];
end
);


#############################################################################
##
#M  SetGeneratorsOfRws( <dtrws>, <gens> )
##

InstallMethod( SetGeneratorsOfRws,
    true,
    [ IsDeepThoughtCollectorRep  and  IsPowerConjugateCollector, IsList ],
    0,

function( dtrws, gens )
    dtrws![PC_GENERATORS] := ShallowCopy(gens);
end
);


#############################################################################
##
#M  GeneratorsOfRws( <dtrws> )
##

InstallMethod( GeneratorsOfRws,
    true,
    [ IsDeepThoughtCollectorRep  and  IsPowerConjugateCollector ],
    0,

function( dtrws )
    return ShallowCopy( dtrws![PC_GENERATORS] );
end
);


#############################################################################
##
#M  ViewObj( <dtrws> )
##

InstallMethod( ViewObj,
    true,
    [ IsDeepThoughtCollectorRep  and  IsPowerConjugateCollector ],
    0,

function( dtrws )
    Print( "<< deep thought collector >>" );
end  );


#############################################################################
##
#M  PrintObj( <dtrws> )
##

InstallMethod( PrintObj,
    true,
    [ IsDeepThoughtCollectorRep  and  IsPowerConjugateCollector ],
    0,

function( dtrws )
    Print( "<< deep thought collector >>" );
end  );
#T install a better `PrintObj' method!


#############################################################################
##
#M  SetPower( <dtrws>, <i>, <rhs> )
##

InstallMethod( SetPower, 
    IsIdenticalObjFamiliesColXXXObj,
    [ IsPowerConjugateCollector and  IsDeepThoughtCollectorRep
        and IsMutable,
      IsInt,
      IsMultiplicativeElementWithInverse ],
    0,

function( dtrws, i, rhs )
    local   fam,  m,  n,  l;

    # check the family (this cannot be done in install)
    fam := UnderlyingFamily(dtrws);
    if not IsIdenticalObj( FamilyObj(rhs), fam )  then
        Error( "<rhs> must lie in the group of <dtrws>" );
    fi;

    # check <i>
    if i <= 0  then
        Error( "<i> must be positive" );
    fi;
    if  NumberGeneratorsOfRws(dtrws) < i  then
        Error( "<i> must be at most ", dtrws![PC_NUMBER_OF_GENERATORS] );
    fi;
    if  not IsBound( dtrws![PC_EXPONENTS][i] )  then
        Error( "no relative order is set for generator ", i );
    fi;

    # check that the rhs is a reduced word with respect to the relative orders
    for  m in [1..NumberSyllables(rhs)]  do
        if  IsBound( dtrws![PC_EXPONENTS][ GeneratorSyllable(rhs, m) ] )  and  
            ExponentSyllable(rhs, m) >= 
                dtrws![PC_EXPONENTS][ GeneratorSyllable(rhs, m) ]  then
            Error("<rhs> is not reduced");
        fi;
        if  m < NumberSyllables(rhs)  then
	    if  GeneratorSyllable(rhs, m) >= GeneratorSyllable(rhs, m+1)  then
		Error("<rhs> is not reduced");
	    fi;
  	fi;
    od;

    # check that the rhs lies underneath i
    if  NumberSyllables(rhs) > 0  and  GeneratorSyllable(rhs, 1) <= i  then
	Error("illegal <rhs>");
    fi;
    
    # enter the rhs
    dtrws![PC_POWERS][i]  := ExtRepOfObj(rhs);

end );    


#############################################################################
##
#M  SetConjugate( <dtrws>, <i>, <j>, <rhs> )
##
##  required:  <i> > <j>
##

DeepThoughtCollector_SetConjugateNC := function(dtrws, i, j, rhs)

    if IsBound(dtrws![PC_CONJUGATES][i])  then
	dtrws![PC_CONJUGATES][i][j] := ExtRepOfObj(rhs);
    else
	dtrws![PC_CONJUGATES][i] := [];
	dtrws![PC_CONJUGATES][i][j] := ExtRepOfObj(rhs);
    fi;
end;


InstallMethod( SetConjugate,
    IsIdenticalObjFamiliesColXXXXXXObj,
    [ IsPowerConjugateCollector and  IsDeepThoughtCollectorRep
        and IsMutable,
      IsInt,
      IsInt,
      IsMultiplicativeElementWithInverse ],
    0,

function( dtrws, i, j, rhs )
    local   fam,  m,  n,  l;

    # check <i> and <j>
    if i <= 1  then
        Error( "<i> must be at least 2" );
    fi;
    if dtrws![PC_NUMBER_OF_GENERATORS] < i  then
        Error( "<i> must be at most ", dtrws![PC_NUMBER_OF_GENERATORS] );
    fi;
    if j <= 0  then
        Error( "<j> must be positive" );
    fi;
    if i <= j  then
        Error( "<j> must be at most ", i-1 );
    fi;

    # check that the rhs is non-trivial
    if 0 = NumberSyllables(rhs)  then
        Error( "right hand side is trivial" );
    fi;

    # check that the rhs is a reduced word with respect to the relative orders
    for  m in [1..NumberSyllables(rhs)]  do
        if  IsBound( dtrws![PC_EXPONENTS][ GeneratorSyllable(rhs, m) ] )  and  
            ExponentSyllable(rhs, m) >= 
                dtrws![PC_EXPONENTS][ GeneratorSyllable(rhs, m) ]  then
            Error("<rhs> is not reduced");
        fi;
        if  m < NumberSyllables(rhs)  then
	    if  GeneratorSyllable(rhs, m) >= GeneratorSyllable(rhs, m+1)  then
		Error("<rhs> is not reduced");
	    fi;
  	fi;
    od;

    # check that the rhs defines a nilpotent relation
    if  GeneratorSyllable(rhs, 1) <> i  or
        ExponentSyllable(rhs, 1) <> 1  then
    	Error("rhs does not define a nilpotent relation");
    fi;

    # install the conjugate relator
    DeepThoughtCollector_SetConjugateNC( dtrws, i, j, rhs );
    OutdatePolycyclicCollector( dtrws );

end );


#############################################################################
##
#M  UpdatePolycyclicCollector( <dtrws> )
##

InstallMethod( UpdatePolycyclicCollector,
    true,
    [ IsPowerConjugateCollector and IsDeepThoughtCollectorRep ],
    0,

function( dtrws )
    local i,j;

    if  IsUpToDatePolycyclicCollector(dtrws)  then
	return;
    fi;

    # complete dtrws
    for  i in [2..dtrws![PC_NUMBER_OF_GENERATORS]]  do
	if  not IsBound( dtrws![PC_CONJUGATES][i] )  then
	    dtrws![PC_CONJUGATES][i] := [];
	fi;
    od;

    # remove trivial rhs's
    for  i in [2..Length(dtrws![PC_CONJUGATES])]  do
	for  j in [1..i-1]  do
	    if  IsBound(dtrws![PC_CONJUGATES][i][j])  then
	        if  Length(dtrws![PC_CONJUGATES][i][j]) = 2  then
		    Unbind( dtrws![PC_CONJUGATES][i][j] );
	        fi;
	    fi;
	od;
    od;
    for  i in [1..dtrws![PC_NUMBER_OF_GENERATORS]]  do
	    if  IsBound( dtrws![PC_POWERS][i])  then
	        if  Length(dtrws![PC_POWERS][i]) = 0  then
		    Unbind( dtrws![PC_POWERS][i] );
	        fi;
	    fi;
    od;	    

    # Compute the deep thought polynomials
    Print("computing deep thought polynomials  ...\n");
    dtrws![PC_DEEP_THOUGHT_POLS] := Calcreps2(dtrws![PC_CONJUGATES], 8, 1);
    Print("done\n");

    # Compute the orders of the genrators of dtrws
    Print("computing generator orders  ...\n");
    CompleteOrdersOfRws(dtrws);
    Print("done\n");

    # reduce the coefficients of the deep thought polynomials
    ReduceCoefficientsOfRws(dtrws);

    SetFeatureObj( dtrws, IsUpToDatePolycyclicCollector, true );

end );


#############################################################################
##
#M  ReducedProduct( <dtrws>, <left>, <right> )
##

InstallMethod(ReducedProduct,
    "DeepThoughtReducedProduct",
    IsIdenticalObjFamiliesRwsObjObj,
    [IsPowerConjugateCollector and IsDeepThoughtCollectorRep
        and IsUpToDatePolycyclicCollector,
     IsAssocWord,
     IsAssocWord],
     0,

function(dtrws, lword, rword)
    return InfBits_AssocWord( dtrws![PC_DEFAULT_TYPE],
                              DTMultiply( ExtRepOfObj(lword), 
                                          ExtRepOfObj(rword),
                                          dtrws )  );
end   );


#############################################################################
##
#M  ReducedComm( <dtrws>, <left>, <right> )
##

InstallMethod(ReducedComm,
    "DeepThoughtReducedComm",
    IsIdenticalObjFamiliesRwsObjObj,
    [IsPowerConjugateCollector and IsDeepThoughtCollectorRep
        and IsUpToDatePolycyclicCollector,
     IsAssocWord,
     IsAssocWord],
     0,

function(dtrws, lword, rword)
    return InfBits_AssocWord( dtrws![PC_DEFAULT_TYPE],
                              DTCommutator( ExtRepOfObj(lword), 
                                            ExtRepOfObj(rword),
                                            dtrws )  );
end   );


#############################################################################
##
#M  ReducedLeftQuotient( <dtrws>, <left>, <right> )
##

InstallMethod(ReducedLeftQuotient,
    "DeepThoughtReducedLeftQuotient",
    IsIdenticalObjFamiliesRwsObjObj,
    [IsPowerConjugateCollector and IsDeepThoughtCollectorRep
        and IsUpToDatePolycyclicCollector,
     IsAssocWord,
     IsAssocWord],
     0,

function(dtrws, lword, rword)
    return InfBits_AssocWord( dtrws![PC_DEFAULT_TYPE],
                              DTSolution( ExtRepOfObj(lword), 
                                          ExtRepOfObj(rword),
                                          dtrws )  );
end   );


#############################################################################
##
#M  ReducedPower( <dtrws>, <word>, <int> )
##

InstallMethod(ReducedPower,
    "DeepThoughtReducedPower",
    IsIdenticalObjFamiliesRwsObjXXX,
    [IsPowerConjugateCollector and IsDeepThoughtCollectorRep
        and IsUpToDatePolycyclicCollector,
     IsAssocWord,
     IsInt],
     0,

function(dtrws, word, int)
    return InfBits_AssocWord( dtrws![PC_DEFAULT_TYPE],
                              DTPower( ExtRepOfObj(word), int, dtrws )  );
end   );


#############################################################################
##
#M  ReducedQuotient( <dtrws>, <left>, <right> )
##

InstallMethod(ReducedQuotient,
    "DeepThoughtReducedQuotient",
    IsIdenticalObjFamiliesRwsObjObj,
    [IsPowerConjugateCollector and IsDeepThoughtCollectorRep
        and IsUpToDatePolycyclicCollector,
     IsAssocWord,
     IsAssocWord],
     0,

function(dtrws, lword, rword)
    return InfBits_AssocWord( dtrws![PC_DEFAULT_TYPE],
                              DTQuotient( ExtRepOfObj(lword), 
                                          ExtRepOfObj(rword),
                                          dtrws )  );
end   );


#############################################################################
##
#M  ReducedConjugate( <dtrws>, <left>, <right> )
##

InstallMethod(ReducedConjugate,
    "DeepThoughtReducedConjugate",
    IsIdenticalObjFamiliesRwsObjObj,
    [IsPowerConjugateCollector and IsDeepThoughtCollectorRep
        and IsUpToDatePolycyclicCollector,
     IsAssocWord,
     IsAssocWord],
     0,

function(dtrws, lword, rword)
    return InfBits_AssocWord( dtrws![PC_DEFAULT_TYPE],
                              DTConjugate( ExtRepOfObj(lword), 
                                           ExtRepOfObj(rword),
                                           dtrws )  );
end   );


#############################################################################
##
#M  ReducedInverse( <dtrws>, <word> )
##

InstallMethod(ReducedInverse,
    "DeepThoughtReducedInverse",
    IsIdenticalObjFamiliesRwsObj,
    [IsPowerConjugateCollector and IsDeepThoughtCollectorRep
        and IsUpToDatePolycyclicCollector,
     IsAssocWord],
     0,

function(dtrws, word)
    return InfBits_AssocWord( dtrws![PC_DEFAULT_TYPE],
                              DTSolution( ExtRepOfObj(word), [], dtrws )  );
end   );



#############################################################################
##
#M  CollectWordOrFail( <dtrws>, <list>, <word> )
##
##  This is only implemented to please the generic method for GroupByRws. For
##  computations use ReducedProduct, ReducedComm etc.
##

InstallMethod(CollectWordOrFail,
    "DeepThought",
    IsIdenticalObjFamiliesColXXXObj,
    [IsPowerConjugateCollector  and  IsDeepThoughtCollectorRep,
     IsList,
     IsMultiplicativeElementWithInverse],
    0,

function(dtrws, l, word)
    local i,j, help, help1,ext;

    if  not IsUpToDatePolycyclicCollector(dtrws)  then
	UpdatePolycyclicCollector(dtrws);
    fi;
    if  NumberSyllables(word) = 0  then
	return true;
    fi;
    ext := ExtRepOfObj(word);
    i := 1;
    help := [];

    # reduce ext and store the result in help
    while  i < Length(ext)  do
	Append(help, [ ext[i], ext[i+1] ] );
	if  i+1 = Length(ext)  or  ext[i] >= ext[i+2]  then
	    break;
	fi;
	i := i+2;
    od;
    i := i+2;
    help1 := [];
    while  i < Length(ext)  do
	Append( help1, [ ext[i], ext[i+1] ] );
	if  i+1 = Length(ext)  or  ext[i] >= ext[i+2]  then
	    help := DTMultiply(help, help1, dtrws);
	    help1 := [];
	fi;
	i := i+2;
    od;

    # convert l into ExtRep of a word and store the result in help1
    help1 := [];
    for  i in [1..Length(l)]  do
	if  l[i] <> 0  then
	    Append( help1, [ i, l[i] ] );
	fi;
    od;
   
    # compute the product of help1 and help
    help := DTMultiply(help1, help, dtrws);

    # convert the result into an exponent vector and store the result in l
    for  i in [1..Length(l)]  do
	l[i] := 0;
    od;
    for  i in [1,3..Length(help)-1]  do
	l[ help[i] ] := help[i+1];
    od;
    return true;
end   );


#############################################################################
##
#M  ObjByExponents( <dtrws>, <exps> )
##

InstallMethod(ObjByExponents,
    "DeepThought",
    true,
    [IsPowerConjugateCollector  and  IsDeepThoughtCollectorRep,
     IsList],
    0,

function(dtrws, l)
    local res, i;

    res := [];
    for  i in [1..Length(l)]  do
	if  l[i] <> 0  then
	    Append( res, [ i, l[i] ] );
	fi;
    od;
    return InfBits_AssocWord( dtrws![PC_DEFAULT_TYPE], res );
end  );

#############################################################################
##
#E  rwsdt.gi  . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##