This file is indexed.

/usr/share/gap/lib/semigrp.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
#############################################################################
##
#W  semigrp.gi                  GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains generic methods for semigroups.
##

# Everything from here...

InstallMethod(IsGeneratorsOfSemigroup, "for an empty list",
[IsList and IsEmpty], ReturnFalse);

#

InstallMethod(InversesOfSemigroupElement, "for a semigroup and an element",
[IsSemigroup, IsAssociativeElement],
function(s, x)
  if not x in s then 
    Error("usage: the 2nd argument must be an element of the 1st,");
    return;
  fi;
  return Filtered(Elements(s), y-> x*y*x=x and y*x*y=y);
end);

#

InstallMethod(\.,"for a semigroup with generators and pos int",
[IsSemigroup and HasGeneratorsOfSemigroup, IsPosInt],
function(s, n)
  s:=GeneratorsOfSemigroup(s);
  n:=NameRNam(n);
  n:=Int(n);
  if n=fail or Length(s)<n then
    Error("usage: the second argument should be a pos int not greater than",
     " the number of generators of the semigroup in the first argument,");
    return;
  fi;
  return s[n];
end);

#

InstallMethod(\., "for a monoid with generators and pos int",
[IsMonoid and HasGeneratorsOfMonoid, IsPosInt],
function(s, n)
  s:=GeneratorsOfMonoid(s);
  n:=NameRNam(n);
  n:=Int(n);
  if n=fail or Length(s)<n then
    Error("usage: the second argument should be a pos int not greater than",
     " the number of generators of the semigroup in the first argument,");
    return;
  fi;
  return s[n];
end);

#

InstallMethod(IsSubsemigroup,
"for semigroup and semigroup with generators",
[IsSemigroup, IsSemigroup and HasGeneratorsOfSemigroup],
function(s, t)
  return ForAll(GeneratorsOfSemigroup(t), x-> x in s);
end);

#

InstallMethod(IsSubsemigroup, "for a semigroup and semigroup",
[IsSemigroup, IsSemigroup], IsSubset);

#

InstallMethod(\=,
"for semigroup with generators and semigroup with generators",
[IsSemigroup and HasGeneratorsOfSemigroup,
 IsSemigroup and HasGeneratorsOfSemigroup],
function(s, t)
  return ForAll(GeneratorsOfSemigroup(s), x-> x in t) and
   ForAll(GeneratorsOfSemigroup(t), x-> x in s);
end);

#

InstallTrueMethod(IsRegularSemigroup, IsInverseSemigroup);

#

InstallMethod(IsInverseSemigroup, "for a semigroup", 
[IsSemigroup],
function(s)
local F, e, f;

  if not IsRegularSemigroup(s) then 
    return false;
  fi;

  F:=Idempotents(s);

  for e in F do 
    for f in F do 
      if e*f<>f*e then 
        return false;
      fi;
    od;
  od;

  return true;
end); 

# to here was added by JDM.

#############################################################################
##
##  Compute a data structure that can be used to compute the
##  CayleyGraph of a semigroup. This data structure is essentially
##  a list of lists of points each list recording the action of the
##  generators of the semigroup on every element in the semigroup.
##  The points represent the elements of the semigroup in sorted order.
##  This representation is so a more condensed list of elements can be
##  used rather than the elements of the semigroup.
##
##  Similarly for the dual of the semigroup.
##
##  Clearly, these graphs can be computed only for finite semigroups
##  which can be enumerated. Other methods will be needed for very large
##  semigroups or the infinite cases.
##
#A  CayleyGraphSemigroup(<semigroup>)
#A  CayleyGraphDualSemigroup(<semigroup>)
##
InstallMethod(CayleyGraphSemigroup, "for generic finite semigroups",
        [IsSemigroup and IsFinite],
    function(s)
    
    FroidurePinExtendedAlg(s); 
    return CayleyGraphSemigroup(s);

    end);

InstallMethod(CayleyGraphDualSemigroup, "for generic finite semigroups",
        [IsSemigroup and IsFinite],
    function(s)

    FroidurePinExtendedAlg(s); 
    return CayleyGraphDualSemigroup(s);

    end);

#############################################################################
##
#M  PrintObj( <S> ) . . . . . . . . . . . . . . . . . . . . print a semigroup
##

#InstallMethod( PrintObj, #JDM required?? Shouldn't the default call PrintString?
#    "for a semigroup",
#    [ IsSemigroup ],
#    function( S )
#    Print( "Semigroup( ... )" );
#    end );

InstallMethod( String,
    "for a semigroup",
    [ IsSemigroup ],
    function( S )
    return "Semigroup( ... )";
    end );

InstallMethod( PrintObj,
    "for a semigroup with known generators",
    [ IsSemigroup and HasGeneratorsOfMagma ],
    function( S )
    Print( "Semigroup( ", GeneratorsOfMagma( S ), " )" );
    end );


InstallMethod( String,
    "for a semigroup with known generators",
    [ IsSemigroup and HasGeneratorsOfMagma ],
    function( S )
    return STRINGIFY( "Semigroup( ", GeneratorsOfMagma( S ), " )" );
    end );

InstallMethod( PrintString,
    "for a semigroup with known generators",
    [ IsSemigroup and HasGeneratorsOfMagma ],
    function( S )
    return PRINT_STRINGIFY( "Semigroup( ", GeneratorsOfMagma( S ), " )" );
    end );

#############################################################################
##
#M  ViewString( <S> )  . . . . . . . . . . . . . . . . . . . .  view a semigroup
##
InstallMethod( ViewString,
    "for a semigroup",
    [ IsSemigroup ],
    function( S )
    return "<semigroup>";
    end );

InstallMethod( ViewString,
    "for a semigroup with generators",
    [ IsSemigroup and HasGeneratorsOfMagma ],
    function( S )
    if Length(GeneratorsOfMagma(S)) = 1 then
      return "<semigroup with 1 generator>";
    else
      return STRINGIFY("<semigroup with ", Length( GeneratorsOfMagma( S ) ),
           " generators>" );
    fi;
    end );

#############################################################################
##
#M  DisplaySemigroup( <S> )
##
InstallMethod(DisplaySemigroup, "for finite semigroups",
    [IsTransformationSemigroup],
function(S)

    local dc, i, len, sh, D, layer, displayDClass;

    displayDClass:= function(D)
        local h, sh;
        h:= GreensHClassOfElement(AssociatedSemigroup(D),Representative(D));
        if IsRegularDClass(D) then
            Print("*");
        fi;
        Print("[H size = ", Size(h),", ",
        Size(GreensRClassOfElement(AssociatedSemigroup(D),
            Representative(h)))/Size(h), " L classes, ",
        Size(GreensLClassOfElement(AssociatedSemigroup(D),
            Representative(h)))/Size(h)," R classes]");
        Print("\n");
    end;

    #########################################################################
    ##
    ##  Function Proper
    ##
    #########################################################################

    # check finiteness
    if not IsFinite(S) then
      TryNextMethod();
    fi;

    # determine D classes and sort according to rank.
    layer:= List([1..DegreeOfTransformationSemigroup(S)], x->[]);
    for D in GreensDClasses(S) do
        Add(layer[RankOfTransformation(Representative(D))], D);
    od;

    # loop over the layers.
    len:= Length(layer);
    for i in [len, len-1..1] do
        if layer[i] <> [] then

            # loop over D classes.
            for D in layer[i] do
                Print("Rank ", i, ": \c");
                displayDClass(D);
            od;
        fi;
    od;

end);



#############################################################################
##
#M  SemigroupByGenerators( <gens> ) . . . . . . semigroup generated by <gens>
##
InstallMethod( SemigroupByGenerators,
    "for a collection",
    [ IsCollection ],
    function( gens )
      local S, pos;

    S:= Objectify( NewType( FamilyObj( gens ),
                            IsSemigroup and IsAttributeStoringRep ),
                   rec() );
    SetGeneratorsOfMagma( S, AsList( gens ) );
    
    if IsMultiplicativeElementWithOneCollection(gens) 
      and CanEasilyCompareElements(gens) then 
      pos:=Position(gens, One(gens));
      if pos<>fail then 
        SetFilterObj(S, IsMonoid);
        gens:=ShallowCopy(gens);
        Remove(gens, pos);
        SetGeneratorsOfMonoid(S, gens);
      fi;
    fi;

    return S;
    end );


#############################################################################
##
#M  AsSemigroup( <D> ) . . . . . . . . . . .  domain <D>, viewed as semigroup
##
InstallMethod( AsSemigroup,
    "for a semigroup",
    [ IsSemigroup ], 100,
    IdFunc );

InstallMethod( AsSemigroup,
    "generic method for collections",
    [ IsCollection ],
    function ( D )
    local   S,  L;

    D := AsSSortedList( D );
    L := ShallowCopy( D );
    S := Submagma( SemigroupByGenerators( D ), [] );
    SubtractSet( L, AsSSortedList( S ) );
    while not IsEmpty(L)  do
        S := ClosureMagmaDefault( S, L[1] );
        SubtractSet( L, AsSSortedList( S ) );
    od;
    if Length( AsSSortedList( S ) ) <> Length( D )  then
        return fail;
    fi;
    S := SemigroupByGenerators( GeneratorsOfSemigroup( S ) );
    SetAsSSortedList( S, D );
    SetIsFinite( S, true );
    SetSize( S, Length( D ) );

    # return the semigroup
    return S;
    end );


#############################################################################
##
#F  Semigroup( <gen>, ... ) . . . . . . . . semigroup generated by collection
#F  Semigroup( <gens> ) . . . . . . . . . . semigroup generated by collection
##

InstallGlobalFunction( Semigroup, function( arg )
  local out, i;

  if Length(arg)=0 or (Length(arg)=1 and HasIsEmpty(arg[1]) and IsEmpty(arg[1])) then 
    Error("usage: cannot create a semigroup with no generators,");
    return;

  # special case for matrices, because they may look like lists
  elif Length( arg ) = 1 and IsMatrix( arg[1] )  then
    return SemigroupByGenerators( [ arg[1] ] );

  # list of generators
  elif Length( arg ) = 1 and IsList( arg[1] ) and 0 < Length( arg[1] )  then
    return SemigroupByGenerators( arg[1] );

  # generators and collections of generators
  elif (IsMultiplicativeElement(arg[1])
        and IsGeneratorsOfSemigroup([arg[1]]))
    or (IsMultiplicativeElementCollection(arg[1])
        and IsGeneratorsOfSemigroup(arg[1])) 
    or (HasIsEmpty(arg[1]) and IsEmpty(arg[1])) then
    out:=[];
    for i in [1..Length(arg)] do
      #so that we can pass the options record in the Semigroups package 
      if i=Length(arg) and IsRecord(arg[i]) then
        return SemigroupByGenerators(out, arg[i]);
      elif IsMultiplicativeElement(arg[i]) and IsGeneratorsOfSemigroup([arg[i]]) then
        Add(out, arg[i]);
      elif IsGeneratorsOfSemigroup(arg[i]) then
        if HasGeneratorsOfSemigroup(arg[i]) then
          Append(out, GeneratorsOfSemigroup(arg[i]));
        elif IsList(arg[i]) then 
          Append(out, arg[i]);
        else
          Append(out, AsList(arg[i]));
        fi;
      else
        if not IsEmpty(arg[i]) then 
          Error( "Usage: Semigroup(<gen>,...), Semigroup(<gens>), ",
            "Semigroup(<D>), " );
          return;
        fi;
      fi;
    od;
    return SemigroupByGenerators(out);
  
  # no argument given, error
  else
    Error( "Usage: Semigroup(<gen>,...),Semigroup(<gens>),Semigroup(<D>),");
    return;
  fi;
end);

#############################################################################
##
#M  AsSubsemigroup( <G>, <U> )
##
InstallMethod( AsSubsemigroup,
    "generic method for a domain and a collection",
    IsIdenticalObj,
    [ IsDomain, IsCollection ],
    function( G, U )
    local S;
    if not IsSubset( G, U ) then
      return fail;
    fi;
    if IsMagma( U ) then
      if not IsAssociative( U ) then
        return fail;
      fi;
      S:= SubsemigroupNC( G, GeneratorsOfMagma( U ) );
    else
      S:= SubmagmaNC( G, AsList( U ) );
      if not IsAssociative( S ) then
        return fail;
      fi;
    fi;
    UseIsomorphismRelation( U, S );
    UseSubsetRelation( U, S );
    return S;
    end );

#############################################################################
##
#M  Enumerator( <S> )
#M  Enumerator( <S> : Side:= "left" )
#M  Enumerator( <S> : Side:= "right")
##
##  Creates a naive semigroup enumerator.   By default this enumerates the
##  right semigroup ideal of the set of generators.   This is the same as
##  the third form.
##
##  In the second form it enumerates the left semigroup ideal generated by
##  the semigroup generators.
##
InstallMethod( Enumerator, "for a generic semigroup",
    [ IsSemigroup and HasGeneratorsOfSemigroup ],
    function( s )
     
    if ValueOption( "Side" ) = "left" then
      return EnumeratorOfSemigroupIdeal( s, s,
                 IsBound_LeftSemigroupIdealEnumerator,
                 GeneratorsOfSemigroup( s ) );
    else
      return EnumeratorOfSemigroupIdeal( s, s,
                 IsBound_RightSemigroupIdealEnumerator,
                 GeneratorsOfSemigroup( s ) );
    fi;
    end );


#############################################################################
##
#M  IsSimpleSemigroup( <S> ) . . . . . . . . . . . . . . . . . .  for a group
#M  IsSimpleSemigroup( <S> ) . . . . . . . . . . . .  for a trivial semigroup
##
##  All groups are simple semigroups.
##  A trivial semigroup is a simple semigroup.
##
InstallTrueMethod( IsSimpleSemigroup, IsGroup );
InstallTrueMethod( IsSimpleSemigroup, IsSemigroup and IsTrivial );


#############################################################################
##
#M  IsSimpleSemigroup( <S> ) . . . . . . . for semigroup which has generators
##
##  In such a case the semigroup is simple iff all generators are
##  Greens J less than or equal to any element of the semigroup.
##
##  Proof:
##  (->) Suppose <S> is simple; equivalently this means than
##  for all element <t> of <S>, <StS=S>. So let <t> be an
##  arbitrary element of <S> and let <x> be any generator of <S>.
##  Then $S^1xS^1 \subseteq S = StS \subseteq S^1tS^1$ and this
##  means that <x> is J less than or equal to t.
##
##  (<-) Conversely.
##  Recall that <S> simple is equivalent to J being
##  the universal relation in <S>. So that is what we have to proof.
##  All elements of the semigroup are J less than or equal to the generators
##  since they are products of generators. But since by the condition
##  given all generators are less than or equal to all other elements
##  it follows that all elements of the semigroup are J related, and
##  hence J is universal.
##  QED
##
##  In order to apply the above result we are going to check that
##  one of the generators is J-minimal and that all other generators are
##  J-less than or equal to  that first generator.
##
##  It returns true if the semigroup is finite and is simple.
##  It returns false if the semigroup is not simple and is finite.
##  It might return false if the semigroup is not simple and infinite.
##  It does not terminate if the semigroup although simple, is infinite
##
InstallMethod(IsSimpleSemigroup,
        "for semigroup with generators",
        [ IsSemigroup and HasGeneratorsOfSemigroup],
    function(s)
         local it,          # the iterator of the semigroup s
               t,           # an element of the semigroup
               J,           # Greens J relation of the semigroup
               gens,        # a set of generators of the semigroup
               a,           # a generator
               i,           # loop variable
               jt,ja,jx;    # J classes

         # the iterator, the J-relation and a generating set for the semigroup
         it:=Iterator(s);
         J:=GreensJRelation(s);
         gens:=GeneratorsOfSemigroup(s);

         # pick a generator, gens[1], and build its J class
         jx:=EquivalenceClassOfElementNC(J,gens[1]);

         # check whether gens[1] is J less than or equal to all other els of the smg
         while not(IsDoneIterator(it)) do
             # pick the next element of the semigroup
             t:=NextIterator(it);
             # if gens[1] is not J-less than or equal to t then S is not simple
             jt:=EquivalenceClassOfElementNC(J,t);
             if not(IsGreensLessThanOrEqual(jx,jt)) then
                 return false;
             fi;
         od;

         # notice that the above cycle only terminates without returning false
         # when the semigroup is finite

         # now check whether all other generators are J less than or equal
         # the first one. No need to compare with first one (itself), so start in the
         # second one. Also, no need to compare with any other generator equal
         # to first one
         i:=2;
         while i in [1..Length(gens)] do
             a:=gens[i];
             ja:=EquivalenceClassOfElementNC(J,a);
             if not(IsGreensLessThanOrEqual(ja,jx)) then
                 return false;
             fi;
             i:=i+1;
         od;

         # hence the semigroup is simple
         return true;

    end);

#############################################################################
##
#M  IsSimpleSemigroup( <S> )
##
##  for a semigroup which has a MultiplicativeNeutralElement.
##
##  In this case is enough to show that the MultiplicativeNeutralElement
##  is J-less than or equal to all other elements.
##  This is because a MultiplicativeNeutralElement is J greater than or
##  equal to any other element and hence by showing that is less than
##  or equal any other element it follows that J is universal, and
##  therefore the semigroup <S> is simple.
##
##  If the semigroup is finite it returns true if the semigroup is
##  simple and false otherwise.
##  If the semigroup is infinite and simple it does not terminate. It
##  might terminate and return false if the semigroup is not simple.
##
InstallMethod( IsSimpleSemigroup,
  "for a semigroup with a MultiplicativeNeutralElement",
  [ IsSemigroup and HasMultiplicativeNeutralElement ],
function(s)
    local it,# the iterator of the semigroup S
          J,# Green's J relation on the semigroup
          jn,jt,# J-classes
          t,# an element of the semigroup
          neutral;# the MultiplicativeNeutralElement of s

    # the iterator and the J-relation on S
    it:=Iterator(s);
    J:=GreensJRelation(s);

    # the multiplicative neutral element and its J class
    neutral:=MultiplicativeNeutralElement(s);
  jn:=EquivalenceClassOfElementNC(J,neutral);

    while not(IsDoneIterator(it)) do
      t:=NextIterator(it);
    jt:=EquivalenceClassOfElementNC(J,t);
      # if neutral is not J less than or equal to t then S is not simple
    if not(IsGreensLessThanOrEqual(jn,jt)) then
      return false;
    fi;
  od;

    # notice that the above cycle only terminates without returning
    # false if the semigroup is finite

    # hence s is simple
    return true;

end);

#############################################################################
##
#M  IsSimpleSemigroup( <S> ) . . . . . . . . . . . . . . . .  for a semigroup
##
##  This is the general case for a semigroup.
##
##  A semigroup is simple iff J is the universal relation in S.
##  So we are going to fix a J class and look throught the semigroup
##  to check whether there are other J-classes.
##
##  It returns false if it finds a new J-class.
##  It returns true if is finite and only finds one J-class.
##  It does not terminate if simple but infinite.
##
InstallMethod(IsSimpleSemigroup,
  "for a semigroup",
  [ IsSemigroup ],
function(s)
    local it,# the iterator of the semigroup s
          J,# J relation on s
          a,b,# elements of the semigroup
          ja,jb;# J-classes

    # the J-relation on s and the iterator of s
    J:=GreensJRelation(s);
    it:=Iterator(s);

    # pick an element of the semigroup
    a:=NextIterator(it);
    # and build its J class
    ja:=EquivalenceClassOfElementNC(J,a);

    # if IsDoneIterator(it) it means that the semigroup is trivial, and hence simple
    if IsDoneIterator(it) then
      return true;
    fi;

    # look through all elements of s
    # to find out if there are more J classes
    while not(IsDoneIterator(it)) do
      b:=NextIterator(it);
      jb:=EquivalenceClassOfElementNC(J,b);
      # if a and b are not in the same J class then the smg is not simple
      if not(IsGreensLessThanOrEqual(ja,jb)) then
        return false;
      elif not (IsGreensLessThanOrEqual(jb,ja)) then
        return false;
      fi;
    od;

    # notice that the above cycle only terminates without returning
    # false if the semigroup is finite

    # hence the semigroup is simple
    return true;

end);

#############################################################################
##
#M  IsZeroSimpleSemigroup( <S> ) . . . . . . . . . . . . . . for a zero group
##
##  All groups are simple semigroups. Hence all zero groups are 0-simple.
##
InstallTrueMethod( IsZeroSimpleSemigroup, IsZeroGroup );


#############################################################################
##
#M  IsZeroSimpleSemigroup( <S> ) . . . . . . . . . . . . . . . .  for a group
##
##  A group is not a zero simple semigroup because does not have a zero.
##
InstallMethod( IsZeroSimpleSemigroup,
    "for a ZeroGroup",
    [ IsGroup],
    ReturnFalse );

#############################################################################
##
#M  IsZeroSimpleSemigroup( <S> ) . . . . . . . . . .  for a trivial semigroup
##
##  a trivial semigroup is not 0 simple, since S^2=0
##  Moreover is not representable by a Rees Matrix semigroup
##  over a zero group (which has at least two elements)
##
InstallMethod(IsZeroSimpleSemigroup, "for a trivial semigroup",
    [ IsSemigroup and IsTrivial], ReturnFalse );

#############################################################################
##
#M  IsZeroSimpleSemigroup( <S> ) . . . . for a semigroup which has generators
##

## A semigroup <S> is 0-simple if and only if it is non-trivial, contains a
## multiplicative zero, and has exactly two J-classes, and S^2<>{0}.

InstallMethod(IsZeroSimpleSemigroup, "for a semigroup with generators",
[IsSemigroup and HasGeneratorsOfSemigroup],
function(s)

  if IsTrivial(s) or MultiplicativeZero(s)=fail then
    return false;
  fi;

  return Length(GreensJClasses(s))=2 and IsRegularSemigroup(s);
end);

#############################################################################
##
#M  IsZeroSimpleSemigroup( <S> )
##
##  for a semigroup with zero which has a MultiplicativeNeutralElement.
##
##  In this case is enough to show that the MultiplicativeNeutralElement
##  is J-less than or equal to all other non-zero elements of S and
##  that if S has only two elements, s^2 is non zero.
##  This is because a MultiplicativeNeutralElement is J greater than or
##  equal to any other element and hence by showing that is less than
##  or equal any other element it follows that J is universal, and
##  therefore the semigroup <S> is simple.
##
##  This time if the semigroup only has two elements than it
##  is simple since for sure the square of the Neutral Element
##  is itself, and hence is non-zero
##
InstallMethod( IsZeroSimpleSemigroup,
  "for a semigroup with a MultiplicativeNeutralElement",
  [ IsSemigroup and HasMultiplicativeNeutralElement ],
function(s)

  local e,        # the enumerator of the semigroup s
        J,          # Green's J relation on the semigroup
        jn,ji,      # J-classes
        zero,# the zero element of s
        i,# loop variable
        neutral;    # the MultiplicativeNeutralElement of s

  e:=Enumerator(s);

   # the trivial semigroup is not 0-simple
  if not(IsBound(e[2])) then
    return false;
  fi;

    # as remarked above, if the semigroup has a neutral element then
    # if it has two elements it is simple
    if not(IsBound(e[3])) then
      return true;
    fi;

  neutral:=MultiplicativeNeutralElement(s);
    zero:=MultiplicativeZero(s);
  J:=GreensJRelation(s);
  jn:=EquivalenceClassOfElementNC(J,neutral);
    i:=1;
    while IsBound(e[i]) do
      if e[i]<>zero then
        ji:=EquivalenceClassOfElementNC(J,e[i]);
        if not(IsGreensLessThanOrEqual(jn,ji)) then
          return false;
        fi;
      fi;
      i:=i+1;
  od;

  return true;
end);

#############################################################################
##
#M  IsZeroSimpleSemigroup( <S> ) . . . . . . . .  for a semigroup with a zero
##
##  This is the general case for a semigroup with a zero.
##
##  A semigroup is 0-simple iff
##  (i) S has two elements and S^2<>0
##  (ii) S has more than two elements and its only J classes are
##       S-0 and 0
##
##  So, in the case when we have at least three elements we are going
##  to fix a non-zero J class and look throught the semigroup
##  to check whether there are other non-zero J-classes.
##
##  It returns false if it finds a new non-zero J-class, ie, smg is
##  not 0-simple.
##  It returns true if is finite and only finds one nonzero J-class,
##  that is, the semigroup is 0-simple.
##  It does not terminate if 0-simple but infinite.
##
InstallMethod( IsZeroSimpleSemigroup,
  "for a semigroup",
  [ IsSemigroup ],
    function(s)
    local e,       # the enumerator of the semigroup s
          zero,# the multiplicative zero of the semigroup
          nonzero,# the nonzero el of a semigroup with two elements
          J,        # J relation on s
          b,      # elements of the semigroup
          i,# loop variable
          ja,jb;    # J-classes

  # the enumerator and the multiplicative zero of s
  e:=Enumerator(s);
    zero:=MultiplicativeZero(s);

  # the trivial semigroup is not 0-simple
  if not(IsBound(e[2])) then
    return false;
  fi;

  # next check that if S has two elements, whether the square of the
  # nonzero one is nonzero
  if not(IsBound(e[3])) then
    if e[1]<>zero then
      nonzero:=e[1];
    else
      nonzero:=e[2];
    fi;
    if nonzero^2=zero then
      # then this means that S^2 is the zero set, and hence
      # S is not 0-simple
      return false;
    else
      # S is 0-simple
      return true;
    fi;
  fi;

    # so by now we know that s has at least three elements

    # the J relation on s
  J:=GreensJRelation(s);

    # look for the first non zero element and build its J class
    if e[1]<>zero then
      ja:=EquivalenceClassOfElementNC(J,e[1]);
    else
      ja:=EquivalenceClassOfElementNC(J,e[2]);
    fi;

  # look through all nonzero elements of s
  # to find out if there are more nonzero J classes
    # We do not have to start looking from the fisrt one, since the first
    # one is either zero or else is the element we started with.
    # In the case the first one is zero we can start looking by the 3rd one.
    if e[1]=zero then
      i:=3;
    else
      i:=2;
    fi;

  while IsBound(e[i]) do
    b:=e[i];
      if b<>zero then
        jb:=EquivalenceClassOfElementNC(J,b);
        # if ja and jb are not the same J class then the smg is not simple
        if not(IsGreensLessThanOrEqual(ja,jb)) then
          return false;
        elif not (IsGreensLessThanOrEqual(jb,ja)) then
          return false;
        fi;
      fi;
      i:=i+1;
  od;

  # notice that the above cycle only terminates without returning
  # false if the semigroup is finite

  # hence the semigroup is 0-simple
  return true;

end);


############################################################################
##
#A  ANonReesCongruenceOfSemigroup( <S> ) . . . .  for a finite semigroup <S>
##
##  In this case the following holds:
##  Proposition (A.Solomon): S is Rees Congruence <->
##                           Every congruence generated by a pair is Rees.
##  Proof: -> is immediate.
##        <- Let \rho be some non-Rees congruence in S.
##  Let [a] and [b] be distinct nontrivial congruence classes of \rho.
##  Let a, a' \in [a]. By assumption, the congruence generated
##  by the pair (a, a') is a Rees congruence.
##  Thus, since the kernel K is contained
##  in the nontrivial congruence class of <(a,a')>, and similarly K is contained
##  in the nontrivial congruence class of <(b,b')> for any b, b' \in [b]. Thus
##  we must have that (a,b) \in \rho, contradicting the assumption. \QED
##
##  So, to find a non rees congruence we only have to look within the
##  congruences generated by a pair of elements of <S>. If all
##  of these are Rees it menas that there are no Non-rees congruences.
##
##  This method returns a non rees congruence if it exists and
##  fail otherwise
##
##  So we look through all possible pairs of elements of s.
##  We do this by using an iterator for N times N.
##  Notice that for this iterator IsDoneIterator is always false,
##  since there are always a next element in N times N.
##
InstallMethod( ANonReesCongruenceOfSemigroup,
    "for a semigroup",
    [IsSemigroup and IsFinite],
function( s )
    local e,x,y,i,j;

  e := EnumeratorSorted(s);
  for i in [1 .. Length(e)] do
    for j in [i+1 .. Length(e)] do
      x := e[i];
      y := e[j];
      if not IsReesCongruence( SemigroupCongruenceByGeneratingPairs(s, [[x,y]])) then
        return SemigroupCongruenceByGeneratingPairs(s, [[x,y]]);
      fi;
    od;
  od;
  return fail;
end);

RedispatchOnCondition( ANonReesCongruenceOfSemigroup,
    true, [IsSemigroup], [IsFinite], 0);

############################################################################
##
#P  IsReesCongruenceSemigroup( <S> )
##
InstallMethod( IsReesCongruenceSemigroup,
    "for a (possibly infinite) semigroup",
    [ IsSemigroup],
    s -> ANonReesCongruenceOfSemigroup(s) = fail );


#############################################################################
##
#O  HomomorphismFactorSemigroup( <S>, <C> )
#O  HomomorphismFactorSemigroupByClosure( <S>, <L> )
#O  FactorSemigroup( <S>, <C> )
#O  FactorSemigroupByClosure( <S>, <L> )
##
##  In the first form <C> is a congruence and HomomorphismFactorSemigroup,
##  returns a homomorphism $<S> \rightarrow <S>/<C>
##
##  This is the only one which should do any work and is installed
##  in all the appropriate places.
##
##  All implementations of \/ should be done in terms of the above
##  four operations.
##
InstallMethod( HomomorphismFactorSemigroupByClosure,
    "for a semigroup and generating pairs of a congruence",
    IsElmsColls,
  [ IsSemigroup, IsList ],
function(s, l)
    return HomomorphismFactorSemigroup(s,
               SemigroupCongruenceByGeneratingPairs(s,l) );
end);

InstallMethod( HomomorphismFactorSemigroupByClosure,
    "for a semigroup and empty list",
  [ IsSemigroup, IsList and IsEmpty ],
function(s, l)
    return HomomorphismFactorSemigroup(s,
               SemigroupCongruenceByGeneratingPairs(s,l) );
end);

InstallMethod( FactorSemigroup,
    "for a semigroup and a congruence",
  [ IsSemigroup, IsSemigroupCongruence ],
function(s, c)
    if not s = Source(c) then
    TryNextMethod();
  fi;

  return Range(HomomorphismFactorSemigroup(s, c));
end);

InstallMethod( FactorSemigroupByClosure,
  "for a semigroup and generating pairs of a congruence",
  IsElmsColls,
  [ IsSemigroup, IsList ],
function(s, l)
  return Range(HomomorphismFactorSemigroup(s,
    SemigroupCongruenceByGeneratingPairs(s,l) ));
end);


InstallMethod( FactorSemigroupByClosure,
  "for a semigroup and empty list",
  [ IsSemigroup, IsEmpty  and IsList],
function(s, l)
  return Range(HomomorphismFactorSemigroup(s,
    SemigroupCongruenceByGeneratingPairs(s,l) ));
end);

#############################################################################
##
#M  \/( <s>, <rels> ) . . . .  for semigroup and empty list
##
InstallOtherMethod( \/,
    "for a semigroup and an empty list",
    [ IsSemigroup, IsEmpty ],
    FactorSemigroupByClosure );

#############################################################################
##
#M  \/( <s>, <rels> ) . . . .  for semigroup and list of pairs of elements
##
InstallOtherMethod( \/,
    "for semigroup and list of pairs",
    IsElmsColls,
    [ IsSemigroup, IsList ],
    FactorSemigroupByClosure );

#############################################################################
##
#M  \/( <s>, <cong> ) . . . .  for semigroup and congruence
##
InstallOtherMethod( \/,
    "for a semigroup and a congruence",
    [ IsSemigroup, IsSemigroupCongruence ],
    FactorSemigroup );

#############################################################################
##
#M  IsRegularSemigroupElement( <S>, <x> )
##
##  A semigroup element is regular if and only if its DClass is regular,
##  which in turn is regular if and only if every R and L class contains
##  an idempotent.   In the generic case, therefore, we iterate over an
##  elements R class, and look for idempotents.
##
InstallMethod(IsRegularSemigroupElement, "for generic semigroup",
    IsCollsElms, [IsSemigroup, IsAssociativeElement],
function(S, x)
    local r, i;

    if not x in S then
        return false;
    fi;

    r:= EquivalenceClassOfElementNC(GreensRRelation(S), x);
    for i in Iterator(r) do
        if i*i=i then
            # we have found an idempotent.
            return true;
        fi;
    od;

    # no idempotents in R class implies not regular.
    return false;
end);

#############################################################################
##
#M  IsRegularSemigroup( <S> )
##
InstallMethod(IsRegularSemigroup, "for generic semigroup",
    [ IsSemigroup ],
    S -> ForAll( GreensDClasses(S), IsRegularDClass ) );



#############################################################################
##
#E