/usr/share/gap/lib/semiquo.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | #############################################################################
##
#W semiquo.gd GAP library Andrew Solomon and Isabel Araújo
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for quotient semigroups.
##
## <#GAPDoc Label="[1]{semiquo}">
## For a semigroup <M>S</M>,
## elements of a quotient semigroup are equivalence classes of
## elements of the <Ref Func="QuotientSemigroupPreimage"/> value
## under the congruence given by the value of
## <Ref Func="QuotientSemigroupCongruence"/>.
## <P/>
## It is probably most useful for calculating the elements of
## the equivalence classes by using <Ref Func="Elements"/> or by looking at
## the images of elements of <Ref Func="QuotientSemigroupPreimage"/> under
## the map returned by <Ref Func="QuotientSemigroupHomomorphism"/>,
## which maps the <Ref Func="QuotientSemigroupPreimage"/> value to <A>S</A>.
## <P/>
## For intensive computations in a quotient semigroup, it is probably
## worthwhile finding another representation as the equality test
## could involve enumeration of the elements of the congruence classes
## being compared.
## <#/GAPDoc>
##
#############################################################################
##
#C IsQuotientSemigroup( <S> )
##
## <#GAPDoc Label="IsQuotientSemigroup">
## <ManSection>
## <Filt Name="IsQuotientSemigroup" Arg='S' Type='Category'/>
##
## <Description>
## is the category of semigroups constructed from another semigroup
## and a congruence on it.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory("IsQuotientSemigroup", IsSemigroup);
#############################################################################
##
#F HomomorphismQuotientSemigroup(<cong>)
##
## <#GAPDoc Label="HomomorphismQuotientSemigroup">
## <ManSection>
## <Func Name="HomomorphismQuotientSemigroup" Arg='cong'/>
##
## <Description>
## for a congruence <A>cong</A> and a semigroup <A>S</A>.
## Returns the homomorphism from <A>S</A> to the quotient of <A>S</A>
## by <A>cong</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("HomomorphismQuotientSemigroup");
#############################################################################
##
#A QuotientSemigroupPreimage(<S>)
#A QuotientSemigroupCongruence(<S>)
#A QuotientSemigroupHomomorphism(<S>)
##
## <#GAPDoc Label="QuotientSemigroupPreimage">
## <ManSection>
## <Attr Name="QuotientSemigroupPreimage" Arg='S'/>
## <Attr Name="QuotientSemigroupCongruence" Arg='S'/>
## <Attr Name="QuotientSemigroupHomomorphism" Arg='S'/>
##
## <Description>
## for a quotient semigroup <A>S</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("QuotientSemigroupPreimage", IsQuotientSemigroup);
DeclareAttribute("QuotientSemigroupCongruence", IsQuotientSemigroup);
DeclareAttribute("QuotientSemigroupHomomorphism", IsQuotientSemigroup);
#############################################################################
##
#E
|