This file is indexed.

/usr/share/gap/lib/semiquo.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
#############################################################################
##
#W  semiquo.gi           GAP library          Andrew Solomon and Isabel Araújo
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the implementation for quotient semigroups.
##

#############################################################################
##
#F  HomomorphismQuotientSemigroup(<cong>) 
##
##
InstallGlobalFunction(HomomorphismQuotientSemigroup, 
function(cong)
  local S, Qrep, efam, filters, Q, Qgens;

  if not IsSemigroupCongruence(cong) then
    Error("usage: the argument should be a semigroup congruence,");
    return;
  fi;

  S := Source(cong);
  Qrep := EquivalenceClassOfElementNC(cong, Representative(S));
  efam := FamilyObj(Qrep);
  
  filters := IsSemigroup and IsQuotientSemigroup and IsAttributeStoringRep;
  
  if IsMonoid(S) then
    filters := filters and IsMagmaWithOne;
  fi;
  
  if HasIsFinite(S) and IsFinite(S) then 
    filters := filters and IsFinite;
  fi;

  Q:=Objectify(NewType( CollectionsFamily( efam ), filters), rec() );

  SetRepresentative(Q, Qrep);
  SetQuotientSemigroupPreimage(Q, S);
  SetQuotientSemigroupCongruence(Q, cong);
  SetQuotientSemigroupHomomorphism(Q, MagmaHomomorphismByFunctionNC(S, Q, 
   x->EquivalenceClassOfElementNC(cong,x)));

  efam!.quotient := Q;

  if IsMonoid(Q) and HasOne(S) then
    SetOne(Q, One(S)^QuotientSemigroupHomomorphism(Q));
  fi;

  if HasGeneratorsOfSemigroup(S) then
    Qgens:= List( GeneratorsOfSemigroup( S ),
     s -> s^QuotientSemigroupHomomorphism(Q));
    SetGeneratorsOfSemigroup( Q, Qgens );
  fi;

  return QuotientSemigroupHomomorphism(Q);
end);


#############################################################################
##
#M  HomomorphismFactorSemigroup(<s>, <cong> )
##
##  for a generic semigroup and congruence
##
InstallMethod(HomomorphismFactorSemigroup,
    "for a semigroup and a congruence",
    true,
    [ IsSemigroup, IsSemigroupCongruence ],
    0,
function(s, c)

  if not s = Source(c) then
    TryNextMethod();
  fi;
	return HomomorphismQuotientSemigroup(c);
end);

#############################################################################
##
#M  ViewObj( S )  
##  
##  View a quotient semigroup S
##
InstallMethod( ViewObj,
    "for a quotient semigroup with generators",
    true,
    [ IsQuotientSemigroup], 0,
    function( S )
    Print( "<quotient of ",QuotientSemigroupPreimage(S)," by ",
			QuotientSemigroupCongruence(S),">");
    end );


#############################################################################
##
#E