This file is indexed.

/usr/share/gap/lib/semitran.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
############################################################################
##
#W  semitran.gi           GAP library                         J. D. Mitchell
##
##
#Y  Copyright (C)  2013,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the implementation of some basics for transformation
##  semigroups and is based on earlier code of Isabel Araújo and Robert Arthur.
##

InstallMethod(\<, "for transformation semigroups",
[IsTransformationSemigroup, IsTransformationSemigroup],
function(S, T)
  return Elements(S)<Elements(T);
end);

InstallMethod(MovedPoints, "for a transformation semigroup",
[IsTransformationSemigroup and HasGeneratorsOfSemigroup],
s-> MovedPoints(GeneratorsOfSemigroup(s)));

InstallMethod(NrMovedPoints, "for a transformation semigroup",
[IsTransformationSemigroup and HasGeneratorsOfSemigroup],
s-> NrMovedPoints(GeneratorsOfSemigroup(s)));

InstallMethod(LargestMovedPoint, "for a transformation semigroup",
[IsTransformationSemigroup and HasGeneratorsOfSemigroup], 
s-> LargestMovedPoint(GeneratorsOfSemigroup(s)));

InstallMethod(SmallestMovedPoint, "for a transformation semigroup",
[IsTransformationSemigroup and HasGeneratorsOfSemigroup], 
s-> SmallestMovedPoint(GeneratorsOfSemigroup(s)));

InstallMethod(LargestImageOfMovedPoint, "for a transformation semigroup",
[IsTransformationSemigroup and HasGeneratorsOfSemigroup], 
s-> LargestImageOfMovedPoint(GeneratorsOfSemigroup(s)));

InstallMethod(SmallestImageOfMovedPoint, "for a transformation semigroup",
[IsTransformationSemigroup and HasGeneratorsOfSemigroup], 
s-> SmallestImageOfMovedPoint(GeneratorsOfSemigroup(s)));

#

InstallMethod(DisplayString, "for a transformation semigroup with generators",
[IsTransformationSemigroup and HasGeneratorsOfSemigroup], ViewString);

#

InstallMethod(ViewString, "for a transformation semigroup with generators",
[IsTransformationSemigroup and HasGeneratorsOfSemigroup], 
function(s)
  local str, nrgens;
  
  str:="\><";

  if HasIsTrivial(s) and IsTrivial(s) then 
    Append(str, "\>trivial\< ");
  else 
    if HasIsCommutative(s) and IsCommutative(s) then 
      Append(str, "\>commutative\< ");
    fi;
  fi;

  if HasIsTrivial(s) and IsTrivial(s) then 
  elif HasIsZeroSimpleSemigroup(s) and IsZeroSimpleSemigroup(s) then 
    Append(str, "\>0-simple\< ");
  elif HasIsSimpleSemigroup(s) and IsSimpleSemigroup(s) then 
    Append(str, "\>simple\< ");
  fi;

  if HasIsInverseSemigroup(s) and IsInverseSemigroup(s) then 
    Append(str, "\>inverse\< ");
  elif HasIsRegularSemigroup(s) 
   and not (HasIsSimpleSemigroup(s) and IsSimpleSemigroup(s)) then 
    if IsRegularSemigroup(s) then 
      Append(str, "\>regular\< ");
    else
      Append(str, "\>non-regular\< ");
    fi;
  fi;
  
  Append(str, "\>transformation\< ");
 
  if HasIsMonoid(s) and IsMonoid(s) then 
    Append(str, "\>monoid\< ");
    nrgens:=Length(GeneratorsOfMonoid(s));
  else 
    Append(str, "\>semigroup\< ");
    nrgens:=Length(GeneratorsOfSemigroup(s));
  fi;
  
  if HasIsTrivial(s) and not IsTrivial(s) and HasSize(s) and Size(s)<2^64 then 
    Append(str, "\>of size\> ");
    Append(str, String(Size(s)));
    Append(str, ",\<\< ");
  fi;
 
  Append(str, "\>on \>");
  Append(str, ViewString(DegreeOfTransformationSemigroup(s)));
  Append(str, "\< pts with\> ");
  Append(str, ViewString(nrgens));
  Append(str, "\< generator");

  if nrgens>1 or nrgens=0 then 
    Append(str, "s\<");
  else 
    Append(str, "\<");
  fi;
  Append(str, ">\<");

  return str;
end);

#

InstallMethod(ViewString, "for a full transformation semigroup",
[IsTransformationSemigroup and IsFullTransformationSemigroup and HasGeneratorsOfSemigroup],
function(s)
  return STRINGIFY("<full transformation semigroup on ", 
  DegreeOfTransformationSemigroup(s), " pts>");
end);


#

#InstallTrueMethod(IsTransformationMonoid, IsMonoid and
#    IsTransformationCollection);

#

#InstallMethod(IsTransformationMonoid, 
#"for a transformation semigroup with generators",
#[IsTransformationSemigroup and HasGeneratorsOfSemigroup], 
#function( S )
#    if ForAny(GeneratorsOfSemigroup(S),
#           x->RankOfTransformation(x)=DegreeOfTransformationSemigroup(S)) then
#      SetGeneratorsOfMonoid(S, GeneratorsOfSemigroup(S));
#      return true;
#    else
#      return false;
#    fi;
#end);

#

InstallMethod(AsMonoid, 
"for transformation semigroup with generators",
[IsTransformationSemigroup and HasGeneratorsOfSemigroup],
function(S)
  if One(S)<>fail then
    return Monoid(GeneratorsOfSemigroup(S));
  else
    return fail;
  fi;
end);

#

InstallTrueMethod(IsFinite, IsTransformationSemigroup);

#

InstallMethod(DegreeOfTransformationSemigroup, 
"for a transformation semigroup with generators",
[IsTransformationSemigroup and HasGeneratorsOfSemigroup],
function(s)
  return DegreeOfTransformationCollection(GeneratorsOfSemigroup(s));
end);

#

InstallMethod(DegreeOfTransformationSemigroup, 
"for a transformation group with generators",
[IsTransformationSemigroup and HasGeneratorsOfGroup],
function(S)
  if not IsEmpty(GeneratorsOfGroup(S)) then 
    return DegreeOfTransformationCollection(GeneratorsOfGroup(S));
  else 
    return DegreeOfTransformationCollection(GeneratorsOfSemigroup(S));
  fi;
end);

#

InstallMethod(IsomorphismPermGroup,
"for a group H-class of a semigroup",
[IsGreensHClass],
function( h )
  local enum, permgroup, i, perm, j, elts;

  if not(IsFinite(h)) then
    TryNextMethod();
  fi;

  if not( IsGroupHClass(h) ) then
    Error("can only create isomorphisms of group H-classes");
    return;
  fi;

  elts:=[]; 
  enum := Enumerator( h );
  permgroup:=Group(());
  i := 1;
  while IsBound( enum[ i ] ) do
    perm := [];
    j := 1;
    while IsBound( enum[ j ] ) do
      perm[j]:=Position( enum, enum[j] * enum[ i ] );
      j := j+1;
    od;
    elts[i]:=PermList(perm);
    permgroup:=ClosureGroup(permgroup, elts[i]);
    i := i+1;
  od;

  return MappingByFunction( h, permgroup, a -> elts[Position( enum, a )]);
end);

#

InstallMethod(IsomorphismTransformationSemigroup,
"for a semigroup of general mappings",
[IsSemigroup and IsGeneralMappingCollection and HasGeneratorsOfSemigroup],
function( s )
  local egens, gens, mapfun;

  egens := GeneratorsOfSemigroup(s);
  if not ForAll(egens, g->IsMapping(g)) then
    return fail;
  fi;
  
  gens := List(egens, g->TransformationRepresentation(g)!.transformation);
  mapfun := a -> TransformationRepresentation(a)!.transformation;

  return MagmaHomomorphismByFunctionNC( s, Semigroup(gens), mapfun );
end);

#

InstallGlobalFunction(FullTransformationSemigroup,
function(d)
  local gens, s, i;

  if not IsPosInt(d) then
    Error("usage: the argument must be a positive integer,");
  fi;

  if d =1 then
    gens:=[Transformation([1])];
  elif d=2 then
    gens:=[Transformation([2,1]), Transformation([1,1])];
  else
    gens:=List([1..3], x-> EmptyPlist(d));
    gens[1][d]:=1; gens[2][1]:=2; gens[2][2]:=1; gens[3][d]:=1;
    for i in [1..d-1] do 
      gens[1][i]:=i+1;
      gens[3][i]:=i;
    od;
    for i in [3..d] do 
      gens[2][i]:=i;
    od;
    Apply(gens, Transformation);
  fi;

  s:=Monoid(gens);
  
  SetSize(s,d^d);
  SetIsFullTransformationSemigroup(s,true);
  SetIsRegularSemigroup(s, true);
  return s;
end);

#

InstallMethod(IsFullTransformationSemigroup, "for a semigroup", 
[IsSemigroup], ReturnFalse);

#

InstallMethod(IsFullTransformationSemigroup, "for a transformation semigroup",
[IsTransformationSemigroup],
function(s)
  local n, t;

  n:=DegreeOfTransformationSemigroup(s);
  if HasSize(s) then
    return Size(s)=n^n;
  fi;

  t:=FullTransformationSemigroup(n);
  return ForAll(GeneratorsOfSemigroup(t), x-> x in s);
end);

#

InstallMethod(\in, 
"for a transformation and a full transformation semigroup",
[IsTransformation, IsFullTransformationSemigroup],
function(e,tn)
  return DegreeOfTransformation(e)<=DegreeOfTransformationSemigroup(tn);
end);

#

InstallMethod(Enumerator, "for a full transformation semigroup",
[IsFullTransformationSemigroup], 5, 
#to beat the method for an acting semigroup with generators
function(S)
  local n, Membership, PrintObj;
  
  n:=DegreeOfTransformationSemigroup(S);
  
  return EnumeratorByFunctions(S, rec(
    
    ElementNumber:=function(enum, pos)
      if pos>n^n then 
        return fail;
      fi;
      return TransformationNumber(pos, n);
    end,

    NumberElement:=function(enum, elt)
      if DegreeOfTransformation(elt)>n then 
        return fail;
      fi;
      return NumberTransformation(elt, n);
    end,

    Length:=function(enum);
      return Size(S);
    end,

    Membership:=function(elt, enum)
      return elt in S;
    end,

    PrintObj:=function(enum)
      Print("<enumerator of full transformation semigroup on ", n," pts>");
    end));
end);

# isomorphisms and anti-isomorphisms

InstallMethod(IsomorphismTransformationMonoid, 
"for a perm group with generators",
[IsPermGroup and HasGeneratorsOfGroup], 
function(g)
  local s, conj;
  
  s:=Monoid(List(GeneratorsOfGroup(g), 
   x-> TransformationOp(x, MovedPoints(g))));
  
  UseIsomorphismRelation(g, s);

  conj:=MappingPermListList([1..NrMovedPoints(g)], MovedPoints(g));

  return MagmaIsomorphismByFunctionsNC(g, s, 
   x-> TransformationOp(x, MovedPoints(g)), 
   x-> Permutation(x, [1..NrMovedPoints(g)])^conj);
end);

#

InstallMethod(IsomorphismTransformationSemigroup, 
"for a perm group with generators",
[IsPermGroup and HasGeneratorsOfGroup], 
function(g)
  local s, conj;
  
  s:=Semigroup(List(GeneratorsOfGroup(g), 
   x-> TransformationOp(x, MovedPoints(g))));
  UseIsomorphismRelation(g, s);
  conj:=MappingPermListList([1..NrMovedPoints(g)], MovedPoints(g));

  return MagmaIsomorphismByFunctionsNC(g, s, 
   x-> TransformationOp(x, MovedPoints(g)), 
   x-> Permutation(x, [1..NrMovedPoints(g)])^conj);
end);

#

InstallMethod(IsomorphismTransformationSemigroup, 
"for a semigroup with generators",
[IsSemigroup and HasGeneratorsOfSemigroup],
function( s )
  local en, act, gens;

  en:=EnumeratorSorted(s);
  
  act:=function(i, x)
    if i<=Length(en) then 
      return Position(en, en[i]*x);
    fi;
    return Position(en, x);
  end;
  
  gens := List(GeneratorsOfSemigroup(s), 
   x-> TransformationOp(x, [1..Length(en)+1], act));

  return MagmaIsomorphismByFunctionsNC( s, Semigroup( gens ), 
   x-> TransformationOp(x, [1..Length(en)+1], act), 
   x-> en[(Length(en)+1)^x]);
end);

#

InstallMethod(IsomorphismTransformationSemigroup,
"for a semigroup with multiplicative neutral element and generators",
[IsSemigroup and HasMultiplicativeNeutralElement and HasGeneratorsOfSemigroup],
function(s)
  local en, act, gens, pos;

  en:=EnumeratorSorted(s);
  
  act:=function(i, x)
    if i<=Length(en) then 
      return Position(en, en[i]*x);
    fi;
    return Position(en, x);
  end;
  
  gens := List(GeneratorsOfSemigroup(s), 
   x-> TransformationOp(x, [1..Length(en)], act));
  
  pos:=Position(en, MultiplicativeNeutralElement(s));

  return MagmaIsomorphismByFunctionsNC( s, Semigroup( gens ), 
   x-> TransformationOp(x, [1..Length(en)], act), 
   x-> en[pos^x]);
end);

#

InstallMethod(IsomorphismTransformationMonoid, 
"for a semigroup with multiplicative neutral element and generators",
[IsSemigroup and HasMultiplicativeNeutralElement and HasGeneratorsOfSemigroup],
IsomorphismTransformationSemigroup);

#

InstallMethod(IsomorphismTransformationSemigroup, "for a semigroup",
[IsSemigroup],
function( s )
  local en, act, gens;

  en:=EnumeratorSorted(s);
  
  act:=function(i, x)
    if i<=Length(en) then 
      return Position(en, en[i]*x);
    fi;
    return Position(en, x);
  end;
  
  gens := List(en, x-> TransformationOp(x, [1..Length(en)+1], act));

  return MagmaIsomorphismByFunctionsNC( s, Semigroup( gens ), 
   x-> TransformationOp(x, [1..Length(en)+1], act), 
   x-> en[(Length(en)+1)^x]);
end);

#

InstallMethod(IsomorphismTransformationSemigroup, "for a transformation semigroup", 
[IsTransformationSemigroup], 
function(S)
  return MagmaIsomorphismByFunctionsNC(S, S, IdFunc, IdFunc);
end);

#

InstallMethod(IsomorphismTransformationSemigroup,
"for a semigroup with multiplicative neutral element",
[IsSemigroup and HasMultiplicativeNeutralElement],
function(s)
  local en, act, gens, pos;

  en:=EnumeratorSorted(s);
  
  act:=function(i, x)
    if i<=Length(en) then 
      return Position(en, en[i]*x);
    fi;
    return Position(en, x);
  end;
  
  gens := List(en, x-> TransformationOp(x, [1..Length(en)], act));
  pos:=Position(en, MultiplicativeNeutralElement(s));

  return MagmaIsomorphismByFunctionsNC( s, Semigroup( gens ), 
   x-> TransformationOp(x, [1..Length(en)], act), 
   x-> en[pos^x]);
end);

#

InstallMethod(AntiIsomorphismTransformationSemigroup,
"for a semigroup with generators",
[IsSemigroup and HasGeneratorsOfSemigroup],
function(s)
  local en, act, gens;

  en:=EnumeratorSorted(s);
  
  act:=function(i, x)
    if i<=Length(en) then 
      return Position(en, x*en[i]);
    fi;
    return Position(en, x);
  end;
  
  gens := List( GeneratorsOfSemigroup( s ), x-> 
   TransformationOp(x, [1..Length(en)+1], act));

  return MagmaIsomorphismByFunctionsNC( s, Semigroup( gens ), 
   x-> TransformationOp(x, [1..Length(en)+1], act), 
   x-> en[(Length(en)+1)^x]);
end);

#

InstallMethod(IsomorphismTransformationSemigroup, 
"for partial perm semigroup",
[IsPartialPermSemigroup],
function(s)
  local n, gens1, m, gens2, iso, u, i;
 
  if DomainOfPartialPermCollection(s)=[] then 
    # semigroup consisting of the empty set
    return MagmaIsomorphismByFunctionsNC(s, Semigroup(Transformation([1])), 
    x-> Transformation([1]), x-> PartialPermNC([]));
  fi;

  n:=Maximum(DegreeOfPartialPermCollection(s),
   CodegreeOfPartialPermCollection(s))+1;
  gens1:=GeneratorsOfSemigroup(s); 
  m:=Length(gens1);
  gens2:=EmptyPlist(m);

  for i in [1..m] do 
    gens2[i]:=AsTransformation(gens1[i], n);
  od;

  return MagmaIsomorphismByFunctionsNC(s, Semigroup(gens2), 
   x-> AsTransformation(x, n), AsPartialPerm);
end);

#

InstallMethod(IsomorphismTransformationMonoid, 
"for partial perm semigroup",
[IsPartialPermSemigroup],
function(s)
  local n, gens1, m, gens2, iso, u, i;
  
  if not (IsMonoid(s) or One(s)<>fail) then 
    Error("usage: the argument should define a monoid,");
    return;
  fi;

  n:=Maximum(DegreeOfPartialPermCollection(s),
   CodegreeOfPartialPermCollection(s))+1;
  gens1:=GeneratorsOfSemigroup(s); 
  m:=Length(gens1);
  gens2:=EmptyPlist(m);

  for i in [1..m] do 
    gens2[i]:=AsTransformation(gens1[i], n);
  od;

  return MagmaIsomorphismByFunctionsNC(s, Monoid(gens2), x->
   AsTransformation(x, n), AsPartialPerm);
end);

#EOF