This file is indexed.

/usr/share/gap/lib/set.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#############################################################################
##
#W  set.gd                        GAP library                Martin Schönert
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains some functions for proper sets.
##
##  <#GAPDoc Label="[1]{set}">
##  The following functions, if not explicitly stated differently,
##  take two arguments, <A>set</A> and <A>obj</A>,
##  where <A>set</A> must be a proper set,
##  otherwise an error is signalled;
##  If the second argument <A>obj</A> is a list that is not a proper set
##  then <Ref Func="Set"/> is silently applied to it first.
##  <#/GAPDoc>
##


#############################################################################
##
#F  SSortedListList( <list> ) . . . . . . . . . . . . . . . . . set of <list>
##
##  <ManSection>
##  <Func Name="SSortedListList" Arg='list'/>
##
##  <Description>
##  <Ref Func="SSortedListList"/> returns a mutable, strictly sorted list
##  containing the same elements as the <E>internally represented</E> list
##  <A>list</A> (which may have holes).
##  <Ref Func="SSortedListList"/> makes a shallow copy, sorts it,
##  and removes duplicates.
##  <Ref Func="SSortedListList"/> is an internal function.
##  </Description>
##  </ManSection>
##
DeclareSynonym( "SSortedListList", LIST_SORTED_LIST );


#############################################################################
##
#O  IsEqualSet( <list1>, <list2> )  . . . .  check if lists are equal as sets
##
##  <#GAPDoc Label="IsEqualSet">
##  <ManSection>
##  <Oper Name="IsEqualSet" Arg='list1, list2'/>
##
##  <Description>
##  <Index Subkey="for set equality">test</Index>
##  tests whether <A>list1</A> and <A>list2</A> are equal
##  <E>when viewed as sets</E>, that is if every element of <A>list1</A> is
##  an element of <A>list2</A> and vice versa.
##  Either argument of <Ref Oper="IsEqualSet"/> may also be a list that is
##  not a proper set, in which case <Ref Func="Set"/> is applied to it first.
##  <P/>
##  If both lists are proper sets then they are of course equal if and only
##  if they are also equal as lists.
##  Thus <C>IsEqualSet( <A>list1</A>, <A>list2</A> )</C> is equivalent to
##  <C>Set( <A>list1</A>  ) = Set( <A>list2</A> )</C>
##  (see&nbsp;<Ref Func="Set"/>), but the former is more efficient.
##  <P/>
##  <Example><![CDATA[
##  gap> IsEqualSet( [2,3,5,7,11], [11,7,5,3,2] );
##  true
##  gap> IsEqualSet( [2,3,5,7,11], [2,3,5,7,11,13] );
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsEqualSet", [ IsList, IsList ] );


#############################################################################
##
#O  IsSubsetSet( <list1>, <list2> ) . check if <list2> is a subset of <list1>
##
##  <#GAPDoc Label="IsSubsetSet">
##  <ManSection>
##  <Oper Name="IsSubsetSet" Arg='list1, list2'/>
##
##  <Description>
##  tests whether every element of <A>list2</A> is contained in <A>list1</A>.
##  Either argument of <Ref Oper="IsSubsetSet"/> may also be a list
##  that is not a proper set,
##  in which case <Ref Func="Set"/> is applied to it first.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsSubsetSet", [ IsList, IsList ] );


#############################################################################
##
#O  AddSet( <set>, <obj> )  . . . . . . . . . . . . . . .  add <obj> to <set>
##
##  <#GAPDoc Label="AddSet">
##  <ManSection>
##  <Oper Name="AddSet" Arg='set, obj'/>
##
##  <Description>
##  <Index Subkey="an element to a set">add</Index>
##  adds the element <A>obj</A> to the proper set <A>set</A>.
##  If <A>obj</A> is already contained in <A>set</A> then <A>set</A> is not
##  changed.
##  Otherwise <A>obj</A> is inserted at the correct position such that
##  <A>set</A> is again a proper set afterwards.
##  <P/>
##  Note that <A>obj</A> must be in the same family as each element of
##  <A>set</A>.
##  <Example><![CDATA[
##  gap> s := [2,3,7,11];;
##  gap> AddSet( s, 5 );  s;
##  [ 2, 3, 5, 7, 11 ]
##  gap> AddSet( s, 13 );  s;
##  [ 2, 3, 5, 7, 11, 13 ]
##  gap> AddSet( s, 3 );  s;
##  [ 2, 3, 5, 7, 11, 13 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AddSet", [ IsList and IsMutable, IsObject ] );


#############################################################################
##
#O  RemoveSet( <set>, <obj> ) . . . . . . . . . . . . remove <obj> from <set>
##
##  <#GAPDoc Label="RemoveSet">
##  <ManSection>
##  <Oper Name="RemoveSet" Arg='set, obj'/>
##
##  <Description>
##  <Index Subkey="an element from a set">remove</Index>
##  removes the element <A>obj</A> from the proper set <A>set</A>.
##  If <A>obj</A> is not contained in <A>set</A> then <A>set</A> is not
##  changed.
##  If <A>obj</A> is an element of <A>set</A> it is removed and all the
##  following elements in the list are moved one position forward.
##  <P/>
##  <Example><![CDATA[
##  gap> s := [ 2, 3, 4, 5, 6, 7 ];;
##  gap> RemoveSet( s, 6 ); s;
##  [ 2, 3, 4, 5, 7 ]
##  gap> RemoveSet( s, 10 ); s;
##  [ 2, 3, 4, 5, 7 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "RemoveSet", [ IsList and IsMutable, IsObject ] );


#############################################################################
##
#O  UniteSet( <set>, <list> ) . . . . . . . . . . . . unite <set> with <list>
##
##  <#GAPDoc Label="UniteSet">
##  <ManSection>
##  <Oper Name="UniteSet" Arg='set, list'/>
##
##  <Description>
##  <Index Subkey="of sets">union</Index>
##  unites the proper set <A>set</A> with <A>list</A>.
##  This is equivalent to adding all elements of <A>list</A> to <A>set</A>
##  (see&nbsp;<Ref Func="AddSet"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> set := [ 2, 3, 5, 7, 11 ];;
##  gap> UniteSet( set, [ 4, 8, 9 ] );  set;
##  [ 2, 3, 4, 5, 7, 8, 9, 11 ]
##  gap> UniteSet( set, [ 16, 9, 25, 13, 16 ] );  set;
##  [ 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 25 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "UniteSet", [ IsList and IsMutable, IsList ] );


#############################################################################
##
#O  IntersectSet( <set>, <list> ) . . . . . . . . intersect <set> with <list>
##
##  <#GAPDoc Label="IntersectSet">
##  <ManSection>
##  <Oper Name="IntersectSet" Arg='set, list'/>
##
##  <Description>
##  <Index Subkey="of sets">intersection</Index>
##  intersects the proper set <A>set</A> with <A>list</A>.
##  This is equivalent to removing from <A>set</A> all elements of <A>set</A>
##  that are not contained in <A>list</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> set := [ 2, 3, 4, 5, 7, 8, 9, 11, 13, 16 ];;
##  gap> IntersectSet( set, [ 3, 5, 7, 9, 11, 13, 15, 17 ] );  set;
##  [ 3, 5, 7, 9, 11, 13 ]
##  gap> IntersectSet( set, [ 9, 4, 6, 8 ] );  set;
##  [ 9 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IntersectSet", [ IsList and IsMutable, IsList ] );


#############################################################################
##
#O  SubtractSet( <set>, <list> )  . . . . . remove <list> elements from <set>
##
##  <#GAPDoc Label="SubtractSet">
##  <ManSection>
##  <Oper Name="SubtractSet" Arg='set, list'/>
##
##  <Description>
##  <Index Subkey="a set from another">subtract</Index>
##  subtracts <A>list</A> from the proper set <A>set</A>.
##  This is equivalent to removing from <A>set</A> all elements of
##  <A>list</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> set := [ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ];;
##  gap> SubtractSet( set, [ 6, 10 ] );  set;
##  [ 2, 3, 4, 5, 7, 8, 9, 11 ]
##  gap> SubtractSet( set, [ 9, 4, 6, 8 ] );  set;
##  [ 2, 3, 5, 7, 11 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SubtractSet", [ IsList and IsMutable, IsList ] );


#############################################################################
##
#E