This file is indexed.

/usr/share/gap/lib/sgpres.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
#############################################################################
##
#W  sgpres.gd                  GAP library                     Volkmar Felsch
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for finitely presented groups
##  (fp groups).
##


############################################################################
##
#F  AbelianInvariantsNormalClosureFpGroupRrs(<G>,<H>)
##
##  <#GAPDoc Label="AbelianInvariantsNormalClosureFpGroupRrs">
##  <ManSection>
##  <Func Name="AbelianInvariantsNormalClosureFpGroupRrs" Arg='G, H'/>
##
##  <Description>
##  uses the Reduced Reidemeister-Schreier method to compute the abelian
##  invariants of the normal closure of a subgroup <A>H</A> of a finitely
##  presented group <A>G</A>.
##  See <Ref Sect="Subgroup Presentations"/> for details on the different
##  strategies.
##  <P/>
##  The following example shows a calculation for the Coxeter group
##  <M>B_1</M>.
##  This calculation and a similar one for <M>B_0</M> have been used
##  to prove that <M>B_1' / B_1'' \cong Z_2^9 \times Z^3</M> and
##  <M>B_0' / B_0'' \cong Z_2^{91} \times Z^{27}</M> as stated in
##  in <Cite Key="FJNT95" Where="Proposition 5"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> # Define the Coxeter group E1.
##  gap> F := FreeGroup( "x1", "x2", "x3", "x4", "x5" );
##  <free group on the generators [ x1, x2, x3, x4, x5 ]>
##  gap> x1 := F.1;; x2 := F.2;; x3 := F.3;; x4 := F.4;; x5 := F.5;;
##  gap> rels := [ x1^2, x2^2, x3^2, x4^2, x5^2,
##  >  (x1 * x3)^2, (x2 * x4)^2, (x1 * x2)^3, (x2 * x3)^3, (x3 * x4)^3,
##  >  (x4 * x1)^3, (x1 * x5)^3, (x2 * x5)^2, (x3 * x5)^3, (x4 * x5)^2,
##  >  (x1 * x2 * x3 * x4 * x3 * x2)^2 ];;
##  gap> E1 := F / rels;
##  <fp group on the generators [ x1, x2, x3, x4, x5 ]>
##  gap> x1 := E1.1;; x2 := E1.2;; x3 := E1.3;; x4 := E1.4;; x5 := E1.5;;
##  gap> # Get normal subgroup generators for B1.
##  gap> H := Subgroup( E1, [ x5 * x2^-1, x5 * x4^-1 ] );;
##  gap> # Compute the abelian invariants of B1/B1'.
##  gap> A := AbelianInvariantsNormalClosureFpGroup( E1, H );
##  [ 2, 2, 2, 2, 2, 2, 2, 2 ]
##  gap> # Compute a presentation for B1.
##  gap> P := PresentationNormalClosure( E1, H );
##  <presentation with 18 gens and 46 rels of total length 132>
##  gap> SimplifyPresentation( P );
##  #I  there are 8 generators and 30 relators of total length 148
##  gap> B1 := FpGroupPresentation( P );
##  <fp group on the generators [ _x1, _x2, _x3, _x4, _x6, _x7, _x8, _x11 
##   ]>
##  gap> # Compute normal subgroup generators for B1'.
##  gap> gens := GeneratorsOfGroup( B1 );;
##  gap> numgens := Length( gens );;
##  gap> comms := [ ];;
##  gap> for i in [ 1 .. numgens - 1 ] do
##  >     for j in [i+1 .. numgens ] do
##  >         Add( comms, Comm( gens[i], gens[j] ) );
##  >     od;
##  > od;
##  gap> # Compute the abelian invariants of B1'/B1".
##  gap> K := Subgroup( B1, comms );;
##  gap> A := AbelianInvariantsNormalClosureFpGroup( B1, K );
##  [ 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("AbelianInvariantsNormalClosureFpGroupRrs");

############################################################################
##
#F  AbelianInvariantsNormalClosureFpGroup(<G>,<H>)
##
##  <#GAPDoc Label="AbelianInvariantsNormalClosureFpGroup">
##  <ManSection>
##  <Func Name="AbelianInvariantsNormalClosureFpGroup" Arg='G, H'/>
##
##  <Description>
##  <Ref Func="AbelianInvariantsNormalClosureFpGroup"/> is a synonym for
##  <Ref Func="AbelianInvariantsNormalClosureFpGroupRrs"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
AbelianInvariantsNormalClosureFpGroup :=
    AbelianInvariantsNormalClosureFpGroupRrs;


############################################################################
##
#F  AbelianInvariantsSubgroupFpGroupMtc(<G>,<H>)
##
##  <#GAPDoc Label="AbelianInvariantsSubgroupFpGroupMtc">
##  <ManSection>
##  <Func Name="AbelianInvariantsSubgroupFpGroupMtc" Arg='G, H'/>
##
##  <Description>
##  uses the Modified Todd-Coxeter method to compute the abelian
##  invariants of a subgroup <A>H</A> of a finitely presented group <A>G</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("AbelianInvariantsSubgroupFpGroupMtc");


#############################################################################
##
#F  AbelianInvariantsSubgroupFpGroupRrs( <G>, <H> )
#F  AbelianInvariantsSubgroupFpGroupRrs( <G>, <table> )
##
##  <#GAPDoc Label="AbelianInvariantsSubgroupFpGroupRrs">
##  <ManSection>
##  <Heading>AbelianInvariantsSubgroupFpGroupRrs</Heading>
##  <Func Name="AbelianInvariantsSubgroupFpGroupRrs" Arg='G, H'
##   Label="for two groups"/>
##  <Func Name="AbelianInvariantsSubgroupFpGroupRrs" Arg='G, table'
##   Label="for a group and a coset table"/>
##
##  <Description>
##  uses the Reduced Reidemeister-Schreier method to compute the abelian
##  invariants of a subgroup <A>H</A> of a finitely presented group <A>G</A>.
##  <P/>
##  Alternatively to the subgroup <A>H</A>, its coset table <A>table</A> in
##  <A>G</A> may be given as second argument.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("AbelianInvariantsSubgroupFpGroupRrs");


############################################################################
##
#F  AbelianInvariantsSubgroupFpGroup(<G>,<H>)
##
##  <#GAPDoc Label="AbelianInvariantsSubgroupFpGroup">
##  <ManSection>
##  <Func Name="AbelianInvariantsSubgroupFpGroup" Arg='G,H'/>
##
##  <Description>
##  <Ref Func="AbelianInvariantsSubgroupFpGroup"/> is a synonym for
##  <Ref Func="AbelianInvariantsSubgroupFpGroupRrs"
##  Label="for a group and a coset table"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
AbelianInvariantsSubgroupFpGroup := AbelianInvariantsSubgroupFpGroupRrs;


#############################################################################
##
#O  AugmentedCosetTableInWholeGroup(< H >[, <gens>])
##
##  <#GAPDoc Label="AugmentedCosetTableInWholeGroup">
##  <ManSection>
##  <Oper Name="AugmentedCosetTableInWholeGroup" Arg='H[, gens]'/>
##
##  <Description>
##  For a subgroup <A>H</A> of a finitely presented group, this function
##  returns an augmented coset table.
##  If a generator set <A>gens</A> is given, it is
##  guaranteed that <A>gens</A> will be a subset of the primary and secondary
##  subgroup generators of this coset table.
##  <P/>
##  It is mutable so we are permitted to add further entries. However
##  existing entries may not be changed. Any entries added however should
##  correspond to the subgroup only and not to an homomorphism.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "AugmentedCosetTableInWholeGroup" );

##  values for table types
BindGlobal("TABLE_TYPE_RRS",1);
BindGlobal("TABLE_TYPE_MTC",2);


#############################################################################
##
#A  AugmentedCosetTableMtcInWholeGroup(< H >)
##
##  <ManSection>
##  <Attr Name="AugmentedCosetTableMtcInWholeGroup" Arg='H'/>
##
##  <Description>
##  For a subgroup <A>H</A> of a finitely presented group, this attribute
##  contains an augmented coset table for <A>H</A>. It is guaranteed that the
##  primary subgroup generators for this coset table will correspond to the
##  <C>GeneratorsOfGroup(<A>H</A>)</C>.
##  <P/>
##  It is mutable so we are permitted to add further entries, however
##  existing entries may not be changed. Any entries added however should
##  correspond to the subgroup only and not to an homomorphism.
##  </Description>
##  </ManSection>
##
DeclareAttribute("AugmentedCosetTableMtcInWholeGroup",IsGroup,"mutable");


#############################################################################
##
#A  AugmentedCosetTableRrsInWholeGroup(< H >)
##
##  <ManSection>
##  <Attr Name="AugmentedCosetTableRrsInWholeGroup" Arg='H'/>
##
##  <Description>
##  For a subgroup <A>H</A> of a finitely presented group, this attribute
##  contains an augmented coset table for <A>H</A>. The corresponding generator
##  set for <A>H</A> is not specified by this operation.
##  <P/>
##  It is mutable so we are permitted to add further entries, however
##  existing entries may not be changed. Any entries added however should
##  correspond to the subgroup only and not to an homomorphism.
##  </Description>
##  </ManSection>
##
DeclareAttribute("AugmentedCosetTableRrsInWholeGroup",IsGroup,"mutable");


#############################################################################
##
#A  AugmentedCosetTableNormalClosureInWholeGroup(< H >)
##
##  <ManSection>
##  <Attr Name="AugmentedCosetTableNormalClosureInWholeGroup" Arg='H'/>
##
##  <Description>
##  For a subgroup <A>H</A> of a finitely presented group, this attribute
##  contains an augmented coset table of the normal closure of <A>H</A> in its
##  whole group.
##  <P/>
##  It is mutable so we are permitted to add further entries.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "AugmentedCosetTableNormalClosureInWholeGroup",
    IsGroup, "mutable" );


#############################################################################
##
#F  AugmentedCosetTableMtc( <G>, <H>, <type>, <string> )
##
##  <#GAPDoc Label="AugmentedCosetTableMtc">
##  <ManSection>
##  <Func Name="AugmentedCosetTableMtc" Arg='G, H, type, string'/>
##
##  <Description>
##  is an internal function used by the subgroup presentation functions
##  described in <Ref Sect="Subgroup Presentations"/>.
##  It applies a Modified Todd-Coxeter coset representative enumeration to
##  construct an augmented coset table
##  (see <Ref Sect="Subgroup Presentations"/>) for the given subgroup
##  <A>H</A> of <A>G</A>.
##  The subgroup generators will be named <A>string</A><C>1</C>,
##  <A>string</A><C>2</C>, <M>\ldots</M>.
##  <P/>
##  The function accepts the options <C>max</C> and <C>silent</C>
##  as described for the function <Ref Func="CosetTableFromGensAndRels"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("AugmentedCosetTableMtc");


#############################################################################
##
#F  AugmentedCosetTableRrs( <G>, <table>, <type>, <string> )  . . . . .
##
##  <#GAPDoc Label="AugmentedCosetTableRrs">
##  <ManSection>
##  <Func Name="AugmentedCosetTableRrs" Arg='G, table, type, string'/>
##
##  <Description>
##  is an internal function used by the subgroup presentation functions
##  described in <Ref Sect="Subgroup Presentations"/>.
##  It applies the Reduced Reidemeister-Schreier
##  method to construct an augmented coset table for the subgroup of <A>G</A>
##  which is defined by the given coset table <A>table</A>.
##  The new subgroup generators will be named <A>string</A><C>1</C>,
##  <A>string</A><C>2</C>, <M>\ldots</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("AugmentedCosetTableRrs");


#############################################################################
##
#O  AugmentedCosetTableNormalClosure( <G>, <H> )
##
##  <ManSection>
##  <Oper Name="AugmentedCosetTableNormalClosure" Arg='G, H'/>
##
##  <Description>
##  returns the augmented coset table  of the finitely presented group <A>G</A> on
##  the cosets of the normal closure of the subgroup <A>H</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "AugmentedCosetTableNormalClosure", [ IsGroup, IsGroup ] );


#############################################################################
##
#O  CosetTableBySubgroup( <G>, <H> )
##
##  <#GAPDoc Label="CosetTableBySubgroup">
##  <ManSection>
##  <Oper Name="CosetTableBySubgroup" Arg='G, H'/>
##
##  <Description>
##  returns a coset table for the action of <A>G</A> on the cosets of
##  <A>H</A>.
##  The columns of the table correspond to the
##  <Ref Func="GeneratorsOfGroup"/> value of <A>G</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("CosetTableBySubgroup",[IsGroup,IsGroup]);


#############################################################################
##
#F  CanonicalRelator( <rel> )
##
##  <ManSection>
##  <Func Name="CanonicalRelator" Arg='rel'/>
##
##  <Description>
##  returns the  canonical  representative  of the  given relator <A>rel</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("CanonicalRelator");


#############################################################################
##
#F  CheckCosetTableFpGroup( <G>, <table> )
##
##  <ManSection>
##  <Func Name="CheckCosetTableFpGroup" Arg='G, table'/>
##
##  <Description>
##  checks whether <A>table</A> is a legal coset table of the finitely presented
##  group <A>G</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("CheckCosetTableFpGroup");


############################################################################
##
#F  IsStandardized(<table>)
##
##  <ManSection>
##  <Func Name="IsStandardized" Arg='table'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("IsStandardized");


############################################################################
##
#C  IsPresentation( <obj> )
##
##  <ManSection>
##  <Filt Name="IsPresentation" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsPresentation", IsCopyable );


############################################################################
##
#V  PresentationsFamily
##
##  <ManSection>
##  <Var Name="PresentationsFamily"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
PresentationsFamily := NewFamily( "PresentationsFamily", IsPresentation );


#############################################################################
##
#F  PresentationAugmentedCosetTable(<aug>,<string>,[,<pl> [,<img>]] )
##
##  <ManSection>
##  <Func Name="PresentationAugmentedCosetTable" Arg='aug,string,[,pl [,img]]'/>
##
##  <Description>
##  creates a presentation from the given augmented coset table. It assumes
##  that <A>aug</A> is an augmented coset table of type 2.
##  The generators will be named <A>string</A>1,
##  <A>string</A>2, ... .
##  The optional argument <A>pl</A> set the printlevel for the presentation.
##  <P/>
##  <C>PresentationAugmentedCosetTable</C> will call <C>TzHandleLength1Or2Relators</C>
##  on the resulting presentation. this might eliminate generators and thus
##  makes it impossible to relate the presentation to the coset table. To
##  avoid this problem, if the optional argument <A>img</A> is set to <K>true</K>,
##  <C>TzInitGeneratorImages</C> will be called, <E>before</E> starting this
##  elimination, thus preserving a way to connect the coset table with the
##  presentation.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("PresentationAugmentedCosetTable");


#############################################################################
##
#F  PresentationNormalClosureRrs( <G>, <H>[, <string>] )
##
##  <#GAPDoc Label="PresentationNormalClosureRrs">
##  <ManSection>
##  <Func Name="PresentationNormalClosureRrs" Arg='G, H[, string]'/>
##
##  <Description>
##  uses the Reduced Reidemeister-Schreier method to compute a presentation
##  <M>P</M>, say, for the normal closure of a subgroup <A>H</A> of a
##  finitely presented group <A>G</A>.
##  The generators in the resulting presentation will be named
##  <A>string</A><C>1</C>, <A>string</A><C>2</C>, <M>\ldots</M>,
##  the default string is <C>"_x"</C>.
##  You may access the <M>i</M>-th of these generators by
##  <M>P</M><C>!.</C><M>i</M>. 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("PresentationNormalClosureRrs");


#############################################################################
##
#F  PresentationNormalClosure(<G>,<H>[,<string>])
##
##  <#GAPDoc Label="PresentationNormalClosure">
##  <ManSection>
##  <Func Name="PresentationNormalClosure" Arg='G,H[,string]'/>
##
##  <Description>
##  <Ref Func="PresentationNormalClosure"/> is a synonym for
##  <Ref Func="PresentationNormalClosureRrs"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
PresentationNormalClosure := PresentationNormalClosureRrs;


#############################################################################
##
#F  PresentationSubgroupMtc(<G>, <H>[, <string>][, <print level>] )
##
##  <#GAPDoc Label="PresentationSubgroupMtc">
##  <ManSection>
##  <Func Name="PresentationSubgroupMtc" Arg='G, H[, string][, print level]'/>
##
##  <Description>
##  uses the Modified Todd-Coxeter coset representative enumeration method
##  to compute a presentation <M>P</M>, say, for a subgroup <A>H</A> of a
##  finitely presented group <A>G</A>.
##  The presentation returned is in generators corresponding to the
##  generators of <A>H</A>. The generators in the resulting
##  presentation will be named <A>string</A><C>1</C>, <A>string</A><C>2</C>,
##  <M>\ldots</M>, the default string is <C>"_x"</C>.
##  You may access the <M>i</M>-th of these generators by
##  <M>P</M><C>!.</C><M>i</M>.
##  <P/>
##  The default print level is <M>1</M>.
##  If the print level is set to <M>0</M>, then the printout of the
##  implicitly called function <Ref Func="DecodeTree"/> will be suppressed.
##  <Example><![CDATA[
##  gap> p := PresentationSubgroupMtc( g, u );
##  #I  there are 3 generators and 4 relators of total length 12
##  #I  there are 2 generators and 3 relators of total length 14
##  <presentation with 2 gens and 3 rels of total length 14>
##  ]]></Example>
##  <P/>
##  The so called Modified Todd-Coxeter method was proposed, in slightly
##  different forms, by Nathan S.&nbsp;Mendelsohn and
##  William O.&nbsp;J.&nbsp;Moser in 1966.
##  Moser's method was proved in <Cite Key="BC76"/>.
##  It has been generalized to cover a broad spectrum of different versions
##  (see the survey <Cite Key="Neu82"/>).
##  <P/>
##  The <E>Modified Todd-Coxeter</E> method performs an enumeration of coset
##  representatives. It proceeds like an ordinary coset enumeration (see
##  <Ref Sect="Coset Tables and Coset Enumeration"/>),
##  but as the product of a coset
##  representative by a group generator or its inverse need not be a coset
##  representative itself, the Modified Todd-Coxeter has to store a kind of
##  correction element for each coset table entry. Hence it builds up a so
##  called <E>augmented coset table</E> of <A>H</A> in <A>G</A> consisting of
##  the ordinary coset table and a second table in parallel which contains
##  the associated subgroup elements.
##  <P/>
##  Theoretically, these subgroup elements could be expressed as words in the
##  given generators of <A>H</A>, but in general these words tend to become
##  unmanageable because of their enormous lengths. Therefore, a highly
##  redundant list of subgroup generators is built up starting from the given
##  (<Q>primary</Q>) generators of <A>H</A> and adding additional
##  (<Q>secondary</Q>) generators which are defined as abbreviations of
##  suitable words of length two in the preceding generators such that each
##  of the subgroup elements in the augmented coset table can be expressed as
##  a word of length at most one in the resulting
##  (primary <E>and</E> secondary) subgroup generators.
##  <P/>
##  Then a rewriting process (which is essentially a kind of Reidemeister
##  rewriting process) is used to get relators for <A>H</A> from the defining
##  relators of <A>G</A>.
##  <P/>
##  The resulting presentation involves all the primary, but not all the
##  secondary generators of <A>H</A>.
##  In fact, it contains only those secondary generators which explicitly
##  occur in the augmented coset table.
##  If we extended this presentation by those secondary generators which are
##  not yet contained in it as additional generators, and by the definitions
##  of all secondary generators as additional relators, we would get a
##  presentation of <A>H</A>, but, in general,
##  we would end up with a large number of generators and relators.
##  <P/>
##  On the other hand, if we avoid this extension, the current presentation
##  will not necessarily define <A>H</A> although we have used the same
##  rewriting process which in the case of the
##  <Ref Func="PresentationSubgroupRrs"
##  Label="for a group and a coset table (and a string)"/> command computes
##  a defining set of relators for <A>H</A> from an augmented coset table
##  and defining relators of <A>G</A>.
##  The different behaviour here is caused by the fact that coincidences may
##  have occurred in the Modified Todd-Coxeter coset enumeration.
##  <P/>
##  To overcome this problem without extending the presentation by all
##  secondary generators, the <Ref Func="PresentationSubgroupMtc"/> command
##  applies the so called <E>decoding tree</E> algorithm which provides a
##  more economical approach.
##  The reader is strongly recommended to carefully read section
##  <Ref Sect="sect:DecodeTree"/> where this algorithm is described in more
##  detail.
##  Here we will only mention that this procedure may add a lot of
##  intermediate generators and relators (and even change the isomorphism
##  type) in a process which in fact eliminates all
##  secondary generators from the presentation and hence finally provides
##  a presentation of <A>H</A> on the primary, i.e., the originally given,
##  generators of <A>H</A>. This is a remarkable advantage of the command
##  <Ref Func="PresentationSubgroupMtc"/> compared to the command
##  <Ref Func="PresentationSubgroupRrs"
##  Label="for a group and a coset table (and a string)"/>.
##  But note that, for some particular subgroup <A>H</A>, the Reduced
##  Reidemeister-Schreier method might quite well produce a more concise
##  presentation.
##  <P/>
##  The resulting presentation is returned in the form of a presentation,
##  <M>P</M> say.
##  <P/>
##  As the function <Ref Func="PresentationSubgroupRrs"
##  Label="for a group and a coset table (and a string)"/> described above
##  (see there for details),
##  the function <Ref Func="PresentationSubgroupMtc"/> returns a list of the
##  primary subgroup generators of <A>H</A> in the attribute
##  <Ref Func="PrimaryGeneratorWords"/> of <M>P</M>.
##  In fact, this list is not very exciting here
##  because it is just a shallow copy of the value of
##  <Ref Func="GeneratorsOfPresentation"/> of <A>H</A>, however it is
##  needed to guarantee a certain consistency between the results of the
##  different functions for computing subgroup presentations.
##  <P/>
##  Though the decoding tree routine already involves a lot of Tietze
##  transformations, we recommend that you try to further simplify the
##  resulting presentation by appropriate Tietze transformations
##  (see <Ref Sect="Tietze Transformations"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("PresentationSubgroupMtc");


#############################################################################
##
#F  PresentationSubgroupRrs( <G>, <H>[, <string>] )
#F  PresentationSubgroupRrs( <G>, <table>[, <string>] )
##
##  <#GAPDoc Label="PresentationSubgroupRrs">
##  <ManSection>
##  <Heading>PresentationSubgroupRrs</Heading>
##  <Func Name="PresentationSubgroupRrs" Arg='G, H[, string]'
##   Label="for two groups (and a string)"/>
##  <Func Name="PresentationSubgroupRrs" Arg='G, table[, string]'
##   Label="for a group and a coset table (and a string)"/>
##
##  <Description>
##  uses the  Reduced Reidemeister-Schreier method to compute a presentation
##  <A>P</A>, say, for a subgroup <A>H</A> of a finitely presented group
##  <A>G</A>.
##  The generators in the resulting presentation will be named
##  <A>string</A><C>1</C>, <A>string</A><C>2</C>, <M>\ldots</M>,
##  the default string is <C>"_x"</C>.
##  You may access the <M>i</M>-th of these generators by
##  <A>P</A><C>!.</C><M>i</M>.
##  <P/>
##  Alternatively to the subgroup <A>H</A>,
##  its coset table <A>table</A> in <A>G</A> may be given as second argument.
##  <Example><![CDATA[
##  gap> f := FreeGroup( "a", "b" );;
##  gap> g := f / [ f.1^2, f.2^3, (f.1*f.2)^5 ];
##  <fp group on the generators [ a, b ]>
##  gap> g1 := Size( g );
##  60
##  gap> u := Subgroup( g, [ g.1, g.1^g.2 ] );
##  Group([ a, b^-1*a*b ])
##  gap> p := PresentationSubgroup( g, u, "g" );
##  <presentation with 3 gens and 4 rels of total length 12>
##  gap> gens := GeneratorsOfPresentation( p );
##  [ g1, g2, g3 ]
##  gap> TzPrintRelators( p );
##  #I  1. g1^2
##  #I  2. g2^2
##  #I  3. g3*g2*g1
##  #I  4. g3^5
##  ]]></Example>
##  <P/>
##  Note that you cannot call the generators by their names. These names are
##  not variables, but just display figures. So, if you want to access the
##  generators by their names, you first will have to introduce the respective
##  variables and to assign the generators to them.
##  <P/>
##  <Example><![CDATA[
##  gap> gens[1] = g1;
##  false
##  gap> g1;
##  60
##  gap> g1 := gens[1];; g2 := gens[2];; g3 := gens[3];;
##  gap> g1;
##  g1
##  ]]></Example>
##  <P/>
##  The Reduced Reidemeister-Schreier algorithm is a modification of the
##  Reidemeister-Schreier algorithm of George Havas <Cite Key="Hav74b"/>.
##  It was proposed by Joachim Neubüser and first implemented in 1986 by
##  Andrea Lucchini and Volkmar Felsch in the SPAS system
##  <Cite Key="Spa89"/>.
##  Like the Reidemeister-Schreier algorithm of George Havas, it needs only
##  the presentation of <A>G</A> and a coset table of <A>H</A> in <A>G</A>
##  to construct a presentation of <A>H</A>.
##  <P/>
##  Whenever you call the command <Ref Func="PresentationSubgroupRrs"
##  Label="for a group and a coset table (and a string)"/>,
##  it first obtains a coset table of <A>H</A> in <A>G</A> if not given.
##  Next, a set of generators of <A>H</A> is determined by reconstructing the
##  coset table and introducing in that process as many Schreier generators
##  of <A>H</A> in <A>G</A> as are needed to do a Felsch strategy coset
##  enumeration without any coincidences.
##  (In general, though containing redundant generators, this set will be
##  much smaller than the set of all Schreier generators.
##  That is why we call the method the <E>Reduced</E> Reidemeister-Schreier.)
##  <P/>
##  After having constructed this set of <E>primary subgroup generators</E>,
##  say, the coset table is extended to an <E>augmented coset table</E> which
##  describes the action of the group generators on coset representatives,
##  i.e., on elements instead of cosets.
##  For this purpose, suitable words in the (primary) subgroup generators
##  have to be associated to the coset table entries.
##  In order to keep the lengths of these words short, additional
##  <E>secondary subgroup generators</E> are introduced as abbreviations of
##  subwords. Their number may be large.
##  <P/>
##  Finally, a Reidemeister rewriting process is used to get defining
##  relators for <A>H</A> from the relators of <A>G</A>.
##  As the resulting presentation of <A>H</A> is a presentation on primary
##  <E>and</E> secondary generators, in general you will have to simplify it
##  by appropriate Tietze transformations
##  (see <Ref Sect="Tietze Transformations"/>) or by the command
##  <Ref Func="DecodeTree"/> before you can use it. Therefore it is
##  returned in the form of a presentation, <A>P</A> say.
##  <P/>
##  Compared with the Modified Todd-Coxeter method described below, the
##  Reduced Reidemeister-Schreier method (as well as Havas' original
##  Reidemeister-Schreier program) has the advantage that it does not require
##  generators of <A>H</A> to be given if a coset table of <A>H</A> in
##  <A>G</A> is known.
##  This provides a possibility to compute a presentation of the normal
##  closure of a given subgroup
##  (see <Ref Func="PresentationNormalClosureRrs"/>).
##  <P/>
##  For certain applications you may be interested in getting not only just a
##  presentation for <A>H</A>, but also a relation between the involved
##  generators of <A>H</A> and the generators of <A>G</A>.
##  The subgroup generators in the presentation
##  are sorted such that the primary generators precede the secondary ones.
##  Moreover, for each secondary subgroup generator there is a relator in the
##  presentation which expresses this generator as a word in preceding ones.
##  Hence, all we need in addition is a list of words in the generators of
##  <A>G</A> which express the primary subgroup generators.
##  In fact, such a list is provided in the attribute
##  <Ref Func="PrimaryGeneratorWords"/> of the resulting presentation.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("PresentationSubgroupRrs");


#############################################################################
##
#F  PresentationSubgroup( <G>, <H>[, <string>] )
##
##  <#GAPDoc Label="PresentationSubgroup">
##  <ManSection>
##  <Func Name="PresentationSubgroup" Arg='G, H[, string]'/>
##
##  <Description>
##  <Ref Func="PresentationSubgroup"/> is a synonym for
##  <Ref Func="PresentationSubgroupRrs"
##  Label="for a group and a coset table (and a string)"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
PresentationSubgroup := PresentationSubgroupRrs;


#############################################################################
##
#A  PrimaryGeneratorWords( <P> )
##
##  <#GAPDoc Label="PrimaryGeneratorWords">
##  <ManSection>
##  <Attr Name="PrimaryGeneratorWords" Arg='P'/>
##
##  <Description>
##  is an attribute of the presentation <A>P</A> which holds a list of words
##  in the associated group generators (of the underlying free group) which
##  express the primary subgroup generators of <A>P</A>.
##  <Example><![CDATA[
##  gap> PrimaryGeneratorWords( p );
##  [ a, b^-1*a*b ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("PrimaryGeneratorWords",IsPresentation);

#############################################################################
##
#F  ReducedRrsWord( <word> )
##
##  <ManSection>
##  <Func Name="ReducedRrsWord" Arg='word'/>
##
##  <Description>
##  freely reduces the given RRS word and returns the result.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("ReducedRrsWord");


#############################################################################
##
#F  RelatorMatrixAbelianizedNormalClosureRrs( <G>, <H> )
##
##  <ManSection>
##  <Func Name="RelatorMatrixAbelianizedNormalClosureRrs" Arg='G, H'/>
##
##  <Description>
##  uses the Reduced Reidemeister-Schreier method  to compute a matrix of
##  abelianized defining relators for the  normal  closure of a subgroup <A>H</A>
##  of a  finitely presented  group <A>G</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RelatorMatrixAbelianizedNormalClosureRrs");


#############################################################################
##
#F  RelatorMatrixAbelianizedSubgroupMtc( <G>, <H> )
##
##  <ManSection>
##  <Func Name="RelatorMatrixAbelianizedSubgroupMtc" Arg='G, H'/>
##
##  <Description>
##  uses  the  Modified  Todd-Coxeter coset representative enumeration
##  method  to compute  a matrix of abelianized defining relators for a
##  subgroup <A>H</A> of a finitely presented group <A>G</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RelatorMatrixAbelianizedSubgroupMtc");


#############################################################################
##
#F  RelatorMatrixAbelianizedSubgroupRrs( <G>, <H> )
#F  RelatorMatrixAbelianizedSubgroupRrs( <G>, <table> )
##
##  <ManSection>
##  <Func Name="RelatorMatrixAbelianizedSubgroupRrs" Arg='G, H'/>
##  <Func Name="RelatorMatrixAbelianizedSubgroupRrs" Arg='G, table'/>
##
##  <Description>
##  uses the Reduced Reidemeister-Schreier method to compute a matrix of
##  abelianized defining relators for a subgroup <A>H</A> of a finitely presented
##  group <A>G</A>.
##  <P/>
##  Alternatively to the subgroup <A>H</A>, its coset table <A>table</A> in <A>G</A> may be
##  given as second argument.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RelatorMatrixAbelianizedSubgroupRrs");

#############################################################################
##
#F  RelatorMatrixAbelianizedSubgroup(<G>,<H>)
#F  RelatorMatrixAbelianizedSubgroup(<G>,<table>)
##
##  <ManSection>
##  <Func Name="RelatorMatrixAbelianizedSubgroup" Arg='G,H'/>
##  <Func Name="RelatorMatrixAbelianizedSubgroup" Arg='G,table'/>
##
##  <Description>
##  is a synonym for <C>RelatorMatrixAbelianizedSubgroupRrs(<A>G</A>,<A>H</A>)</C> or
##  <C>RelatorMatrixAbelianizedSubgroupRrs(<A>G</A>,<A>table</A>)</C>, respectively.
##  </Description>
##  </ManSection>
##
RelatorMatrixAbelianizedSubgroup := RelatorMatrixAbelianizedSubgroupRrs;


#############################################################################
##
#F  RenumberTree( <augmented coset table> )
##
##  <ManSection>
##  <Func Name="RenumberTree" Arg='augmented coset table'/>
##
##  <Description>
##  is  a  subroutine  of  the  Reduced Reidemeister-Schreier
##  routines.  It renumbers the generators  such that the  primary generators
##  precede the secondary ones.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RenumberTree");


#############################################################################
##
#F  RewriteAbelianizedSubgroupRelators( <aug>,<prels> )
##
##  <ManSection>
##  <Func Name="RewriteAbelianizedSubgroupRelators" Arg='aug,prels'/>
##
##  <Description>
##  is  a  subroutine  of  the  Reduced
##  Reidemeister-Schreier and the Modified Todd-Coxeter routines. It computes
##  a set of subgroup relators  from the  coset factor table  of an augmented
##  coset table <A>aug</A> of type 0 and the relators <A>prels</A> of the parent group.
##  <P/>
##  It returns the rewritten relators as list of integers
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RewriteAbelianizedSubgroupRelators");

#############################################################################
##
#F  RewriteSubgroupRelators( <aug>, <prels> )
##
##  <ManSection>
##  <Func Name="RewriteSubgroupRelators" Arg='aug, prels'/>
##
##  <Description>
##  is a subroutine  of the  Reduced
##  Reidemeister-Schreier and the  Modified Todd-Coxeter  routines.  It
##  computes  a set of subgroup relators from the coset factor table of an
##  augmented coset table <A>aug</A> and the  relators <A>prels</A> of the  parent
##  group.  It assumes  that  <A>aug</A> is an augmented coset table of type 2.
##  <P/>
##  It returns the rewritten relators as list of integers
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RewriteSubgroupRelators");


#############################################################################
##
#F  SortRelsSortedByStartGen(<relsGen>)
##
##  <ManSection>
##  <Func Name="SortRelsSortedByStartGen" Arg='relsGen'/>
##
##  <Description>
##  sorts the relators lists  sorted  by  starting
##  generator to get better  results  of  the  Reduced  Reidemeister-Schreier
##  (this is not needed for the Felsch Todd-Coxeter).
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("SortRelsSortedByStartGen");


#############################################################################
##
#F  SpanningTree( <table> )
##
##  <ManSection>
##  <Func Name="SpanningTree" Arg='table'/>
##
##  <Description>
##  <C>SpanningTree</C>  returns a spanning tree for the given coset table
##  <A>table</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("SpanningTree");

#############################################################################
##
#F  RewriteWord( <aug>, <word> )
##
##  <#GAPDoc Label="RewriteWord">
##  <ManSection>
##  <Func Name="RewriteWord" Arg='aug, word'/>
##
##  <Description>
##  <Ref Func="RewriteWord"/> rewrites <A>word</A> (which must be a word in
##  the underlying free group with respect to which the augmented coset table
##  <A>aug</A> is given) in the subgroup generators given by the augmented
##  coset table <A>aug</A>.
##  It returns a Tietze-type word (i.e.&nbsp;a list of integers),
##  referring to the primary and secondary generators of <A>aug</A>.
##  <P/>
##  If <A>word</A> is not contained in the subgroup, <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("RewriteWord");


#############################################################################
##
#F  DecodedTreeEntry(<tree>,<imgs>,<nr>) 
##
##  <ManSection>
##  <Func Name="DecodedTreeEntry" Arg='tree,imgs,nr'/>
##
##  <Description>
##  returns tree element <A>nr</A>, when mapping the first elements of <A>tree</A>
##  onto <A>imgs</A>. (Conventions for trees are as with augmented coset tables.)
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("DecodedTreeEntry");

#############################################################################
##
#F  GeneratorTranslationAugmentedCosetTable(<aug>) 
##
##  <ManSection>
##  <Func Name="GeneratorTranslationAugmentedCosetTable" Arg='aug'/>
##
##  <Description>
##  decode all the secondary generators as words in the primary generators,
##  using the <C>.subgroupGenerators</C> and creating their subset
##  <C>.primarySubgroupGenerators</C>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("GeneratorTranslationAugmentedCosetTable");

#############################################################################
##
#F  SecondaryGeneratorWordsAugmentedCosetTable(<aug>) 
##
##  <ManSection>
##  <Func Name="SecondaryGeneratorWordsAugmentedCosetTable" Arg='aug'/>
##
##  <Description>
##  returns words in the (underlying free) groups generators for the coset
##  table's secondary generators.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("SecondaryGeneratorWordsAugmentedCosetTable");

#############################################################################
##
#F  CopiedAugmentedCosetTable(<aug>) 
##
##  <ManSection>
##  <Func Name="CopiedAugmentedCosetTable" Arg='aug'/>
##
##  <Description>
##  returns a new augmented coset table, equal to the old one. The
##  components of this new table are immutable, but new components may be
##  added.
##  (This function is needed to have different homomorphisms share the same
##  augmented coset table data.)
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("CopiedAugmentedCosetTable");


#############################################################################
##  
#E