This file is indexed.

/usr/share/gap/lib/stbcbckt.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#############################################################################
##
#W  stbcbckt.gd                 GAP library                    Heiko Theißen
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##


#############################################################################
##
#V  InfoBckt
##
##  <#GAPDoc Label="InfoBckt">
##  <ManSection>
##  <InfoClass Name="InfoBckt"/>
##
##  <Description>
##  is the info class for the partition backtrack routines.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass( "InfoBckt" );

DeclareGlobalFunction( "UnslicedPerm@" );
DeclareGlobalFunction( "PreImageWord" );
DeclareGlobalFunction( "ExtendedT" );
DeclareGlobalFunction( "MeetPartitionStrat" );
DeclareGlobalFunction( "MeetPartitionStratCell" );
DeclareGlobalFunction( "StratMeetPartition" );
DeclareGlobalFunction( "Suborbits" );
DeclareGlobalFunction( "OrbitalPartition" );
DeclareGlobalFunction( "EmptyRBase" );
DeclareGlobalFunction( "IsTrivialRBase" );
DeclareGlobalFunction( "AddRefinement" );
DeclareGlobalFunction( "ProcessFixpoint" );
DeclareGlobalFunction( "RegisterRBasePoint" );
DeclareGlobalFunction( "NextRBasePoint" );
DeclareGlobalFunction( "RRefine" );
DeclareGlobalFunction( "PBIsMinimal" );
DeclareGlobalFunction( "SubtractBlistOrbitStabChain" );
DeclareGlobalFunction( "PartitionBacktrack" );

DeclareGlobalFunction("SuboLiBli");
DeclareGlobalFunction("SuboSiBli");
DeclareGlobalFunction("SuboTruePos");
DeclareGlobalFunction("SuboUniteBlist");
DeclareGlobalFunction("ConcatSubos");

DeclareGlobalFunction("Refinements_ProcessFixpoint");
DeclareGlobalFunction("Refinements_Intersection");
DeclareGlobalFunction("Refinements_Centralizer");
DeclareGlobalFunction("Refinements__MakeBlox");
DeclareGlobalFunction("Refinements_SplitOffBlock");
DeclareGlobalFunction("Refinements__RegularOrbit1");
DeclareGlobalFunction("Refinements_RegularOrbit2");
DeclareGlobalFunction("Refinements_RegularOrbit3");
DeclareGlobalFunction("Refinements_Suborbits0");
DeclareGlobalFunction("Refinements_Suborbits1");
DeclareGlobalFunction("Refinements_Suborbits2");
DeclareGlobalFunction("Refinements_Suborbits3");
DeclareGlobalFunction("Refinements_TwoClosure");


DeclareGlobalVariable( "Refinements" );

DeclareGlobalFunction( "NextLevelRegularGroups" );
DeclareGlobalFunction( "RBaseGroupsBloxPermGroup" );
DeclareGlobalFunction( "RepOpSetsPermGroup" );
DeclareGlobalFunction( "RepOpElmTuplesPermGroup" );
DeclareGlobalFunction( "ConjugatorPermGroup" );
DeclareGlobalFunction( "NormalizerPermGroup" );


#############################################################################
##
#F  ElementProperty( <G>, <Pr>[, <L>[, <R>]] )      one element with property
##
##  <#GAPDoc Label="ElementProperty">
##  <ManSection>
##  <Func Name="ElementProperty" Arg='G, Pr[, L[, R]]'/>
##
##  <Description>
##  <Ref Func="ElementProperty"/> returns an element <M>\pi</M> of the
##  permutation group <A>G</A> such that the one-argument function <A>Pr</A>
##  returns <K>true</K> for <M>\pi</M>.
##  It returns <K>fail</K> if no such element exists in <A>G</A>.
##  The optional arguments <A>L</A> and <A>R</A> are subgroups of <A>G</A>
##  such that the property <A>Pr</A> has the same value for all elements in
##  the cosets <A>L</A> <M>g</M> and <M>g</M> <A>R</A>, respectively,
##  with <M>g \in <A>G</A></M>.
##  <P/>
##  A typical example of using the optional subgroups <A>L</A> and <A>R</A>
##  is the conjugacy test for elements <M>a</M> and <M>b</M> for which one
##  can set <A>L</A><M>:= C_{<A>G</A>}(a)</M> and
##  <A>R</A><M>:= C_{<A>G</A>}(b)</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> propfun:= el -> (1,2,3)^el in [ (1,2,3), (1,3,2) ];;
##  gap> SubgroupProperty( g, propfun, Subgroup( g, [ (1,2,3) ] ) );
##  Group([ (1,2,3), (2,3) ])
##  gap> ElementProperty( g, el -> Order( el ) = 2 );
##  (2,4)
##  ]]></Example>
##  <P/>
##  Chapter&nbsp;<Ref Chap="Permutations"/> describes special operations to
##  construct permutations in the symmetric group without using backtrack
##  constructions.
##  <P/>
##  Backtrack routines are also called by the methods for permutation groups
##  that compute centralizers, normalizers, intersections,
##  conjugating elements as well as stabilizers for the operations of a
##  permutation group via <Ref Func="OnPoints"/>, <Ref Func="OnSets"/>,
##  <Ref Func="OnTuples"/> and <Ref Func="OnSetsSets"/>.
##  Some of these methods use more specific refinements than
##  <Ref Func="SubgroupProperty"/> or <Ref Func="ElementProperty"/>.
##  For the definition of refinements, and how one can define refinements,
##  see Section&nbsp;<Ref Sect="The General Backtrack Algorithm with Ordered Partitions"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ElementProperty" );


#############################################################################
##
#F  SubgroupProperty( <G>, <Pr>[, <L> ] ) . . . . . . . . fulfilling subgroup
##
##  <#GAPDoc Label="SubgroupProperty">
##  <ManSection>
##  <Func Name="SubgroupProperty" Arg='G, Pr[, L ]'/>
##
##  <Description>
##  <A>Pr</A> must be a one-argument function that returns <K>true</K> or
##  <K>false</K> for elements of the group <A>G</A>,
##  and the subset of elements of <A>G</A> that fulfill <A>Pr</A> must
##  be a subgroup. (<E>If the latter is not true the result of this operation
##  is unpredictable!</E>) This command computes this subgroup.
##  The optional argument <A>L</A> must be a subgroup of the set of all
##  elements in <A>G</A> fulfilling <A>Pr</A> and can be given if known
##  in order to speed up the calculation.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SubgroupProperty" );


#############################################################################
##
#O  PartitionStabilizerPermGroup( <G>, <part> )
##
##  <ManSection>
##  <Oper Name="PartitionStabilizerPermGroup" Arg='G, part'/>
##
##  <Description>
##  <A>part</A> must be a list of pairwise disjoint sets of points
##  on which the permutation group <A>G</A> acts via <C>OnPoints</C>.
##  This function computes the stabilizer in <A>G</A> of <A>part</A>, that is,
##  the subgroup of all those elements in <A>G</A> that map each set in <A>part</A>
##  onto a set in <A>part</A>, via <C>OnSets</C>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "PartitionStabilizerPermGroup" );


#############################################################################
##
#A  TwoClosure( <G> )
##
##  <#GAPDoc Label="TwoClosure">
##  <ManSection>
##  <Attr Name="TwoClosure" Arg='G'/>
##
##  <Description>
##  The <E>2-closure</E> of a transitive permutation group <A>G</A> on
##  <M>n</M> points is the largest subgroup of the symmetric group <M>S_n</M>
##  which has the same orbits on sets of ordered pairs of points as the group
##  <A>G</A> has.
##  It also can be interpreted as the stabilizer of the orbital graphs of
##  <A>G</A>.
##  <Example><![CDATA[
##  gap> TwoClosure(Group((1,2,3),(2,3,4)));
##  Sym( [ 1 .. 4 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "TwoClosure", IsPermGroup );


#############################################################################
##
#E