This file is indexed.

/usr/share/gap/lib/stbcrand.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
#############################################################################
##
#W  stbcrand.gi                 GAP library                       Ákos Seress
##
##
#Y  Copyright (C)  1994,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This  file contains  the  functions for  a random Schreier-Sims algorithm
##  with verification.
##

#############################################################################
##
#F  StabChainRandomPermGroup( <gens>, <id>, <opts> )  .  random Schreier-Sims
##
##  The  method  consists of  2  phases:  a  heuristic construction  and  
##  either a deterministic or two random checking phases. 
##  In the random checking  phases,  we  take random  elements of
##  created set, multiply by  random subproduct of  generators, and sift down
##  by dividing with the  appropriate coset representatives. The stabchain is
##  correct when  all  siftees are  ().    In the first  checking  phase, all
##  computations are carried out with words  in strong generators and siftees
##  are checked by plugging in random points in words; in the second checking
##  phase, permutations are multiplied.
##
##  During the construction, we create new records for stabilizers:
##  S.aux = set of strong generators for S, temporarily created during the
##          construction. On the other hand, S.generators contains a strong
##          generating set for S which would have been created by the
##          deterministic method
##  S.treegen = elements of S.aux used in S.transversal
##  S.treegeninv = inverses of S.treegen; also used in S.transversal,
##                 and they are also elements of S.aux
##  S.treedepth = depth of Schreier tree of S
##  S.diam = sum of treedepths in stabilizer chain of S
##
##  After the  stabilizer chain  is  ready,  the  extra records are  deleted.
##  Transversals are rebuilt using the generators in the .generators records.
##
InstallGlobalFunction( StabChainRandomPermGroup, function( gens, id, options)
    local S,        # stabilizer chain
          degree,   # degree of S
          givenbase,# list of points from which first base points should come
          correct,  # boolean; true if a correct base is given
          size,     # size of <G> as constructed
          order,    # size of G if given in input
          limit,    # upper bound on Size(G) given in input
          orbits,   # list of orbits of G
          orbits2,  # list of orbits of G
          k,        # number of pairs of generators checked
          param,    # list of parameters guiding number of repetitions
                    # in random constructions
          where,    # list indicating which orbit contains points in domain
          basesize, # list; i^th entry = number of base points in orbits[i]
          i,j,
          ready,    # boolean; true if stabilizer chain ready
          warning,  # used at warning if given and computed size differ
          new,      # list of permutations to be added to stab. chain
          result,   # output of checking phase; nontrivial if stabilizer
                    # chain is incorrect
          base,     # ordering of domain from which base points are taken
          missing,  # if a correct base was provided by input, missing
                    # contains those points of it which are not in
                    # constructed base
          T;        # a stabilizer chain containing the usual records

    S:= rec( generators := ShallowCopy( gens ), identity := id );
    if options.random = 1000 then
       #case of deterministic computation with known size
       k := 1;
    else 
       k:=First([1..14],x->(3/5)^x<1-options.random/1000);
    fi;

    degree := LargestMovedPoint( S.generators );

    if IsBound( options.knownBase) and
      Length(options.knownBase)<4+LogInt(degree,10)  then
        param:=[k,4,0,0,0,0];
    else
        param:=[QuoInt(k,2),4,QuoInt(k+1,2),4,50,5];
	options:=ShallowCopy(options);
	Unbind(options.knownBase);
    fi;
    if options.random <= 200 then 
       param[2] := 2;
       param[4] := 2;
    fi;

    #param[1] = number of pairs of random subproducts from generators in
    #           first checking phase
    #param[2] = (number of random elements from created set)/S.diam
    #           in first checking phase
    #param[3] = number of pairs of random subproducts from generators in
    #           second checking phase
    #param[4] = (number of random elements from created set)/S.diam
    #           in second checking phase
    #param[5] = maximum size of orbits in  which we evaluate words on all
    #           points of orbit
    #param[6] = minimum number of random points from orbit to plug in to check
    #           whether given word is identity on orbit


    # prepare input of construction
    if IsBound(options.base)  then
        givenbase := options.base;
    else
        givenbase := [];
    fi;

    if IsBound(options.size) then
        order := options.size;
        warning := 0;
        limit := 0;
    else
        order := 0;
        if IsBound(options.limit) then
            limit := options.limit;
        else
            limit := 0;
        fi;
    fi;

    if IsBound( options.knownBase )  then
        correct := true;
    else
        correct := false;
    fi;

    if correct then
        # if correct  base was given as input, no need for orbit information
        base:=Concatenation(givenbase,Difference(options.knownBase,givenbase));
        missing := Set(options.knownBase);
        basesize := [];
        where := [];
        orbits := [];
    else
        # create ordering of domain used in choosing base points and
        # compute orbit information
        base:=Concatenation(givenbase,Difference([1..degree],givenbase));
        missing:=[];
        orbits2:=OrbitsPerms(S.generators,[1..degree]);
        #throw away one-element orbits
        orbits:=[];
        j:=0;
        for i in [1..Length(orbits2)] do 
            if Length(orbits2[i]) >1 then
               j:=j+1; orbits[j]:= orbits2[i];
            fi;
        od;
        basesize:=[];
        where:=[];
        for i in [1..Length(orbits)] do
            basesize[i]:=0;
            for j in [1..Length(orbits[i])] do
                where[orbits[i][j]]:=i;
            od;
        od;
        # temporary solution to speed up of handling of lots of small orbits
        # until compiler
        if Length(orbits) > degree/40 then
           param[1] := 0;
           param[3] := k;
        fi;
    fi;

    ready:=false;
    new:=S.generators;

    while not ready do
        SCRMakeStabStrong
           (S,new,param,orbits,where,basesize,base,correct,missing,true);
        # last parameter of input is true if function called for original G
        # in recursive calls on stabilizers, it is false
        # reason: on top level,
        #         we do not want to add anything to generating set

        # start checking
        size := 1;  T := S;
        while Length( T.generators ) <> 0  do
            size := size * Length( T.orbit );
            T := T.stabilizer;
        od;
        if size = order  or  size = limit  then
            ready := true;
        elif size < order then
            # we have an incorrect stabilizer chain
            # repeat checking until a new element is discovered
            result := id;
            if options.random = 1000 then 
                if correct then 
                   result := SCRStrongGenTest(S,[1,10/S.diam,0,0,0,0],orbits,
                                      basesize,base,correct,missing);
                else 
                   result := SCRStrongGenTest2(S,[0,0,1,10/S.diam,0,0]); 
                fi; 
                if result = id then 
                   T := SCRRestoredRecord(S);
                   result := VerifySGS(T,missing,correct); 
                fi;
                if result = id then
                   Print("Warning, computed and given size differ","\n");
                   ready := true;
                   S := T;
                else 
                   if not IsPerm(result) then 
                      repeat 
                         result := SCRStrongGenTest2(S,[0,0,1,10/S.diam,0,0]);
                      until result <> id;
                   fi;
                   new := [result]; 
                fi; 
            else
               warning := 0;
               if correct then
                 # if correct base was provided, it is enough to check
                 # images of base points to check whether a word is trivial
                 # no need for second checking phase
                 while result = id do
                    warning := warning + 1;
                    if warning > 5 then
                       Print("Warning, computed and given size differ","\n");
                    fi;
                    result := SCRStrongGenTest(S,param,orbits,
                                      basesize,base,correct,missing);
                 od;
               else
                 while result = id do
                    warning := warning + 1;
                    if warning > 5 then
                       Print("Warning, computed and given size differ","\n");
                    fi;
                    result:=SCRStrongGenTest(S,param,orbits,
                                    basesize,base,correct,missing);
                    if result = id then
                        # Print("entering SGT2","\n");
                        result:=SCRStrongGenTest2(S,param);
                    fi;
                 od;
               fi;  # correct or not
               new:=[result];
            fi;   # end of random checking or not, when size is known
        else
            #no information or only upper bound about Size(S)
            if options.random = 1000 then
              if correct then 
                   result := SCRStrongGenTest(S,[1,10/S.diam,0,0,0,0],orbits,
                                      basesize,base,correct,missing);
               else 
                   result := SCRStrongGenTest2(S,[0,0,1,10/S.diam,0,0]); 
               fi;
               if result = id then 
                  T := SCRRestoredRecord(S);
                  result := VerifySGS(T,missing,correct); 
               fi; 
               if result = id then 
                  S := T; 
                  ready := true;
               else 
                  if not IsPerm(result) then 
                     repeat 
                        result := SCRStrongGenTest2(S,[0,0,1,10/S.diam,0,0]);
                     until result <> id;
                  fi;
                  new := [result]; 
               fi;
            else
               # Print("entering SGT", "\n");
               result:=SCRStrongGenTest(S,param,orbits,basesize,
                                  base,correct,missing);
               if result <> id then
                  new:=[result];
               elif correct then
                  # no need for second checking phase
                  ready:=true;
               else
                   # Print("entering SGT2","\n");
                   result:=SCRStrongGenTest2(S,param);
                   if result = id then
                      ready:=true;
                   else
                      new:=[result];
                   fi;
               fi;
            fi;   # random checking or not, when size is not known
        fi;   # size known 
    od;

    #restore usual record elements 
    if not IsBound(S.labels) then
       S := SCRRestoredRecord(S); 
    fi;
    return S;
end );


#############################################################################
##

#F  SCRMakeStabStrong( ... )  . . . . . . . . . . . . . . . . . . . . . local
##
##  heuristic stabilizer  chain  construction, with one random  subproduct on
##  each  level,  and one or two  (defined  by mlimit) random cosets  to make
##  Schreier generators
##
InstallGlobalFunction( SCRMakeStabStrong,
    function ( S, new, param, orbits, where, basesize, base,
                                correct, missing, top )
    local   x,m,j,l,      # loop variables
            ran1,         # random permutation
            string,       # random 0-1 string
            w,            # random subproduct of generators
            len,          # number of generators of S
            mlimit,       # number of random elements to be tested
            coset,        # word representing coset of S
            residue,      # first component: remainder of Schreier generator
                          # after factorization; second component > 0
                          # if factorization unsuccesful
            jlimit,       # number of random points to plug into residue[1]
            ran,          # index of random point in an orbit of S
            g,            # permutation to be added to S.stabilizer
            gen,          # permutations used in S.transversal
            inv,          # their inverses
            firstmove;    # first point of base moved by an element of new

    if new <> [] then
        firstmove := First( base, x->ForAny( new, gen->x^gen<>x ) );
        # if necessary add a new stabilizer to the stabchain
        if not IsBound(S.stabilizer) then
            S.orbit                    := [firstmove];
            S.transversal              := [];
            S.transversal[S.orbit[1]]  := S.identity;
            S.generators               := [];
            S.treegen                  := [];
            S.treegeninv               := [];
            S.stabilizer               := rec();
            S.stabilizer.identity      := S.identity;
            S.stabilizer.aux           := [];
            S.stabilizer.generators    := [];
            S.stabilizer.diam          := 0;
            if not correct then
                basesize[where[S.orbit[1]]]
                    := basesize[where[S.orbit[1]]] + 1;
            fi;
            missing := Difference( missing, [ firstmove ] );
        else
            if Position(base,firstmove) < Position(base,S.orbit[1]) then
                S.stabilizer               := ShallowCopy(S);
                S.orbit                    := [firstmove];
                S.transversal              := [];
                S.transversal[S.orbit[1]]  := S.identity;
                S.generators := ShallowCopy(S.stabilizer.generators);
                S.treegen                  := [];
                S.treegeninv               := [];
                if not correct then
                    basesize[where[S.orbit[1]]]
                      := basesize[where[S.orbit[1]]] + 1;
                fi;
                missing := Difference( missing, [ firstmove ] );
            fi;
        fi;

        # on top level, we want to keep the original generators
        if not top or Length(S.generators) = 0  then
	  for j in new do
	    StretchImportantSLPElement(j);
	  od;
	  Append(S.generators,new);
        fi;
        #construct orbit of basepoint
        SCRSchTree(S,new);

        #check whether new elements are really new in the system
        while new <> [] do
            g := SCRSift( S, new[Length(new)] );
            Unbind( new[Length(new)] );
            if g <> S.identity then
                SCRMakeStabStrong(S.stabilizer,[g],param,orbits,
                                  where,basesize,base,correct,missing,false);
                S.diam:=S.treedepth+S.stabilizer.diam;
                S.aux:=Concatenation(S.treegen,
                                     S.treegeninv,S.stabilizer.aux);
            fi;
        od;
    fi;

    #check random Schreier generators
    gen := Concatenation(S.treegen,S.treegeninv,[S.identity]);
    inv := Concatenation(S.treegeninv,S.treegen,[S.identity]);
    len := Length(S.aux);
    #in case of more than one generator for S, form a random subproduct
    #otherwise, use the generator
    if len > 1 then
        ran1 := SCRRandomPerm(len);
        string := SCRRandomString(len);
        w := S.identity;
        for x in [1..len] do
            w := w*(S.aux[x^ran1]^string[x]);
        od;
    else
        w:=S.aux[1];
    fi;

    # take random coset(s)
    mlimit:=1;
    m:=0;
    while m < mlimit do
        m := m+1;
        ran := Random([1..Length(S.orbit)]);
        coset := CosetRepAsWord(S.orbit[1],S.orbit[ran],S.transversal);
        coset := InverseAsWord(coset,gen,inv);
        if w <> S.identity then
            # form Schreier generator and factorize
            Add(coset,w);
            residue := SiftAsWord(S,coset);
            # check whether factorization is succesful
            if residue[2] > 0  then
                # factorization is unsuccesful; use remainder for
                # construction in stabilizer
                g := Product(residue[1]);
                SCRMakeStabStrong(S.stabilizer,[g],param,orbits,where,
                                  basesize,base,correct,missing,false);
                S.diam := S.treedepth+S.stabilizer.diam;
                S.aux := Concatenation(S.treegen,S.treegeninv,
                                       S.stabilizer.aux);
                # get out of current loop
                m := 0;
            elif correct then
                # enough to check images of points in given base
                l := 0;
                while l < Length(missing) do
                    l := l+1;
                    if ImageInWord(missing[l],residue[1]) <> missing[l] then
                        # factorization is unsuccesful;
                        # use remainder for construction in stabilizer
                        g := Product(residue[1]);
                        SCRMakeStabStrong(S.stabilizer,[g],param,
                                          orbits,where,basesize,
                                          base,correct,missing,false);
                        S.diam := S.treedepth+S.stabilizer.diam;
                        S.aux := Concatenation(S.treegen,
                                               S.treegeninv,S.stabilizer.aux);
                        # get out of current loop
                        m := 0;
                        l := Length(missing);
                    fi;
                od;
            else
                l:=0;
                while l < Length(orbits) do
                    l:=l+1;
                    if Length(orbits[l]) > param[5] then
                        # in large orbits, plug in random points
                        j:=0;
                        jlimit:=Maximum(param[6],basesize[l]);
                        while j < jlimit do
                            j:=j+1;
                            ran:=Random([1..Length(orbits[l])]);
                            if ImageInWord(orbits[l][ran],residue[1])
                              <> orbits[l][ran]
                            then
                                # factorization is unsuccesful;
                                # use remainder for construction in stabilizer
                                g := Product(residue[1]);
                                SCRMakeStabStrong(S.stabilizer,[g],param,
                                                  orbits,where,basesize,
                                                  base,correct,missing,false);
                                S.diam := S.treedepth+S.stabilizer.diam;
                                S.aux := Concatenation(S.treegen,S.treegeninv,
                                                       S.stabilizer.aux);
                                # get out of current loop
                                m := 0;
                                j := jlimit;
                                l := Length(orbits);
                            fi;
                        od; #j loop
                    else
                        # in small orbits, check images of all points
                        j := 0;
                        while j < Length(orbits[l]) do
                            j := j+1;
                            if ImageInWord(orbits[l][j],residue[1])
                              <> orbits[l][j]
                            then
                                # factorization is unsuccesful;
                                # use remainder for construction in stabilizer
                                g := Product(residue[1]);
                                SCRMakeStabStrong(S.stabilizer,[g],param,
                                                  orbits,where,basesize,
                                                  base,correct,missing,false);
                                S.diam := S.treedepth+S.stabilizer.diam;
                                S.aux := Concatenation(S.treegen,S.treegeninv,
                                                       S.stabilizer.aux);
                                # get out of current loop
                                m := 0;
                                j := Length(orbits[l]);
                                l := Length(orbits);
                            fi;
                        od; #j loop
                    fi;
                od; #l loop
            fi;
        fi;
    od; #m loop

end );


#############################################################################
##
#F  SCRStrongGenTest( ... ) . . . . . . . . . . . . . . . . . . . . . . local
##
##  tests whether product of a random element of S and a random subproduct of
##  the strong generators  of S is in S.   Computations are  carried out with
##  words in generators   representing  group  elements; random   points  are
##  plugged in to test whether a word represents  the identity.  If SGS for S
##  not complete, returns a permutation not in S.
##
InstallGlobalFunction( SCRStrongGenTest,
    function ( S, param, orbits, basesize,
                               base, correct, missing)
    local   x,i,k,m,j,l,  # loop variables
            ran1,ran2,    # random permutations
            string,       # random 0-1 string
            w,            # list containing random subproducts of generators
            len,          # number of generators of S
            len2,         # length of short random subproduct
            mlimit,       # number of random elements to be tested
            ranword,      # random element of S as a word in generators
            residue,      # first component: remainder of ranword
                          # after factorization; second component > 0
                          # if factorization unsuccesful
            jlimit,       # number of random points to plug into residue[1]
            ran,          # index of random point in an orbit of S
            g;            # product of residue[1]

    k := 0;
    while k < param[1] do
        k := k+1;
        len := Length(S.aux);
        #in case of large S.aux, form random subproducts
        #otherwise, try all of them
        if len > 2*param[3] then
            ran1 := SCRRandomPerm(len);
            ran2 := SCRRandomPerm(len);
            len2 := Random([1 .. QuoInt(len,2)]);
            string := SCRRandomString(len+len2);

            # we form two random subproducts:
            # w[1] in a random ordering of all generators
            # w[2] in a random ordering of a random subset of them
            w:=[];
            w[1] := S.identity;
            for x in [1 .. len] do
                w[1] := w[1]*(S.aux[x^ran1]^string[x]);
            od;
            w[2] := S.identity;
            for x in [1 .. len2] do
                w[2] := w[2]*(S.aux[x^ran2]^string[x+len]);
            od;

        else
            # take next two generators of S (unless only one is left)
            w := [];
            w[1] := S.aux[2*k-1];
            if len > 2*k-1 then
                w[2] := S.aux[2*k];
            else
                w[2] := S.identity;
            fi;
        fi;

        # take random elements of S as words
        m := 0;
        mlimit := param[2]*S.diam;
        while m < mlimit do
            m:=m+1;
            ranword := RandomElmAsWord(S);
            i := 0;
            while i < 2 do
                i := i+1;
                if w[i] <> S.identity then
                    Append(ranword,[w[i]]);
                    residue := SiftAsWord(S,ranword);
                    if residue[2]>0 then
                        # factorization is unsuccesful;
                        # remainder is witness that SGS for S is not complete
                        g := Product(residue[1]);
                        # Print("k=",k," i=",i," m=",m," mlimit=",mlimit,"\n");
                        return g;
                    elif correct then
                        # enough to check whether base points are fixed
                        l:=0;
                        while l < Length(missing) do
                            l:=l+1;
                            if ImageInWord(missing[l],residue[1])
                              <> missing[l]
                            then
                                # remainder is not in S
                                g := Product(residue[1]);
                                return g;
                            fi;
                        od;
                    else
                        # plug in points from each orbit to check whether
                        # action on orbit is trivial
                        l:=0;
                        while l < Length(orbits) do
                            l:=l+1;
                            if Length(orbits[l]) > param[5] then
                                # on large orbits, plug in random points
                                j := 0;
                                jlimit := Maximum(param[6],basesize[l]);
                                while j < jlimit do
                                    j := j+1;
                                    ran := Random([1..Length(orbits[l])]);
                                    if ImageInWord(orbits[l][ran],residue[1])
                                      <> orbits[l][ran]
                                    then
                                        #remainder is not in S
                                        g := Product(residue[1]);
                                        return g;
                                    fi;
                                od; #j loop
                            else
                                # on small orbits, plug in all points
                                j := 0;
                                while j < Length(orbits[l]) do
                                    j := j+1;
                                    if ImageInWord( orbits[l][j],residue[1] )
                                      <> orbits[l][j]
                                    then
                                        # remainder is not in S
                                        g:=Product(residue[1]);
                                        return g;
                                    fi;
                                od; #j loop
                            fi;
                        od; #l loop
                    fi;
                fi;
            od; #i loop
        od; #m loop
        if len <= 2*k then
            #finished making Schr. generators with all in S.aux
            k := param[1];
        fi;
    od; #k loop

    return S.identity;
end );


#############################################################################
##
#F  SCRSift( <S>, <g> ) . . . . . . . . . . . . . . . . . . . . . . . . local
##
##  tries to factor g as product of cosetreps in S; returns remainder
##
InstallGlobalFunction( SCRSift, function ( S, g )
    local stb,   # the stabilizer of S we currently work with
          bpt;   # first point of stb.orbit

    stb := S;
    while IsBound( stb.stabilizer ) do
        bpt := stb.orbit[1];
        if IsBound( stb.transversal[bpt^g] ) then
            while bpt <> bpt^g do
                g := g*stb.transversal[bpt^g];
            od;
            stb := stb.stabilizer;
        else
            #current g witnesses that input was not in S
            return g;
        fi;
    od;

    return g;
end );


#############################################################################
##
#F  SCRStrongGenTest2( <S>, <param> ) . . . . . . . . . . . . . . . . . local
##
##  tests whether product of a random element of S and a random subproduct of
##  the  strong generators of S is  in S.  Computations  are carried out with
##  complete permutations.
##
InstallGlobalFunction( SCRStrongGenTest2, function ( S, param )
    local   x,i,k,m,      # loop variables
            ran1,ran2,    # random permutations
            string,       # random 0-1 string
            w,            # list containing random subproducts of generators
            len,          # number of generators of S
            len2,         # length of short random subproduct
            mlimit,       # number of random elements to be tested
            ranelement,   # random element of S
            T,  p,
            residue;      # remainder of ranelement after factorization

    k := 0;
    while k < param[3] do
        k := k+1;
        len := Length(S.aux);
        #in case of large S.aux, form random subproducts
        #otherwise, try all of them
        if len > 2*param[3] then
            ran1 := SCRRandomPerm(len);
            ran2 := SCRRandomPerm(len);
            len2 := Random([1 .. QuoInt(len,2)]);
            string := SCRRandomString(len+len2);

            # we form two random subproducts:
            # w[1] in a random ordering of all generators
            # w[2] in a random ordering of a random subset of them
            w:=[];
            w[1] := S.identity;
            for x in [1 .. len] do
                w[1] := w[1]*(S.aux[x^ran1]^string[x]);
            od;
            w[2] := S.identity;
            for x in [1 .. len2] do
                w[2] := w[2]*(S.aux[x^ran2]^string[x+len]);
            od;

        else
            # take next two generators of S (unless only one is left)
            w := [];
            w[1] := S.aux[2*k-1];
            if len > 2*k-1 then
                w[2] := S.aux[2*k];
            else
                w[2] := S.identity;
            fi;
        fi;

        # take random elements of S
        m := 0;
        mlimit := param[4]*S.diam;
        while m < mlimit do
            m:=m+1;
            ranelement := S.identity;
            T := S;
            while Length( T.generators ) <> 0  do
                p := Random( T.orbit );
                while p <> T.orbit[ 1 ]  do
                    ranelement := LeftQuotient( T.transversal[ p ],
                                          ranelement );
                    p := p ^ T.transversal[ p ];
                od;
                T := T.stabilizer;
            od;
            i := 0;
            while i < 2 do
                i := i+1;
                if w[i] <> S.identity then
                    # test whether product of ranelement and w[i] in S
                    ranelement := ranelement*w[i];
                    residue := SCRSift(S,ranelement);
                    if residue <> S.identity then
                        return residue;
                    fi;
                fi;
            od; #i loop
        od; #m loop
        if len <= 2*k then
            #finished checking all in S.aux
            k := param[3];
        fi;
    od; #k loop

    return S.identity;
end );


#############################################################################
##
#F  SCRNotice( <orb>, <transversal>, <genlist> )  . . . . . . . . . . . local
##
##  checks whether   orbit  is closed  for  the   action of  permutations  in
##  genlist. If not, returns orbit point and generator witnessing.
##
InstallGlobalFunction( SCRNotice,
    function ( orb, transversal, genlist )
    local flag, #first component of output; true if orb is closed for
                #action of genlist
          i,    #second component of output, index of point in orb moving out
          j ;   #third component, index of permutation in genlist moving orb[i]

    i := 0;
    flag := true;
    while i < Length(orb) and flag  do
        i := i+1;
        j := 0;
        while j < Length(genlist) and flag do
            j := j+1;
            if not IsBound(transversal[orb[i]^genlist[j]])  then
                flag := false;
            fi;
        od;
    od;

    return [flag,i,j];
end );


#############################################################################
##
#F  SCRExtend( <list> ) . . . . . . . . . . . . . . . . . . . . . . . . local
##
##  given a partial Schreier tree of depth d,
##  SCRExtends the partial Schreier tree to depth d+1
##  input, output coded in list of length 5
##
InstallGlobalFunction( SCRExtend, function ( list )
    local orb,          #partial orbit
          transversal,  #partial transversal
          treegen,      #list of generators
          treegeninv,   #inverses of elements of treegen
                        #both treegen, treegeninv are used in transversal
          i, j,         #loop variables
          previous,     #index, showing end of level d-1 in orb
          len;          #length of orb at entering routine

    orb:=list[1];
    transversal:=list[2];
    treegen:=list[3];
    treegeninv:=list[4];
    previous:=list[5];
    len:=Length(orb);

    # for each point on level d, check whether one of the generators or
    # inverses moves it out of orb. If yes, add image to orb
    for i in [previous+1..len] do
        for j in [1..Length(treegen)] do
            if not IsBound(transversal[orb[i]^treegen[j]]) then
                transversal[orb[i]^treegen[j]] := treegeninv[j];
                Add(orb, orb[i]^treegen[j]);
            fi;
            if not IsBound(transversal[orb[i]^treegeninv[j]]) then
                transversal[orb[i]^treegeninv[j]] := treegen[j];
                Add(orb, orb[i]^treegeninv[j]);
            fi;
        od;
    od;

    # return Schreier tree of depth one larger
    return [orb,transversal,treegen,treegeninv,len];

end );


#############################################################################
##
#F  SCRSchTree( <S>, <new> )  . . . . . . . . . . . . . . . . . . . . . local
##
##  creates Schreier tree for the group generated by S.generators \cup new
##
InstallGlobalFunction( SCRSchTree, function ( S, new )
    local l,        #output of notice
          flag,     #first component of output
          i,        #second component of output
          j,        #third component of output
          word,     #list of permutations coding a coset representative
          g,        #the coset representative coded by word
          witness,  #a permutation moving a point out of S.orbit
          list;     #list coding input and output of 'extend'

    l := SCRNotice(S.orbit,S.transversal,new);
    flag := l[1];
    if flag then
        #do nothing; the orbit did not change
        return;
    else
        i := l[2];
        j := l[3];
        witness := new[j];
    fi;

    while not flag do
        word := CosetRepAsWord(S.orbit[1],S.orbit[i],S.transversal);
        g := Product(word);
        #add a new generator to treegen which moves S.orbit[1] out of S.orbit
        Add(S.treegen, g^(-1)*witness);
        Add(S.treegeninv, witness^(-1)*g);

        #recompute Schreier tree to new depth
        S.orbit := [S.orbit[1]];
        S.transversal := [];
        S.transversal[S.orbit[1]] := S.identity;
        S.treedepth := 0;
        list := [S.orbit,S.transversal,S.treegen,S.treegeninv,0];
        flag := false;

        #with k generators, we build only a tree of depth 2k
        while not flag and S.treedepth < 2*Length(S.treegen) do
            list := SCRExtend(list);
            S.orbit := list[1];
            S.transversal := list[2];
            if Length(S.orbit) = list[5] then
                #the tree did not extend; orbit is closed for treegen
                flag := true;
            else
                S.treedepth := S.treedepth + 1;
            fi;
        od;
        #increased S.orbit may not be closed for all generators of S
        l := SCRNotice(S.orbit,S.transversal,S.generators);
        flag := l[1];
        if not flag then
            i := l[2];
            j := l[3];
            witness := S.generators[j];
        fi;
    od;

    #update record components aux, diam
    S.aux := Concatenation(S.treegen,S.treegeninv,S.stabilizer.aux);
    S.diam := S.treedepth+S.stabilizer.diam;

end );


#############################################################################
##
#F  SCRRandomPerm( <d> )  . . . . . . . . . . . . . . . . . . . . . . . local
##
##  constructs random permutation in Sym(d)
##  without creating group record of Sym(d)
##
InstallGlobalFunction( SCRRandomPerm, function ( d )
    local   rnd,        # random permutation, result
            tmp,        # temporary variable for swapping
            i,  k;      # loop variables

    # use Floyd\'s algorithm
    rnd := [ 1 .. d ];
    for i  in [ 1 .. d-1 ]  do
        k := Random( [ 1 .. d+1-i ] );
        tmp := rnd[d+1-i];
        rnd[d+1-i] := rnd[k];
        rnd[k] := tmp;
    od;

    # return the permutation
    return PermList( rnd );
end );


#############################################################################
##
#F  SCRRandomString( <n> )  . . . . . . . . . . . . . . . . . . . . . . local
##
##  constructs random 0-1 string of length n
##  same steps as Random, but uses created random number for 28 bits
##
InstallGlobalFunction( SCRRandomString, function ( n )
    local i, j,     # loop variables
          k,        # number of 28 long substrings
          rnd,      # the random number which would be created by Random
          string;   # the random string constructed

    string:=[];
    k:=QuoInt(n-1,28);
    for i in [0..k-1] do
        # follow steps in Random to create a random number < 2^28
        R_N := R_N mod 55 + 1;
        R_X[R_N] := (R_X[R_N] + R_X[(R_N+30) mod 55+1]) mod 2^28;
        rnd:=R_X[R_N];
        # use each bit of rnd
        for j in [1 .. 28] do
            string[28*i+j] := rnd mod 2;
            rnd := QuoInt(rnd,2);
        od;
    od;

    # construct last <= 28 bits  of string
    R_N := R_N mod 55 + 1;
    R_X[R_N] := (R_X[R_N] + R_X[(R_N+30) mod 55+1]) mod 2^28;
    rnd:=R_X[R_N];
    for j in [28*k+1 .. n] do
        string[j] := rnd mod 2;
        rnd := QuoInt(rnd,2);
    od;

    return string;
end );

#############################################################################
##
#F  SCRRandomSubproduct( <list>, <id> ) .  random subproduct of perms in list
##
InstallGlobalFunction( SCRRandomSubproduct, function( list, id )
    local string,  # 0-1 string containing the exponents of elements of list
          random,  # the random subproduct 
          i;       # loop variable

    string := SCRRandomString(Length(list));
    random := id;
    for i in [1 .. Length(list)] do
        if string[i] = 1 then 
            random := random*list[i];
        fi;
    od;

    return random;
end );

#############################################################################
##
#F  SCRExtendRecord( <G> )  . . . . . . . . . . . . . . . . . . . . . . local
##
##  defines record elements used at random stabilizer chain construction
##
InstallGlobalFunction( SCRExtendRecord, function(G)
    local list,       # list of stabilizer subgroups
          len,        # length of list
          i;          # loop variable

    list := ListStabChain(G);
    len := Length(list);
    list[len].diam := 0;
    list[len].aux := [];
    for i in [1 .. len - 1] do
        # list[len - i].real := list[len - i].generators;

        if Length(list[len - i].orbit) = 1 then 
            # in this case, SCRSchTree will not do anything; 
            # we have to define records treedepth, aux, and diameter
            list[len - i].treedepth := 0;
            list[len - i].aux := list[len - i + 1].aux;
            list[len - i].diam := list[len - i + 1].diam;
        fi;

        list[len - i].orbit := [ list[len - i].orbit[1] ];
        list[len - i].transversal := [];
        list[len - i].transversal[list[len - i].orbit[1]]
            := list[len - i].identity;
        list[len - i].treegen := [];
        list[len - i].treegeninv := [];
        SCRSchTree( list[len - i], list[len - i].generators );

    od;

end );


#############################################################################
##
#F  SCRRestoredRecord( <G> )  . . . . . . . . . . . . . . . . . . . . . local
##
##  restores usual group records after random stabilizer chain construction
##
InstallGlobalFunction( SCRRestoredRecord, function( G )
    local   sgs,  T,  S,  l,  lab,  pnt,o,ind;
    
    S := G;
    sgs := [ S.identity ];
    while IsBound( S.stabilizer )  do
        UniteSet( sgs, S.treegen );
        UniteSet( sgs, S.treegeninv );
        S := S.stabilizer;
    od;
    T := EmptyStabChain( sgs, G.identity );
    sgs := [ 2 .. Length( sgs ) ];
    S := T;
    while IsBound( G.stabilizer )  do
        InsertTrivialStabilizer( S, G.orbit[ 1 ] );
        S.genlabels   := sgs;
        S.generators  := G.generators;
        S.orbit       := G.orbit;
        S.transversal := G.transversal;
	o:=ShallowCopy(S.orbit);
	# check identity of transversal elements first: Most are
	# identical and thus element comparisons are relatively
	# infrequent
	while Length(o)>0 do
	  
	  ind:=S.transversal[o[1]];
	  ind:=Filtered([1..Length(o)],
		  i->IsIdenticalObj(S.transversal[o[i]],ind));
	  for l in sgs do
	    if S.transversal[o[1]]=S.labels[l] then
	      for pnt in o{ind} do # all these transv. elements are same
		S.translabels[ pnt ] := l;
	      od;
	    fi;
	  od;
	  o:=o{Difference([1..Length(o)],ind)}; # the rest
	od;

	    #was:
	    # (The element comparisons could be expensive)
            #for pnt  in S.orbit  do
            #    if S.transversal[ pnt ] = lab  then
            #        S.translabels[ pnt ] := l;
            #    fi;
            #od;

        sgs := Filtered( sgs, l ->
                       S.orbit[ 1 ] ^ S.labels[ l ] = S.orbit[ 1 ] );
        S := S.stabilizer;
        G := G.stabilizer;
    od;
    return T;
end );

#############################################################################
##

#F  VerifyStabilizer( <S>, <z>, <missing>, <correct> )  . . . .  verification
##
InstallGlobalFunction( VerifyStabilizer, function(S,z,missing,correct)
 #z is an involution, moving first base point
 # correct is boolean telling whether a base is known
 # if yes, missing contains the base points which do not occur in the base of S
 local pt1,            # the first base point 
       zinv,           # inverse of z
       pt2,            # pt1^zinv 
       flag,           # Boolean; true if z exchanges pt1 and pt2
       stab,           # the stabilizer of pt1 in S
       chain,          # stab after base change, to bring pt2 first
       stabpt2,        # stabilizer of pt2 in chain
       result,         # output, witness perm if something is wrong
       g,              # generator of stabpt2
       where1,         # stores which orbit of stab pts of S.orbit belong to
       orbit1count,    # index running through orbits of stab
       leaders,        # list of orbit representatives of stab 
       i, j, l,        # loop variables 
       residue,        # result of sifting as word 
       where2,         # boolean list to mark orbits of stabpt2 as processed
       k,              # point of an orbit of stab
       gen,            # a generator of stab 
       transversal,    # transversal of stab, on all of its orbits 
       orb,            # an orbit of stabpt2
       img,            # image of a point at computation of orb
       pnt,            # a point from orb
       w1, w2, w3, w4, # words/permutations coding coset representatives 
       w1inv,          # inverse of w1
       schgen;         # Schreier generator

    pt1 := S.orbit[1]; 
    zinv := z^(-1); 
    pt2 := pt1^zinv; 
    result := S.identity;
    stab := S.stabilizer; 
    if pt2^zinv = pt1 then 
       flag := true; 
       result := SCRSift(stab, z^2);
    else 
       flag := false; 
    fi;

    # store which orbit of stab the pts of S.orbit belong to
    # in each orbit, compute transversals from a representative
    where1 := []; # orbits of stab
    leaders := [pt2];
    orbit1count := 1; 
    transversal := []; 
    transversal[pt2] := S.identity;
    where1[pt2] := 1;
    orb := [pt2]; 
    j := 1;
    while j <= Length( orb )  do
    for gen  in stab.generators  do
       k := orb[j] / gen;
       if not IsBound( transversal[k] )  then
             transversal[k] := gen;
             Add( orb, k );
             where1[k] := orbit1count;
          fi;
       od;
       j := j + 1;
    od;
    for i in S.orbit do
        if not IsBound(where1[i]) then 
           orbit1count := orbit1count + 1;
           Add(leaders, i); 
           orb := [i]; 
           where1[i] := orbit1count;
           transversal[i] := S.identity;
           j := 1;
           while j <= Length( orb )  do
             for gen  in stab.generators  do
                 k := orb[j] / gen;
                 if not IsBound( transversal[k] )  then
                    transversal[k] := gen;
                    Add( orb, k );
                    where1[k] := orbit1count;
                 fi;
             od;
             j := j + 1;
           od;
        fi;
    od; 

   # check that conjugates of point stabilizers of stab are subgroups of stab
   chain:=StructuralCopy(stab); 
   for j in [1..Length(leaders)] do
       if result = S.identity then 
           i := leaders[Length(leaders)+1-j]; 
           ChangeStabChain( chain, [i], false );
           if i = pt2 then 
              w1 := z; 
              w1inv := zinv; 
           else 
              w1 := CosetRepAsWord(pt1, i, S.transversal);
              w1 := Product(w1); 
              w1inv := w1^(-1); 
           fi;
           for g in chain.stabilizer.generators do 
               if result = S.identity then       
                  if correct then 
                     residue := SiftAsWord(stab, [w1inv,g,w1]);
                     if residue[2] <> 0 then 
                        result := Product(residue[1]);
                     else 
                        l := 0; 
                        while ( l < Length(missing) ) and ( result = S.identity ) do 
                           l:=l+1;
                              if ImageInWord(missing[l],residue[1])
                                  <> missing[l]  then
                                  # remainder is not in S
                                  result := Product(residue[1]);
                              fi;
                        od;
                     fi;
                  else 
                     result := SCRSift(stab, w1inv*g*w1);
                  fi;
               fi;
           od;
       fi;
   od;

 if result = S.identity then  
    stabpt2 := chain.stabilizer;
    # process orbits of stabpt2 
    where2:= BlistList( [1..Length(where1)],[] ) ; 
    for i in S.orbit do 
        if result = S.identity and (not where2[i]) then 
           orb := [i]; 
           where2[i] := true; 
           for pnt  in orb  do
               for gen  in stabpt2.generators  do
                   img := pnt^gen;
                   if not where2[img]  then
                      Add( orb, img );
                      where2[img] := true;
                   fi;
               od;
           od;
 
           # if we hit a new orbit of stabpt2 
           # and if z exchanges pt1 and pt2 then 
           # mark the orbit 
           if flag and not where2[i^z] then 
              orb := [i^z]; 
              where2[i^z] := true;
              for pnt  in orb  do
                 for gen  in stabpt2.generators  do
                    img := pnt^gen;
                    if not where2[img]  then
                       Add( orb, img );
                       where2[img] := true;
                    fi;
                 od;
              od; 
           fi; 

           # compute Schreier generator either as a word or perm
           # if i is not a fixed point of z, 
           # we have to compute a Schreier generator
           w1 := CosetRepAsWord(pt1, leaders[where1[i]], S.transversal);
           w2 := CosetRepAsWord(leaders[where1[i]], i, transversal); 
           w3 := CosetRepAsWord(leaders[where1[i^z]], i^z, transversal);
           if where1[i] <> where1[i^z] then 
               w4 := CosetRepAsWord(pt1,leaders[where1[i^z]], S.transversal);
           else 
               w4 := w1;
           fi;
           schgen := (Product(w1))^(-1)*(Product(w2))^(-1); 
           if correct then 
               schgen := Concatenation([schgen,z],w3,w4);
           else 
               schgen := schgen*z*Product(w3)*Product(w4);  
           fi; 
 
           # sift Schreier generator either as a word or perm
           if correct then 
              residue := SiftAsWord(stab, schgen); 
              if residue[2] <> 0 then 
                 result := Product(residue[1]); 
              else
                  l := 0; 
                  while ( l < Length(missing) ) and ( result = S.identity ) do 
                     l:=l+1;
                     if ImageInWord(missing[l],residue[1])
                               <> missing[l]  then
                          # remainder is not in S
                          result := Product(residue[1]);
                     fi;
                  od;
               fi;
           else
              result := SCRSift(stab, schgen); 
           fi; 
        fi;  # result = S.identity and not where2[i]
     od;
 fi; 

 return result;

end );

#############################################################################
##
#F  VerifySGS( <S>, <missing>, <correct> )  . . . . . . . . . .  verification
##
InstallGlobalFunction( VerifySGS, function(S,missing,correct) 
 # correct is boolean telling whether a base is known
 # if yes, missing contains the base points which do not occur in the base of S
 local n,         # degree of S
       list,      # list of subgroups in stabchain
       result,    # result of the test
       len,       # length of list
       i,l,       # loop variables 
       residue,   # result of sifting as word
       temp,      # subgroup of S we currently work with 
       temp2,     # temp, with possible extension on blocks 
       gen,       # the generator whose addition we verify 
       longer,    # generator list of temp, after gen is added
       gencount,  # counts the generators to be verified 
       set,       # set of orbit of temp
       orbit,     # orbit of temp after adding gen
       blks,      # images of block when gen is added 
       extension, # list of length 2; first coord. is temp2, extended by 
                  # the action on blks, second coord. is newgen
       newgen,    # the extension of gen 
       leader,    # first point in orbit of temp2
       block,     # block containing leader
       point,     # another point from block
       pos;       # position of set in blks

 n := LargestMovedPoint(S.generators);
 list := ListStabChain(S); 
 len := Length(list); 
 result := S.identity;
 
 # verify the subgroup chain from bottom up
 i := 1;
 while i < len  and  result = S.identity  do
     temp := ShallowCopy(list[len - i + 1]);
     InsertTrivialStabilizer(temp, list[len -i].orbit[1]);
     gencount := 0; 
 
     # add one generator a time
     while (gencount < Length(list[len - i].generators)) and (result= S.identity ) do
         gencount := gencount + 1;
         gen := list[len - i].generators[gencount];
         set := Set( temp.orbit );

         # if adding gen did not change the fundamental orbit, just sift gen
         if set = OnSets(set,gen) then 
            if correct then 
               residue := SiftAsWord(temp, [gen]);
               if residue[2] <> 0 then 
                  result := Product(residue[1]);
               else 
                  l := 0; 
                  while ( l < Length(missing) ) and ( result = S.identity ) do 
                     l:=l+1;
                     if ImageInWord(missing[l],residue[1])
                               <> missing[l]  then
                          # remainder is not in S
                          result := Product(residue[1]);
                     fi;
                  od;
               fi;
            else 
               result := SCRSift(temp, gen);
            fi;
         # if the fundamental orbit increased, compute block system 
         # obtained when adding gen
         else 
            if Length(set) =1 then
                temp2 := temp; 
                newgen := gen; 
            # otherwise, compute the action on blocks
            else
                longer := Concatenation(temp.generators, [gen]);
                orbit := OrbitPerms( longer, temp.orbit[ 1 ] );
                blks := Blocks( GroupByGenerators( longer ), orbit, set );
                if Length(blks) * Length(set) <> Length(orbit) then
                    result := "false0";
                else
                    pos := Position( blks, set );
                    extension := ExtensionOnBlocks( temp, n, blks, [gen] );
                    temp2 := extension[1];
                    newgen := extension[2][1]; 
                    InsertTrivialStabilizer(temp2, n + pos); 
                fi;
            fi; 
 
            # first generator in first group can be verified easily
            if i=1 and Length(set) =1 then 
                result := newgen^(CycleLengthOp(newgen,temp2.orbit[1]));
                AddGeneratorsExtendSchreierTree(temp2, [newgen]); 
            elif result = S.identity then
                AddGeneratorsExtendSchreierTree( temp2, [ newgen ] );
                blks := Blocks( GroupByGenerators(temp2.generators), 
                                temp2.orbit); 
                if Length(blks) > 1 then 
                   leader := temp2.orbit[1]; 
                   block := First(blks, x -> leader in x); 
                   point := First(block, x -> x <> leader); 
                   newgen := Product(CosetRepAsWord(leader ,point,
                                       temp2.transversal)); 
                   temp2 := temp2.stabilizer; 
                   InsertTrivialStabilizer(temp2, leader); 
                   AddGeneratorsExtendSchreierTree(temp2, [newgen]); 
                   result := VerifyStabilizer(temp2,newgen,missing,correct);
                   if leader > n then 
                      AddGeneratorsExtendSchreierTree(temp,[RestrictedPermNC
                          (newgen, [1..n])]); 
                   else 
                      temp := temp2;
                   fi; 
                   gencount := gencount - 1;
                else 
                   result := VerifyStabilizer(temp2,newgen,missing,correct); 
                   if temp2.orbit[1] > n then 
                      AddGeneratorsExtendSchreierTree(temp,[gen]); 
                   fi; 
                fi; 
                if result <> S.identity and temp2.orbit[1] > n then
                     result := RestrictedPermNC(result, [1..n]);
                fi; 
                                
            fi; 
        fi;
    od;
    i := i + 1;
 od;
 
 return result; 

end );

#############################################################################
##
#F  ExtensionOnBlocks( <S>, <n>, <blks>, <elms> ) . . . . . . . . . extension
##
InstallGlobalFunction( ExtensionOnBlocks, function( S, n, blks, elms )
    local   where,  j,  k,  hom,  T,  newelms;

      # list which block the elements of the orbit belong to 
      where := []; 
      for j in [1..Length(blks)] do
          for k in blks[j] do
              where[k] := j;
          od;
      od; 

      hom := function( g )
          local  perm,  j;
          
          perm := [1..n];
          for j in [1..Length(blks)] do 
              perm[n+j] := n+where[blks[j][1]^g];
          od;
          perm := PermList(perm);
          return g * perm;
      end;

      T := EmptyStabChain( [  ], S.identity );
      ConjugateStabChain( S, T, hom, S.identity );
      
      # construct extensions of permutations in elms
      newelms := List( elms, hom );

      return [ T, newelms ]; 
end );
  
#############################################################################
##
#F  ClosureRandomPermGroup( <G>, <genlist>, <options> ) make closure randomly
##
InstallGlobalFunction( ClosureRandomPermGroup,
    function( G, genlist, options )
    local  k,          # number of pairs of subproducts of generators in 
                       # testing result
           givenbase,  # ordering from which initial base points should
                       # be chosen
           gens,       # generators in genlist that are not in <G>
           g,          # element of gens
           degree,     # degree of closure
           orbits,     # list of orbits of closure
           orbits2,    # list of orbits of closure
           i,j,        # loop variables
           param,       # list of parameters guiding number of repetitions
                        # in random constructions
           where,       # list indicating which orbit contains points in domain
           basesize,    # list; i^th entry = number of base points in orbits[i]
           ready,       # boolean; true if stabilizer chain ready
           new,         # list of permutations to be added to stab. chain
           result,      # output of checking phase; nontrivial if stabilizer
                        # chain is incorrect
           base,        # ordering of domain from which base points are taken
           missing,     # if a correct base was provided by input, missing
                       # contains those points of it which are not in 
                       # constructed base
           correct;     # boolean; true if a correct base is given

# warning:  options.base should be compatible with BaseOfGroup(G)

    gens := Filtered( genlist, gen -> not(IsOne(SCRSift(G,gen))) );
    if Length(gens) > 0  then
        
        G.identity := One(gens[1]) ;
        if options.random = 1000 then
            #case of deterministic computation with known size
            k := 1;
        else 
            k:=First([1..14],x->(3/5)^x<1-options.random/1000);
        fi;
        if IsBound(options.knownBase) then 
            param := [k,4,0,0,0,0];
        else
            param := [QuoInt(k,2),4,QuoInt(k+1,2),4,50,5];
        fi;
        if options.random <= 200 then 
            param[2] := 2;
            param[4] := 2;
        fi;
        
#param[1] = number of pairs of random subproducts from generators in 
#           first checking phase
#param[2] = (number of random elements from created set)/S.diam
#           in first checking phase 
#param[3] = number of pairs of random subproducts from generators in 
#           second checking phase
#param[4] = (number of random elements from created set)/S.diam
#           in second checking phase 
#param[5] = maximum size of orbits in  which we evaluate words on all
#           points of orbit
#param[6] = minimum number of random points from orbit to plug in to check 
#           whether given word is identity on orbit

        degree := LargestMovedPoint( Union( G.generators, gens ) );

        # prepare input of construction
        if IsBound(options.base) then 
            givenbase := options.base;
        else
            givenbase := [];
        fi;
        
        if IsBound(options.knownBase) then
            correct := true;
        else
            correct := false;
        fi;
        
        if correct then 
            # if correct  base was given as input,
            # no need for orbit information
            base := Set( givenbase );
            for i in BaseStabChain(G) do
                if not i in base then
                    Add( givenbase, i );
                fi;
            od;
            base := Concatenation(givenbase,Difference(options.knownBase,
                                                       givenbase));
            missing := Difference(options.knownBase,BaseStabChain(G));
            basesize := []; 
            where := [];
            orbits := [];
        else 
            # create ordering of domain used in choosing base points and
            # compute orbit information
            base := Set( givenbase );
            for i in BaseStabChain(G) do
                if not i in base then
                    Add( givenbase, i );
                fi;
            od;
            base := Concatenation(givenbase,Difference([1..degree],givenbase));
            missing := [];
            orbits2 := OrbitsPerms( Union( G.generators, gens ), [1..degree] );
            #throw away one-element orbits
            orbits:=[];
            j:=0;
            for i in [1..Length(orbits2)] do 
                if Length(orbits2[i]) >1 then
                    j:=j+1; orbits[j]:= orbits2[i];
                fi;
            od;
            basesize:=[]; 
            where:=[];
            for i in [1..Length(orbits)] do 
                basesize[i]:=0;
                for j in [1..Length(orbits[i])] do
                    where[orbits[i][j]]:=i;
                od;
            od;
            # temporary solution to speed up of handling
            # of lots of small orbits until compiler
            if Length(orbits) > degree/40 then
                param[1] := 0;
                param[3] := k;
            fi;
        fi;
        
        if not IsBound(G.aux) then
            SCRExtendRecord(G);
        fi;
        new := gens;
       
        #the first call of SCRMakeStabStrong has top:=false
        #in order to add gens to the generating set of G;
        #further calls have top:=true, in order not to add
        #output of SCRStrongGenTest to generating set.
        #remark: adding gens to the generating set of G before 
        #calling SCRMakeStabStrong gives a nasty error if first base
        #point changes
        for g in gens do
            if not(IsOne(SCRSift(G,g))) then 
                SCRMakeStabStrong (G,[g],param,orbits,
                        where,basesize,base,correct,missing,false);
            fi;
        od;

        ready := false; 
        while not ready do 
          if    IsBound(options.limit)
            and SizeStabChain(G)=options.limit 
          then
              ready := true;
          else 
              # we do a little random testing, to ensure heuristically a 
              # correct result 
              if correct then 
                  result := SCRStrongGenTest(G,[1,10/G.diam,0,0,0,0],orbits,
                                      basesize,base,correct,missing);
              else 
                  result := SCRStrongGenTest2(G,[0,0,1,10/G.diam,0,0]); 
              fi;
              if not(IsPerm(result) and IsOne(result)) then
                  new := [result];
                  ready := false; 
              elif options.random = 1000 then 
                  G.restored := SCRRestoredRecord(G);
                  result := VerifySGS( G.restored, missing, correct );
              elif options.random > 0 then 
                  result := SCRStrongGenTest
                          (G,param,orbits,basesize,base,correct,missing);
              fi;
              if not(IsPerm(result) and IsOne(result)) then
                  if not IsPerm(result) then
                     repeat
                         result := SCRStrongGenTest2(G,[0,0,1,10/G.diam,0,0]);
                     until not(IsPerm(result) and IsOne(result));
                  fi;
                  new := [result];
                  ready := false;
              elif correct or options.random = 0 or options.random = 1000 then
                  ready := true;
              else 
                  result := SCRStrongGenTest2(G,param);
                  if IsPerm(result) and IsOne(result) then
                      ready := true;
                  else 
                      new := [result];
                      ready := false;
                  fi;
              fi; 
              if not ready then 
		Unbind(G.restored); 
                SCRMakeStabStrong (G,new,param,orbits,
                        where,basesize,base,correct,missing,true);
              fi;
          fi;
        od; 
        
        if not IsBound(options.temp) or options.temp = false then 
             if IsBound( G.restored ) then 
                G := G.restored; 
             else 
                G := SCRRestoredRecord(G); 
             fi; 
        else 
             G.basesize := basesize;
             G.correct := correct;
             G.orbits := orbits;
             G.missing := missing;
             G.base := base;
        fi;
        
    fi; # if Length(gens) > 0
    
    
    # return the closure
    return G;

end );

#############################################################################