/usr/share/gap/lib/tietze.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 | #############################################################################
##
#W tietze.gd GAP library Volkmar Felsch
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for finitely presented groups
## (fp groups).
##
#############################################################################
##
## Some global symbolic constants.
##
TZ_NUMGENS := 1;
TZ_NUMRELS := 2;
TZ_TOTAL := 3;
TZ_GENERATORS := 4;
TZ_INVERSES := 5;
TZ_RELATORS := 6;
TZ_LENGTHS := 7;
TZ_FLAGS := 8;
TZ_MODIFIED := 10;
TZ_NUMREDUNDS := 11;
TZ_STATUS := 15;
TZ_LENGTHTIETZE := 21;
TZ_FREEGENS := 9;
# TZ_ITERATOR := 12;
TZ_OCCUR :=21;
TR_TREELENGTH := 3;
TR_PRIMARY := 4;
TR_TREENUMS := 5;
TR_TREEPOINTERS := 6;
TR_TREELAST := 7;
#############################################################################
##
## Some global variables.
##
PrintRecIndent := " ";
TzOptionNames := [ "protected", "eliminationsLimit", "expandLimit",
"generatorsLimit", "lengthLimit", "loopLimit", "printLevel",
"saveLimit", "searchSimultaneous" ];
#############################################################################
##
#A TietzeOrigin( <G> )
##
## <ManSection>
## <Attr Name="TietzeOrigin" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "TietzeOrigin", IsSubgroupFpGroup );
#############################################################################
##
#F AbstractWordTietzeWord( <word>, <fgens> )
##
## <#GAPDoc Label="AbstractWordTietzeWord">
## <ManSection>
## <Func Name="AbstractWordTietzeWord" Arg='word, fgens'/>
##
## <Description>
## assumes <A>fgens</A> to be a list of free group
## generators and <A>word</A> to be a Tietze word in these generators,
## i. e., a list of positive or negative generator numbers.
## It converts <A>word</A> to an abstract word.
## <P/>
## This function simply calls <Ref Func="AssocWordByLetterRep"/>.
## <Example><![CDATA[
## gap> F := FreeGroup( "a", "b", "c" ,"d");
## <free group on the generators [ a, b, c, d ]>
## gap> tzword := TietzeWordAbstractWord(
## > Comm(F.4,F.2) * (F.3^2 * F.2)^-1, GeneratorsOfGroup( F ){[2,3,4]} );
## [ -3, -1, 3, -2, -2 ]
## gap> AbstractWordTietzeWord( tzword, GeneratorsOfGroup( F ){[2,3,4]} );
## d^-1*b^-1*d*c^-2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("AbstractWordTietzeWord");
#############################################################################
##
#F TietzeWordAbstractWord( <word>, <fgens> )
##
## <#GAPDoc Label="TietzeWordAbstractWord">
## <ManSection>
## <Func Name="TietzeWordAbstractWord" Arg='word, fgens'/>
##
## <Description>
## assumes <A>fgens</A> to be a list of free group generators
## and <A>word</A> to be an abstract word in these generators.
## It converts <A>word</A> into a Tietze word,
## i. e., a list of positive or negative generator numbers.
## <P/>
## This function simply calls <Ref Func="LetterRepAssocWord"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym("TietzeWordAbstractWord",LetterRepAssocWord);
#############################################################################
##
#F TzWordAbstractWord( <word> )
#F AbstractWordTzWord(<fam>, <tzword> )
##
## <ManSection>
## <Func Name="TzWordAbstractWord" Arg='word'/>
## <Func Name="AbstractWordTzWord" Arg='fam, tzword'/>
##
## <Description>
## only supported for compatibility.
## </Description>
## </ManSection>
##
DeclareSynonym("TzWordAbstractWord",LetterRepAssocWord);
DeclareSynonym("AbstractWordTzWord",AssocWordByLetterRep);
#############################################################################
##
#F AddGenerator( <P> )
##
## <#GAPDoc Label="AddGenerator">
## <ManSection>
## <Func Name="AddGenerator" Arg='P'/>
##
## <Description>
## extends the presentation <A>P</A> by a new generator.
## <P/>
## Let <M>i</M> be the smallest positive integer which has not yet been used
## as a generator number in the given presentation.
## <Ref Func="AddGenerator"/> defines a new abstract generator <M>x_i</M>
## with the name <C>"_x</C><M>i</M><C>"</C> and adds it to the
## list of generators of <A>P</A>.
## <P/>
## You may access the generator <M>x_i</M> by typing
## <A>P</A><C>!.</C><M>i</M>. However, this
## is only practicable if you are running an interactive job because you
## have to know the value of <M>i</M>. Hence the proper way to access the new
## generator is to write
## <C>GeneratorsOfPresentation(P)[Length(GeneratorsOfPresentation(P))]</C>.
## <Example><![CDATA[
## gap> G := PerfectGroup( 120 );;
## gap> H := Subgroup( G, [ G.1^G.2, G.3 ] );;
## gap> P := PresentationSubgroup( G, H );
## <presentation with 4 gens and 7 rels of total length 21>
## gap> AddGenerator( P );
## #I now the presentation has 5 generators, the new generator is _x7
## gap> gens := GeneratorsOfPresentation( P );
## [ _x1, _x2, _x4, _x5, _x7 ]
## gap> gen := gens[Length( gens )];
## _x7
## gap> gen = P!.7;
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("AddGenerator");
#############################################################################
##
#F AddRelator( <P>, <word> )
##
## <#GAPDoc Label="AddRelator">
## <ManSection>
## <Func Name="AddRelator" Arg='P, word'/>
##
## <Description>
## adds the relator <A>word</A> to the presentation <A>P</A>, probably
## changing the group defined by <A>P</A>.
## <A>word</A> must be an abstract word in the generators of <A>P</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("AddRelator");
#############################################################################
##
#F DecodeTree(<P>)
##
## <#GAPDoc Label="DecodeTree">
## <ManSection>
## <Func Name="DecodeTree" Arg='P'/>
##
## <Description>
## assumes that <A>P</A> is a subgroup presentation provided by the Reduced
## Reidemeister-Schreier or by the Modified Todd-Coxeter method (see
## <Ref Func="PresentationSubgroupRrs"
## Label="for two groups (and a string)"/>,
## <Ref Func="PresentationNormalClosureRrs"/>,
## <Ref Func="PresentationSubgroupMtc"/>).
## It eliminates the secondary generators of <A>P</A>
## (see Section <Ref Sect="Subgroup Presentations"/>) by applying the
## so called <Q>decoding tree</Q> procedure.
## <P/>
## <Ref Func="DecodeTree"/> is called automatically by the command
## <Ref Func="PresentationSubgroupMtc"/> where it
## reduces <A>P</A> to a presentation on the given (primary) subgroup
## generators.
## <Index>secondary subgroup generators</Index>
## <P/>
## In order to explain the effect of this command we need to insert a few
## remarks on the subgroup presentation commands described in section
## <Ref Sect="Subgroup Presentations"/>.
## All these commands have the common property that in the process of
## constructing a presentation for a given subgroup <A>H</A> of a finitely
## presented group <A>G</A> they first build up a highly
## redundant list of generators of <A>H</A> which consists of an (in general
## small) list of <Q>primary</Q> generators, followed by an (in general
## large) list of <Q>secondary</Q> generators, and then construct a
## presentation <M>P_0</M>, say,
## <E>on a sublist of these generators</E> by rewriting
## the defining relators of <A>G</A>.
## This sublist contains all primary, but, at least in general,
## by far not all secondary generators.
## <Index>primary subgroup generators</Index>
## <P/>
## The role of the primary generators depends on the concrete choice of the
## subgroup presentation command. If the Modified Todd-Coxeter method is
## used, they are just the given generators of <A>H</A>,
## whereas in the case of the Reduced Reidemeister-Schreier algorithm they
## are constructed by the program.
## <P/>
## Each of the secondary generators is defined by a word of length two in
## the preceding generators and their inverses. By historical reasons, the
## list of these definitions is called the <E>subgroup generators tree</E>
## though in fact it is not a tree but rather a kind of bush.
## <Index>subgroup generators tree</Index>
## <P/>
## Now we have to distinguish two cases. If <M>P_0</M> has been constructed
## by the Reduced Reidemeister-Schreier routines, it is a presentation of
## <A>H</A>. However, if the Modified Todd-Coxeter routines have been used
## instead, then the relators in <M>P_0</M> are valid relators of <A>H</A>,
## but they do not necessarily define <A>H</A>.
## We handle these cases in turn, starting with the latter one.
## <P/>
## In fact, we could easily receive a presentation of <A>H</A> also in this
## case if we extended <M>P_0</M> by adding to it all the
## secondary generators which are not yet contained in it and all the
## definitions from the generators tree as additional generators and
## relators.
## Then we could recursively eliminate all secondary generators by Tietze
## transformations using the new relators.
## However, this procedure turns out to be too inefficient to
## be of interest.
## <P/>
## Instead, we use the so called <E>decoding tree</E> procedure
## (see <Cite Key="AMW82"/>, <Cite Key="AR84"/>). It proceeds as follows.
## <P/>
## Starting from <M>P = P_0</M>, it runs through a number of steps in each
## of which it eliminates the current <Q>last</Q> generator (with respect to
## the list of all primary and secondary generators). If the last generator
## <A>g</A>, say, is a primary generator, then the procedure terminates.
## Otherwise it checks whether there is a relator in the current
## presentation which can be used to substitute <A>g</A> by a Tietze
## transformation. If so, this is done.
## Otherwise, and only then, the tree definition of <A>g</A> is added to
## <A>P</A> as a new relator, and the generators involved are added as new
## generators if they have not yet been contained in <A>P</A>.
## Subsequently, <A>g</A> is eliminated.
## <P/>
## Note that the extension of <A>P</A> by one or two new generators is
## <E>not</E> a Tietze transformation.
## In general, it will change the isomorphism type
## of the group defined by <A>P</A>.
## However, it is a remarkable property of this procedure, that at the end,
## i.e., as soon as all secondary generators have been eliminated,
## it provides a presentation <M>P = P_1</M>,
## say, which defines a group isomorphic to <A>H</A>. In fact, it is this
## presentation which is returned by the command <Ref Func="DecodeTree"/>
## and hence by the command <Ref Func="PresentationSubgroupMtc"/>.
## <P/>
## If, in the other case, the presentation <M>P_0</M> has been constructed
## by the Reduced Reidemeister-Schreier algorithm,
## then <M>P_0</M> itself is a presentation of <A>H</A>,
## and the corresponding subgroup presentation command
## (<Ref Func="PresentationSubgroupRrs"
## Label="for two groups (and a string)"/> or
## <Ref Func="PresentationNormalClosureRrs"/>) just returns <M>P_0</M>.
## <P/>
## As mentioned in section <Ref Sect="Subgroup Presentations"/>,
## we recommend to further simplify this presentation before you use it.
## The standard way to do this is to start from <M>P_0</M> and to apply
## suitable Tietze transformations,
## e. g., by calling the commands <Ref Func="TzGo"/> or
## <Ref Func="TzGoGo"/>.
## This is probably the most efficient approach, but you will end up with a
## presentation on some unpredictable set of generators.
## As an alternative, &GAP; offers you the <Ref Func="DecodeTree"/> command
## which you can use to eliminate all secondary
## generators (provided that there are no space or time problems). For this
## purpose, the subgroup presentation commands do not only return the
## resulting presentation, but also the tree (together with some associated
## lists) as a kind of side result in a component <A>P</A><C>!.tree</C> of
## the resulting presentation <A>P</A>.
## <P/>
## Note, however, that the decoding tree routines will not work correctly
## any more on a presentation from which generators have already been
## eliminated by Tietze transformations.
## Therefore, to prevent you from getting wrong results by calling
## <Ref Func="DecodeTree"/> in such a situation,
## &GAP; will automatically remove the subgroup generators tree
## from a presentation as soon as one of the generators is substituted by a
## Tietze transformation.
## <P/>
## Nevertheless, a certain misuse of the command is still possible, and we
## want to explicitly warn you from this.
## The reason is that the Tietze option parameters described in
## Section <Ref Sect="Tietze Options"/> apply to
## <Ref Func="DecodeTree"/> as well.
## Hence, in case of inadequate values of these parameters, it may happen that
## <Ref Func="DecodeTree"/> stops before all the secondary generators have
## vanished. In this case &GAP;
## will display an appropriate warning. Then you should change the
## respective parameters and continue the process by calling
## <Ref Func="DecodeTree"/> again. Otherwise, if you would apply Tietze
## transformations, it might happen because of the convention described
## above that the tree is removed and that you end up with a wrong
## presentation.
## <P/>
## After a successful run of <Ref Func="DecodeTree"/> it is convenient to
## further simplify the resulting presentation by suitable Tietze
## transformations.
## <P/>
## As an example of an explicit call of <Ref Func="DecodeTree"/> we compute
## two presentations of a subgroup of order <M>384</M> in a group of order
## <M>6912</M>. In both cases we use the Reduced Reidemeister-Schreier
## algorithm, but in the first run we just apply the Tietze transformations
## offered by the <Ref Func="TzGoGo"/> command with its default parameters,
## whereas in the second run we call the <Ref Func="DecodeTree"/> command
## before.
## <P/>
## <Example><![CDATA[
## gap> F2 := FreeGroup( "a", "b" );;
## gap> G := F2 / [ F2.1*F2.2^2*F2.1^-1*F2.2^-1*F2.1^3*F2.2^-1,
## > F2.2*F2.1^2*F2.2^-1*F2.1^-1*F2.2^3*F2.1^-1 ];;
## gap> a := G.1;; b := G.2;;
## gap> H := Subgroup( G, [ Comm(a^-1,b^-1), Comm(a^-1,b), Comm(a,b) ] );;
## ]]></Example>
## <P/>
## We use the Reduced Reidemeister Schreier method and default Tietze
## transformations to get a presentation for <A>H</A>.
## <P/>
## <Example><![CDATA[
## gap> P := PresentationSubgroupRrs( G, H );
## <presentation with 18 gens and 35 rels of total length 169>
## gap> TzGoGo( P );
## #I there are 3 generators and 20 relators of total length 488
## #I there are 3 generators and 20 relators of total length 466
## ]]></Example>
## <P/>
## We end up with 20 relators of total length 466. Now we repeat the
## procedure, but we call the decoding tree algorithm before doing the Tietze
## transformations.
## <P/>
## <Example><![CDATA[
## gap> P := PresentationSubgroupRrs( G, H );
## <presentation with 18 gens and 35 rels of total length 169>
## gap> DecodeTree( P );
## #I there are 9 generators and 26 relators of total length 185
## #I there are 6 generators and 23 relators of total length 213
## #I there are 3 generators and 20 relators of total length 252
## #I there are 3 generators and 20 relators of total length 244
## gap> TzGoGo( P );
## #I there are 3 generators and 19 relators of total length 168
## #I there are 3 generators and 17 relators of total length 138
## #I there are 3 generators and 15 relators of total length 114
## #I there are 3 generators and 13 relators of total length 96
## #I there are 3 generators and 12 relators of total length 84
## ]]></Example>
## <P/>
## This time we end up with a shorter presentation.
## <P/>
## As an example of an implicit call of the function
## <Ref Func="DecodeTree"/> via the command
## <Ref Func="PresentationSubgroupMtc"/> we handle a subgroup
## of index 240 in a
## group of order 40320 given by a presentation due to
## B. H. Neumann.
## Note that we increase the level of <Ref InfoClass="InfoFpGroup"/>
## temporarily to get some additional output.
## <P/>
## <Example><![CDATA[
## gap> F3 := FreeGroup( "a", "b", "c" );;
## gap> a := F3.1;; b := F3.2;; c := F3.3;;
## gap> G := F3 / [ a^3, b^3, c^3, (a*b)^5, (a^-1*b)^5, (a*c)^4,
## > (a*c^-1)^4, a*b^-1*a*b*c^-1*a*c*a*c^-1, (b*c)^3, (b^-1*c)^4 ];;
## gap> a := G.1;; b := G.2;; c := G.3;;
## gap> H := Subgroup( G, [ a, c ] );;
## gap> SetInfoLevel( InfoFpGroup, 1 );
## gap> P := PresentationSubgroupMtc( G, H );;
## #I index = 240 total = 4737 max = 4507
## #I MTC defined 2 primary and 4444 secondary subgroup generators
## #I there are 246 generators and 617 relators of total length 2893
## #I calling DecodeTree
## #I there are 114 generators and 385 relators of total length 1860
## #I there are 69 generators and 294 relators of total length 1855
## #I there are 43 generators and 235 relators of total length 2031
## #I there are 35 generators and 207 relators of total length 2348
## #I there are 25 generators and 181 relators of total length 3055
## #I there are 19 generators and 165 relators of total length 3290
## #I there are 20 generators and 160 relators of total length 5151
## #I there are 23 generators and 159 relators of total length 8177
## #I there are 25 generators and 159 relators of total length 12241
## #I there are 29 generators and 159 relators of total length 18242
## #I there are 34 generators and 159 relators of total length 27364
## #I there are 38 generators and 159 relators of total length 41480
## #I there are 41 generators and 159 relators of total length 62732
## #I there are 45 generators and 159 relators of total length 88872
## #I there are 46 generators and 159 relators of total length 111092
## #I there are 44 generators and 155 relators of total length 158181
## #I there are 32 generators and 155 relators of total length 180478
## #I there are 7 generators and 133 relators of total length 29897
## #I there are 4 generators and 119 relators of total length 28805
## #I there are 3 generators and 116 relators of total length 35209
## #I there are 2 generators and 111 relators of total length 25658
## #I there are 2 generators and 111 relators of total length 22634
## gap> TzGoGo( P );
## #I there are 2 generators and 108 relators of total length 11760
## #I there are 2 generators and 95 relators of total length 6482
## #I there are 2 generators and 38 relators of total length 1464
## #I there are 2 generators and 8 relators of total length 116
## #I there are 2 generators and 7 relators of total length 76
## #I there are 2 generators and 6 relators of total length 66
## #I there are 2 generators and 6 relators of total length 52
## gap> TzPrintGenerators( P );
## #I 1. _x1 26 occurrences
## #I 2. _x2 26 occurrences
## gap> TzPrint( P );
## #I generators: [ _x1, _x2 ]
## #I relators:
## #I 1. 3 [ 1, 1, 1 ]
## #I 2. 3 [ 2, 2, 2 ]
## #I 3. 8 [ 2, -1, 2, -1, 2, -1, 2, -1 ]
## #I 4. 8 [ 2, 1, 2, 1, 2, 1, 2, 1 ]
## #I 5. 14 [ -1, -2, 1, 2, 1, -2, -1, 2, 1, -2, -1, -2, 1, 2 ]
## #I 6. 16 [ 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2 ]
## gap> K := FpGroupPresentation( P );
## <fp group on the generators [ _x1, _x2 ]>
## gap> SetInfoLevel( InfoFpGroup, 0 );
## gap> Size( K );
## 168
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("DecodeTree");
#############################################################################
##
#F FpGroupPresentation( <P> [,<nam>] )
##
## <#GAPDoc Label="FpGroupPresentation">
## <ManSection>
## <Func Name="FpGroupPresentation" Arg='P [,nam]'/>
##
## <Description>
## constructs an f. p. group as defined by the given Tietze
## presentation <A>P</A>.
## <Example><![CDATA[
## gap> h := FpGroupPresentation( p );
## <fp group on the generators [ a, b ]>
## gap> h = g;
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("FpGroupPresentation");
#############################################################################
##
#F PresentationFpGroup( <G> [,<printlevel>] ) . . . create a presentation
##
## <#GAPDoc Label="PresentationFpGroup">
## <ManSection>
## <Func Name="PresentationFpGroup" Arg='G [,printlevel]'/>
##
## <Description>
## creates a presentation, i. e., a Tietze object, for the given finitely
## presented group <A>G</A>. This presentation will be exactly as the
## presentation of <A>G</A> and <E>no</E> initial Tietze transformations
## are applied to it.
## <P/>
## The optional <A>printlevel</A> parameter can be used to restrict or to
## extend the amount of output provided by Tietze transformation
## commands when being applied to the created presentation. The
## default value 1 is designed for interactive use and implies
## explicit messages to be displayed by most of these commands. A
## <A>printlevel</A> value of 0 will suppress these messages, whereas a
## <A>printlevel</A> value of 2 will enforce some additional output.
## <Example><![CDATA[
## gap> f := FreeGroup( "a", "b" );
## <free group on the generators [ a, b ]>
## gap> g := f / [ f.1^3, f.2^2, (f.1*f.2)^3 ];
## <fp group on the generators [ a, b ]>
## gap> p := PresentationFpGroup( g );
## <presentation with 2 gens and 3 rels of total length 11>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("PresentationFpGroup");
#############################################################################
##
#F PresentationRegularPermutationGroup(<G>)
#F PresentationRegularPermutationGroupNC(<G>)
##
## <ManSection>
## <Func Name="PresentationRegularPermutationGroup" Arg='G'/>
## <Func Name="PresentationRegularPermutationGroupNC" Arg='G'/>
##
## <Description>
## constructs a presentation from the given regular permutation group using
## the algorithm which has been described in <Cite Key="Can73"/> and <Cite Key="Neu82"/>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("PresentationRegularPermutationGroup");
DeclareGlobalFunction("PresentationRegularPermutationGroupNC");
#############################################################################
##
#F PresentationViaCosetTable( <G>[, <F>, <words>] )
##
## <#GAPDoc Label="PresentationViaCosetTable">
## <ManSection>
## <Func Name="PresentationViaCosetTable" Arg='G[, F, words]'/>
##
## <Description>
## constructs a presentation for a given concrete finite group.
## It applies the relations finding algorithm which has been described in
## <Cite Key="Can73"/> and <Cite Key="Neu82"/>.
## It automatically applies Tietze transformations to the presentation
## found.
## <P/>
## If only a group <A>G</A> has been specified, the single stage algorithm
## is applied.
## <P/>
## The operation <Ref Func="IsomorphismFpGroup"/> in contrast uses a
## multiple-stage algorithm using a chief series and stabilizer chains.
## It usually should be used rather than
## <Ref Func="PresentationViaCosetTable"/>.
## (It does not apply Tietze transformations automatically.)
## <P/>
## If the two stage algorithm is to be used,
## <Ref Func="PresentationViaCosetTable"/> expects a subgroup <A>H</A> of
## <A>G</A> to be provided in form of two additional arguments <A>F</A> and
## <A>words</A>, where <A>F</A> is a free group with the same number
## of generators as <A>G</A>, and <A>words</A> is a list of words in the
## generators of <A>F</A> which supply a list of generators of <A>H</A> if
## they are evaluated as words in the corresponding generators of <A>G</A>.
## <Example><![CDATA[
## gap> G := GeneralLinearGroup( 2, 7 );
## GL(2,7)
## gap> GeneratorsOfGroup( G );
## [ [ [ Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)^0 ] ],
## [ [ Z(7)^3, Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ] ]
## gap> Size( G );
## 2016
## gap> P := PresentationViaCosetTable( G );
## <presentation with 2 gens and 5 rels of total length 46>
## gap> TzPrintRelators( P );
## #I 1. f2^3
## #I 2. f1^6
## #I 3. (f1^-1*f2^-1)^6
## #I 4. f1*f2*f1^-1*f2^-1*f1*f2^-1*f1^-1*f2*f1*f2^-1*f1^-1*f2^-1
## #I 5. f1^-3*f2*f1*f2*(f1^-1*f2^-1)^2*f1^-2*f2
## ]]></Example>
## <P/>
## The two stage algorithm saves an essential amount of space by
## constructing two coset tables of lengths <M>|H|</M> and <M>|G|/|H|</M>
## instead of just one coset table of length <M>|G|</M>.
## The next example shows an application
## of this option in the case of a subgroup of size 7920 and index 12 in a
## permutation group of size 95040.
## <P/>
## <Example><![CDATA[
## gap> M12 := Group( [ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6),
## > (1,12)(2,11)(3,6)(4,8)(5,9)(7,10) ], () );;
## gap> F := FreeGroup( "a", "b", "c" );
## <free group on the generators [ a, b, c ]>
## gap> words := [ F.1, F.2 ];
## [ a, b ]
## gap> P := PresentationViaCosetTable( M12, F, words );
## <presentation with 3 gens and 10 rels of total length 97>
## gap> G := FpGroupPresentation( P );
## <fp group on the generators [ a, b, c ]>
## gap> RelatorsOfFpGroup( G );
## [ c^2, b^4, (a*c)^3, (a*b^-2)^3, a^11,
## a^2*b*a^-2*b^-1*(b^-1*a)^2*a*b^-1, (a*(b*a^-1)^2*b^-1)^2,
## a^2*b*a^2*b^-2*a^-1*b*(a^-1*b^-1)^2,
## (a*b)^2*a^2*b^-1*a^-1*b^-1*a*c*b*c, a^2*(a^2*b)^2*a^-2*c*a*b*a^-1*c
## ]
## ]]></Example>
## <P/>
## Before it is returned, the resulting presentation is being simplified by
## appropriate calls of the function <Ref Func="SimplifyPresentation"/>
## (see <Ref Sect="Tietze Transformations"/>),
## but without allowing any eliminations of generators.
## This restriction guarantees that we get a bijection between the list of
## generators of <A>G</A> and the list of generators in the presentation.
## Hence, if the generators of <A>G</A> are redundant and if you don't care
## for the bijection, you may get a shorter presentation by calling the
## function <Ref Func="SimplifyPresentation"/>,
## now without this restriction, once more yourself.
## <P/>
## <Example><![CDATA[
## gap> H := Group(
## > [ (2,5,3), (2,7,5), (1,8,4), (1,8,6), (4,8,6), (3,5,7) ], () );;
## gap> P := PresentationViaCosetTable( H );
## <presentation with 6 gens and 12 rels of total length 42>
## gap> SimplifyPresentation( P );
## #I there are 4 generators and 10 relators of total length 36
## ]]></Example>
## <P/>
## If you apply the function <Ref Func="FpGroupPresentation"/> to the
## resulting presentation you will get a finitely presented group isomorphic
## to <A>G</A>.
## Note, however, that the function <Ref Func="IsomorphismFpGroup"/>
## is recommended for this purpose.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("PresentationViaCosetTable");
#############################################################################
##
#F RelsViaCosetTable(<G>,<cosets>,<F>)
#F RelsViaCosetTable(<G>,<cosets>,<F>,<ggens>)
#F RelsViaCosetTable(<G>,<cosets>,<F>,<words>,<H>,<R1>)
##
## <ManSection>
## <Func Name="RelsViaCosetTable" Arg='G,cosets,F'/>
## <Func Name="RelsViaCosetTable" Arg='G,cosets,F,ggens'/>
## <Func Name="RelsViaCosetTable" Arg='G,cosets,F,words,H,R1'/>
##
## <Description>
## constructs a defining set of relators for the given
## concrete group using the algorithm
## which has been described in <Cite Key="Can73"/> and <Cite Key="Neu82"/>.
## <P/>
## It is a subroutine of function <C>PresentationViaCosetTable</C>. Hence its
## input and output are specifically designed only for this purpose, and it
## does not check the arguments.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("RelsViaCosetTable");
#############################################################################
##
#F RemoveRelator( <P>, <n> )
##
## <#GAPDoc Label="RemoveRelator">
## <ManSection>
## <Func Name="RemoveRelator" Arg='P, n'/>
##
## <Description>
## removes the <A>n</A>-th relator from the presentation <A>P</A>,
## probably changing the group defined by <A>P</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("RemoveRelator");
#############################################################################
##
#F SimplifiedFpGroup( <G> )
##
## <#GAPDoc Label="SimplifiedFpGroup">
## <ManSection>
## <Func Name="SimplifiedFpGroup" Arg='G'/>
##
## <Description>
## applies Tietze transformations to a copy of the presentation of the
## given finitely presented group <A>G</A> in order to reduce it
## with respect to the number of generators, the number of relators,
## and the relator lengths.
## <P/>
## <Ref Func="SimplifiedFpGroup"/> returns a group isomorphic to
## the given one with a presentation which has been tried to simplify
## via Tietze transformations.
## <P/>
## If the connection to the original group is important, then the operation
## <Ref Func="IsomorphismSimplifiedFpGroup"/> should be used instead.
## <P/>
## <Example><![CDATA[
## gap> F6 := FreeGroup( 6, "G" );;
## gap> G := F6 / [ F6.1^2, F6.2^2, F6.4*F6.6^-1, F6.5^2, F6.6^2,
## > F6.1*F6.2^-1*F6.3, F6.1*F6.5*F6.3^-1, F6.2*F6.4^-1*F6.3,
## > F6.3*F6.4*F6.5^-1, F6.1*F6.6*F6.3^-2, F6.3^4 ];;
## gap> H := SimplifiedFpGroup( G );
## <fp group on the generators [ G1, G3 ]>
## gap> RelatorsOfFpGroup( H );
## [ G1^2, (G1*G3^-1)^2, G3^4 ]
## ]]></Example>
## <P/>
## In fact, the command
## <P/>
## <Log><![CDATA[
## H := SimplifiedFpGroup( G );
## ]]></Log>
## <P/>
## is an abbreviation of the command sequence
## <P/>
## <Log><![CDATA[
## P := PresentationFpGroup( G, 0 );;
## SimplifyPresentation( P );
## H := FpGroupPresentation( P );
## ]]></Log>
## <P/>
## which applies a rather simple-minded strategy of Tietze transformations
## to the intermediate presentation <A>P</A>.
## If, for some concrete group, the resulting presentation is unsatisfying,
## then you should try a more sophisticated, interactive use of the
## available Tietze transformation commands
## (see <Ref Sect="Tietze Transformations"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("SimplifiedFpGroup");
############################################################################
##
#F TzCheckRecord
##
## <ManSection>
## <Func Name="TzCheckRecord" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TzCheckRecord");
#############################################################################
##
#F TzEliminate( <P>[, <gen>] )
#F TzEliminate( <P>[, <n>] )
##
## <#GAPDoc Label="TzEliminate">
## <ManSection>
## <Heading>TzEliminate</Heading>
## <Func Name="TzEliminate" Arg='P[, gen]'
## Label="for a presentation (and a generator)"/>
## <Func Name="TzEliminate" Arg='P[, n]'
## Label="for a presentation (and an integer)"/>
##
## <Description>
## tries to eliminate a generator from a presentation <A>P</A> via
## Tietze transformations.
## <P/>
## Any relator which contains some generator just once can be used to
## substitute that generator by a word in the remaining generators.
## If such generators and relators exist, then
## <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
## chooses a generator for which the product of its number of occurrences
## and the length of the substituting word is minimal,
## and then it eliminates this generator from the presentation,
## provided that the resulting total length of the relators does not exceed
## the associated Tietze option parameter <C>spaceLimit</C>
## (see <Ref Sect="Tietze Options"/>). The default value of that parameter
## is <Ref Var="infinity"/>, but you may alter it appropriately.
## <P/>
## If a generator <A>gen</A> has been specified,
## <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
## eliminates it if possible, i. e. if there is a relator in which
## <A>gen</A> occurs just once.
## If no second argument has been specified,
## <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
## eliminates some appropriate generator if possible and if the resulting
## total length of the relators will not exceed the Tietze options parameter
## <C>lengthLimit</C>.
## <P/>
## If an integer <A>n</A> has been specified,
## <Ref Func="TzEliminate" Label="for a presentation (and an integer)"/>
## tries to eliminate up to <A>n</A> generators.
## Note that the calls <C>TzEliminate(<A>P</A>)</C> and
## <C>TzEliminate(<A>P</A>,1)</C> are equivalent.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzEliminate");
#############################################################################
##
#F TzEliminateFromTree( <P> )
##
## <ManSection>
## <Func Name="TzEliminateFromTree" Arg='P'/>
##
## <Description>
## <Ref Func="TzEliminateFromTree"/> eliminates the last Tietze generator.
## If that generator cannot be isolated in any Tietze relator,
## then its definition is taken from the tree and added as an additional
## Tietze relator, extending the set of Tietze generators appropriately,
## if necessary.
## However, the elimination will not be performed if the resulting total
## length of the relators cannot be guaranteed to not exceed the parameter
## <C>lengthLimit</C>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TzEliminateFromTree");
#############################################################################
##
#F TzEliminateGen( <P>, <n> )
##
## <ManSection>
## <Func Name="TzEliminateGen" Arg='P, n'/>
##
## <Description>
## eliminates the Tietze generator <C>GeneratorsOfPresentation(P)[n]</C>
## if possible, i. e. if that generator can be isolated in some appropriate
## Tietze relator. However, the elimination will not be performed if the
## resulting total length of the relators cannot be guaranteed to not exceed
## the parameter <C>lengthLimit</C>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TzEliminateGen");
#############################################################################
##
#F TzEliminateGen1( <P> )
##
## <ManSection>
## <Func Name="TzEliminateGen1" Arg='P'/>
##
## <Description>
## tries to eliminate a Tietze generator: If there are
## Tietze generators which occur just once in certain Tietze relators, then
## one of them is chosen for which the product of the length of its minimal
## defining word and the number of its occurrences is minimal. However,
## the elimination will not be performed if the resulting total length of
## the relators cannot be guaranteed to not exceed the parameter
## <C>lengthLimit</C>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TzEliminateGen1");
#############################################################################
##
#F TzEliminateGens( <P> [, <decode>] )
##
## <ManSection>
## <Func Name="TzEliminateGens" Arg='P [, decode]'/>
##
## <Description>
## <Ref Func="TzEliminateGens"/> repeatedly eliminates generators from the
## presentation of the given group until at least one of the following
## conditions is violated:
## <P/>
## <Enum>
## <Item>
## The current number of generators is not greater than the
## parameter <C>generatorsLimit</C>.
## </Item>
## <Item>
## The number of generators eliminated so far is less than
## the parameter <C>eliminationsLimit</C>.
## </Item>
## <Item>
## The total length of the relators has not yet grown to a percentage
## greater than the parameter <C>expandLimit</C>.
## </Item>
## <Item>
## The next elimination will not extend the total length to a value
## greater than the parameter <C>lengthLimit</C>.
## </Item>
## </Enum>
## <P/>
## If a second argument has been specified, then it is assumed that we
## are in the process of decoding a tree.
## <P/>
## If not, then the function will not eliminate any protected generators.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TzEliminateGens");
#############################################################################
##
#F TzFindCyclicJoins( <P> )
##
## <#GAPDoc Label="TzFindCyclicJoins">
## <ManSection>
## <Func Name="TzFindCyclicJoins" Arg='P'/>
##
## <Description>
## searches for power and commutator relators in order
## to find pairs of generators which generate a common cyclic subgroup.
## It uses these pairs to introduce new relators, but it does not introduce
## any new generators as is done by <Ref Func="TzSubstituteCyclicJoins"/>.
## <P/>
## More precisely:
## <Ref Func="TzFindCyclicJoins"/> searches for pairs of generators <M>a</M>
## and <M>b</M> such that (possibly after inverting or conjugating some
## relators) the set of relators contains the commutator <M>[a,b]</M>,
## a power <M>a^n</M>, and a product of the form <M>a^s b^t</M>
## with <M>s</M> prime to <M>n</M>.
## For each such pair, <Ref Func="TzFindCyclicJoins"/> uses the
## Euclidean algorithm to express <M>a</M> as a power of <M>b</M>,
## and then it eliminates <M>a</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzFindCyclicJoins");
############################################################################
##
#F TzGeneratorExponents(<P>)
##
## <ManSection>
## <Func Name="TzGeneratorExponents" Arg='P'/>
##
## <Description>
## <Ref Func="TzGeneratorExponents"/> tries to find exponents for the
## Tietze generators and returns them in a list parallel to the list of the
## generators.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TzGeneratorExponents");
#############################################################################
##
#F TzGo( <P>[, <silent>] )
##
## <#GAPDoc Label="TzGo">
## <ManSection>
## <Func Name="TzGo" Arg='P[, silent]'/>
##
## <Description>
## automatically performs suitable Tietze transformations of the given
## presentation <A>P</A>. It is perhaps the most convenient one among the
## interactive Tietze transformation commands. It offers a kind of default
## strategy which, in general, saves you from explicitly calling the
## lower-level commands it involves.
## <P/>
## If <A>silent</A> is specified as <K>true</K>,
## the printing of the status line by <Ref Func="TzGo"/> is suppressed
## if the Tietze option <C>printLevel</C>
## (see <Ref Sect="Tietze Options"/>) has a value less than <M>2</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzGo");
############################################################################
##
#F SimplifyPresentation(<P>)
##
## <#GAPDoc Label="SimplifyPresentation">
## <ManSection>
## <Func Name="SimplifyPresentation" Arg='P'/>
##
## <Description>
## <Ref Func="SimplifyPresentation"/> is a synonym for <Ref Func="TzGo"/>.
## <Example><![CDATA[
## gap> F2 := FreeGroup( "a", "b" );;
## gap> G := F2 / [ F2.1^9, F2.2^2, (F2.1*F2.2)^4, (F2.1^2*F2.2)^3 ];;
## gap> a := G.1;; b := G.2;;
## gap> H := Subgroup( G, [ (a*b)^2, (a^-1*b)^2 ] );;
## gap> Index( G, H );
## 408
## gap> P := PresentationSubgroup( G, H );
## <presentation with 8 gens and 36 rels of total length 111>
## gap> PrimaryGeneratorWords( P );
## [ b, a*b*a ]
## gap> TzOptions( P ).protected := 2;
## 2
## gap> TzOptions( P ).printLevel := 2;
## 2
## gap> SimplifyPresentation( P );
## #I eliminating _x7 = _x5^-1
## #I eliminating _x5 = _x4
## #I eliminating _x18 = _x3
## #I eliminating _x8 = _x3
## #I there are 4 generators and 8 relators of total length 21
## #I there are 4 generators and 7 relators of total length 18
## #I eliminating _x4 = _x3^-1*_x2^-1
## #I eliminating _x3 = _x2*_x1^-1
## #I there are 2 generators and 4 relators of total length 14
## #I there are 2 generators and 4 relators of total length 13
## #I there are 2 generators and 3 relators of total length 9
## gap> TzPrintRelators( P );
## #I 1. _x1^2
## #I 2. _x2^3
## #I 3. (_x2*_x1)^2
## ]]></Example>
## <P/>
## Roughly speaking, <Ref Func="TzGo"/> consists of a loop over a
## procedure which involves two phases: In the <E>search phase</E> it calls
## <Ref Func="TzSearch"/> and <Ref Func="TzSearchEqual"/> described below
## which try to reduce the relator lengths by substituting common subwords
## of relators, in the <E>elimination phase</E> it calls the command
## <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
## described below (or, more precisely, a subroutine of
## <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
## in order to save some administrative overhead) which tries to eliminate
## generators that can be expressed as words in the remaining generators.
## <P/>
## If <Ref Func="TzGo"/> succeeds in reducing the number of generators,
## the number of relators, or the total length of all relators, it
## displays the new status before returning (provided that you did not set
## the print level to zero). However, it does not provide any output if all
## these three values have remained unchanged, even if the command
## <Ref Func="TzSearchEqual"/> involved has changed the presentation
## such that another call of <Ref Func="TzGo"/> might provide further
## progress.
## Hence, in such a case it makes sense to repeat the call of the command
## for several times (or to call the command <Ref Func="TzGoGo"/> instead).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
SimplifyPresentation := TzGo;
############################################################################
##
#F TzGoGo(<P>)
##
## <#GAPDoc Label="TzGoGo">
## <ManSection>
## <Func Name="TzGoGo" Arg='P'/>
##
## <Description>
## calls the command <Ref Func="TzGo"/> again and again until it does not
## reduce the presentation any more.
## <P/>
## The result of the Tietze transformations can be affected substantially by
## the options parameters (see <Ref Sect="Tietze Options"/>).
## To demonstrate the effect of the <C>eliminationsLimit</C> parameter,
## we will give an example in which we handle a subgroup of index 240 in a
## group of order 40320 given by a presentation due to B. H. Neumann.
## First we construct a presentation of the subgroup, and then we apply to
## it the command <Ref Func="TzGoGo"/> for different
## values of the parameter <C>eliminationsLimit</C>
## (including the default value 100). In fact, we also alter the
## <C>printLevel</C> parameter, but this is only done in order to suppress
## most of the output. In all cases the resulting presentations cannot be
## improved any more by applying the command <Ref Func="TzGoGo"/> again,
## i.e., they are the best results which we can get without substituting new
## generators.
## <P/>
## <Example><![CDATA[
## gap> F3 := FreeGroup( "a", "b", "c" );;
## gap> G := F3 / [ F3.1^3, F3.2^3, F3.3^3, (F3.1*F3.2)^5,
## > (F3.1^-1*F3.2)^5, (F3.1*F3.3)^4, (F3.1*F3.3^-1)^4,
## > F3.1*F3.2^-1*F3.1*F3.2*F3.3^-1*F3.1*F3.3*F3.1*F3.3^-1,
## > (F3.2*F3.3)^3, (F3.2^-1*F3.3)^4 ];;
## gap> a := G.1;; b := G.2;; c := G.3;;
## gap> H := Subgroup( G, [ a, c ] );;
## gap> for i in [ 61, 62, 63, 90, 97 ] do
## > Pi := PresentationSubgroup( G, H );
## > TzOptions( Pi ).eliminationsLimit := i;
## > Print("#I eliminationsLimit set to ",i,"\n");
## > TzOptions( Pi ).printLevel := 0;
## > TzGoGo( Pi );
## > TzPrintStatus( Pi );
## > od;
## #I eliminationsLimit set to 61
## #I there are 2 generators and 104 relators of total length 7012
## #I eliminationsLimit set to 62
## #I there are 2 generators and 7 relators of total length 56
## #I eliminationsLimit set to 63
## #I there are 3 generators and 97 relators of total length 5998
## #I eliminationsLimit set to 90
## #I there are 3 generators and 11 relators of total length 68
## #I eliminationsLimit set to 97
## #I there are 4 generators and 109 relators of total length 3813
## ]]></Example>
## <P/>
## Similarly, we demonstrate the influence of the <C>saveLimit</C> parameter
## by just continuing the preceding example for some different values of the
## <C>saveLimit</C> parameter (including its default value 10), but without
## changing the <C>eliminationsLimit</C> parameter which keeps its default
## value 100.
## <P/>
## <Example><![CDATA[
## gap> for i in [ 7 .. 11 ] do
## > Pi := PresentationSubgroup( G, H );
## > TzOptions( Pi ).saveLimit := i;
## > Print( "#I saveLimit set to ", i, "\n" );
## > TzOptions( Pi ).printLevel := 0;
## > TzGoGo( Pi );
## > TzPrintStatus( Pi );
## > od;
## #I saveLimit set to 7
## #I there are 3 generators and 99 relators of total length 2713
## #I saveLimit set to 8
## #I there are 2 generators and 103 relators of total length 11982
## #I saveLimit set to 9
## #I there are 2 generators and 6 relators of total length 41
## #I saveLimit set to 10
## #I there are 3 generators and 118 relators of total length 13713
## #I saveLimit set to 11
## #I there are 3 generators and 11 relators of total length 58
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzGoGo");
#############################################################################
##
#F TzHandleLength1Or2Relators( <P> )
##
## <ManSection>
## <Func Name="TzHandleLength1Or2Relators" Arg='P'/>
##
## <Description>
## <Ref Func="TzHandleLength1Or2Relators"/> searches for relators of length 1 or 2 and
## performs suitable Tietze transformations for each of them:
## <P/>
## Generators occurring in relators of length 1 are eliminated.
## <P/>
## Generators occurring in square relators of length 2 are marked to be
## involutions.
## <P/>
## If a relator of length 2 involves two different generators, then the
## generator with the larger number is substituted by the other one in all
## relators and finally eliminated from the set of generators.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TzHandleLength1Or2Relators");
#############################################################################
##
#F GeneratorsOfPresentation(<P>)
##
## <#GAPDoc Label="GeneratorsOfPresentation">
## <ManSection>
## <Func Name="GeneratorsOfPresentation" Arg='P'/>
##
## <Description>
## returns a list of free generators that is a shallow copy
## (see <Ref Func="ShallowCopy"/>) of the current
## generators of the presentation <A>P</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("GeneratorsOfPresentation");
#############################################################################
##
#F TzInitGeneratorImages( <P> )
##
## <#GAPDoc Label="TzInitGeneratorImages">
## <ManSection>
## <Func Name="TzInitGeneratorImages" Arg='P'/>
##
## <Description>
## expects <A>P</A> to be a presentation. It defines the current generators
## to be the <Q>old generators</Q> of <A>P</A> and initializes the
## (pre)image tracing.
## See <Ref Func="TzImagesOldGens"/> and <Ref Func="TzPreImagesNewGens"/>
## for details.
## <P/>
## You can reinitialize the tracing of the generator images at any later
## state by just calling the function <Ref Func="TzInitGeneratorImages"/>
## again.
## <P/>
## Note:
## A subsequent call of the function <Ref Func="DecodeTree"/> will imply
## that the images and preimages are deleted and reinitialized
## after decoding the tree.
## <P/>
## Moreover, if you introduce a new generator by calling the function
## <Ref Func="AddGenerator"/> described
## in Section <Ref Sect="Changing Presentations"/>, this
## new generator cannot be traced in the old generators.
## Therefore <Ref Func="AddGenerator"/> will terminate the tracing of the
## generator images and preimages and delete the respective lists
## whenever it is called.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzInitGeneratorImages");
#############################################################################
##
#F OldGeneratorsOfPresentation(<P>)
##
## <#GAPDoc Label="OldGeneratorsOfPresentation">
## <ManSection>
## <Func Name="OldGeneratorsOfPresentation" Arg='P'/>
##
## <Description>
## assumes that <A>P</A> is a presentation for which the generator images
## and preimages are being traced under Tietze transformations. It
## returns the list of old generators of <A>P</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("OldGeneratorsOfPresentation");
#############################################################################
##
#F TzImagesOldGens(<P>)
##
## <#GAPDoc Label="TzImagesOldGens">
## <ManSection>
## <Func Name="TzImagesOldGens" Arg='P'/>
##
## <Description>
## assumes that <A>P</A> is a presentation for which the generator images
## and preimages are being traced under Tietze transformations. It
## returns a list <M>l</M> of words in the (current)
## <Ref Func="GeneratorsOfPresentation"/> value of <A>P</A>
## such that the <M>i</M>-th word
## <M>l[i]</M> represents the <M>i</M>-th old generator of <A>P</A>, i. e.,
## the <M>i</M>-th entry of the <Ref Func="OldGeneratorsOfPresentation"/>
## value of <A>P</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzImagesOldGens");
#############################################################################
##
#F TzPreImagesNewGens(<P>)
##
## <#GAPDoc Label="TzPreImagesNewGens">
## <ManSection>
## <Func Name="TzPreImagesNewGens" Arg='P'/>
##
## <Description>
## assumes that <A>P</A> is a presentation for which the generator images
## and preimages are being traced under Tietze transformations.
## It returns a list <M>l</M> of words in the old generators of <A>P</A>
## (the <Ref Func="OldGeneratorsOfPresentation"/> value of <A>P</A>)
## such that the <M>i</M>-th entry of <M>l</M>
## represents the <M>i</M>-th (current) generator of <A>P</A>
## (the <Ref Func="GeneratorsOfPresentation"/> value of <A>P</A>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzPreImagesNewGens");
#############################################################################
##
#F TzMostFrequentPairs( <P>, <n> )
##
## <ManSection>
## <Func Name="TzMostFrequentPairs" Arg='P, n'/>
##
## <Description>
## <Ref Func="TzMostFrequentPairs"/> returns a list describing the <A>n</A>
## most frequently occurring relator subwords of the form <M>g_1 g_2</M>,
## where <M>g_1</M> and <M>g_2</M> are different generators or their
## inverses.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TzMostFrequentPairs");
############################################################################
##
#F TzNewGenerator(<P>)
##
## <#GAPDoc Label="TzNewGenerator">
## <ManSection>
## <Func Name="TzNewGenerator" Arg='P'/>
##
## <Description>
## is an internal function which defines a new abstract generator and
## adds it to the presentation <A>P</A>.
## It is called by <Ref Func="AddGenerator"/> and
## by several Tietze transformation commands. As it does not know which
## global lists have to be kept consistent, you should not call it.
## Instead, you should call the function <Ref Func="AddGenerator"/>,
## if needed.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzNewGenerator");
#############################################################################
##
#F TzPrint( <P>[, <list>] )
##
## <#GAPDoc Label="TzPrint">
## <ManSection>
## <Func Name="TzPrint" Arg='P[, list]'/>
##
## <Description>
## prints the current generators of the given presentation <A>P</A>,
## and prints the relators of <A>P</A> as Tietze words (without converting
## them back to abstract words as the functions
## <Ref Func="TzPrintRelators"/> and <Ref Func="TzPrintPresentation"/> do).
## The optional second argument can be used to specify the numbers of the
## relators to be printed.
## Default: all relators are printed.
## <Example><![CDATA[
## gap> TzPrint( P );
## #I generators: [ f1, f2, f3 ]
## #I relators:
## #I 1. 2 [ 3, 3 ]
## #I 2. 4 [ 2, 2, 2, 2 ]
## #I 3. 4 [ -2, 3, -2, 3 ]
## #I 4. 5 [ 1, 1, 1, 1, 1 ]
## #I 5. 5 [ 1, 1, 2, 1, -2 ]
## #I 6. 8 [ -1, 3, 1, 3, -1, 2, 2, 3 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzPrint");
#############################################################################
##
#F TzPrintGeneratorImages(<P>)
##
## <#GAPDoc Label="TzPrintGeneratorImages">
## <ManSection>
## <Func Name="TzPrintGeneratorImages" Arg='P'/>
##
## <Description>
## assumes that <A>P</A> is a presentation for which the generator images
## and preimages are being traced under Tietze transformations. It
## displays the preimages of the current generators as Tietze words in
## the old generators, and the images of the old generators as Tietze
## words in the current generators.
## <Example><![CDATA[
## gap> G := PerfectGroup( IsSubgroupFpGroup, 960, 1 );
## A5 2^4
## gap> P := PresentationFpGroup( G );
## <presentation with 6 gens and 21 rels of total length 84>
## gap> TzInitGeneratorImages( P );
## gap> TzGo( P );
## #I there are 3 generators and 11 relators of total length 96
## #I there are 3 generators and 10 relators of total length 81
## gap> TzPrintGeneratorImages( P );
## #I preimages of current generators as Tietze words in the old ones:
## #I 1. [ 1 ]
## #I 2. [ 2 ]
## #I 3. [ 4 ]
## #I images of old generators as Tietze words in the current ones:
## #I 1. [ 1 ]
## #I 2. [ 2 ]
## #I 3. [ 1, -2, 1, 3, 1, 2, 1 ]
## #I 4. [ 3 ]
## #I 5. [ -2, 1, 3, 1, 2 ]
## #I 6. [ 1, 3, 1 ]
## gap> gens := GeneratorsOfPresentation( P );
## [ a, b, t ]
## gap> oldgens := OldGeneratorsOfPresentation( P );
## [ a, b, s, t, u, v ]
## gap> TzImagesOldGens( P );
## [ a, b, a*b^-1*a*t*a*b*a, t, b^-1*a*t*a*b, a*t*a ]
## gap> for i in [ 1 .. Length( oldgens ) ] do
## > Print( oldgens[i], " = ", TzImagesOldGens( P )[i], "\n" );
## > od;
## a = a
## b = b
## s = a*b^-1*a*t*a*b*a
## t = t
## u = b^-1*a*t*a*b
## v = a*t*a
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintGeneratorImages");
#############################################################################
##
#F TzPrintGenerators( <P>[, <list>] )
##
## <#GAPDoc Label="TzPrintGenerators">
## <ManSection>
## <Func Name="TzPrintGenerators" Arg='P[, list]'/>
##
## <Description>
## prints the generators of the given Tietze presentation <A>P</A> together
## with the number of their occurrences in the relators. The optional second
## argument can be used to specify the numbers of the generators to be
## printed. Default: all generators are printed.
## <Example><![CDATA[
## gap> G := Group( [ (1,2,3,4,5), (2,3,5,4), (1,6)(3,4) ], () );
## Group([ (1,2,3,4,5), (2,3,5,4), (1,6)(3,4) ])
## gap> P := PresentationViaCosetTable( G );
## <presentation with 3 gens and 6 rels of total length 28>
## gap> TzPrintGenerators( P );
## #I 1. f1 11 occurrences
## #I 2. f2 10 occurrences
## #I 3. f3 7 occurrences involution
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintGenerators");
#############################################################################
##
#F TzPrintLengths( <P> )
##
## <#GAPDoc Label="TzPrintLengths">
## <ManSection>
## <Func Name="TzPrintLengths" Arg='P'/>
##
## <Description>
## prints just a list of all relator lengths of the given presentation
## <A>P</A>.
## <Example><![CDATA[
## gap> TzPrintLengths( P );
## [ 2, 4, 4, 5, 5, 8 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintLengths");
#############################################################################
##
#A TzOptions(<P>)
##
## <#GAPDoc Label="TzOptions">
## <ManSection>
## <Attr Name="TzOptions" Arg='P'/>
##
## <Description>
## is a record whose components direct the heuristics applied by the Tietze
## transformation functions.
## <P/>
## You may alter the value of any of these Tietze options by just assigning
## a new value to the respective record component.
## <P/>
## The following Tietze options are recognized by &GAP;:
## <P/>
## <List>
## <Mark><C>protected</C>:</Mark>
## <Item>
## The first <C>protected</C> generators in a presentation <A>P</A> are
## protected from being eliminated by the Tietze transformations
## functions. There are only two exceptions: The option
## <C>protected</C> is ignored by the functions
## <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
## and <Ref Func="TzSubstitute" Label="for a presentation and a word"/>
## because they explicitly specify the generator to be eliminated.
## The default value of <C>protected</C> is 0.
## </Item>
## <Mark><C>eliminationsLimit</C>:</Mark>
## <Item>
## Whenever the elimination phase of the <Ref Func="TzGo"/> command is
## entered for a presentation <A>P</A>, then it will eliminate at most
## <C>eliminationsLimit</C> generators (except for further ones which
## have turned out to be trivial). Hence you may use the
## <C>eliminationsLimit</C> parameter as a break criterion for the
## <Ref Func="TzGo"/> command. Note, however, that it is ignored by the
## <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
## command. The default value of <C>eliminationsLimit</C> is 100.
## </Item>
## <Mark><C>expandLimit</C>:</Mark>
## <Item>
## Whenever the routine for eliminating more than 1 generators is
## called for a presentation <A>P</A> by the
## <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
## command or the elimination phase of the <Ref Func="TzGo"/> command,
## then it saves the given total length of the relators,
## and subsequently it checks the current total length against its value
## before each elimination.
## If the total length has increased to more than <C>expandLimit</C>
## per cent of its original value, then the routine returns instead
## of eliminating another generator.
## Hence you may use the <C>expandLimit</C> parameter as a break criterion
## for the <Ref Func="TzGo"/> command.
## The default value of <C>expandLimit</C> is 150.
## </Item>
## <Mark><C>generatorsLimit</C>:</Mark>
## <Item>
## Whenever the elimination phase of the <Ref Func="TzGo"/> command is
## entered for a presentation <A>P</A> with <M>n</M> generators,
## then it will eliminate at most <M>n - </M><C>generatorsLimit</C>
## generators (except for generators which turn out to be trivial).
## Hence you may use the <C>generatorsLimit</C> parameter as a break
## criterion for the <Ref Func="TzGo"/> command.
## The default value of <C>generatorsLimit</C> is 0.
## </Item>
## <Mark><C>lengthLimit</C>:</Mark>
## <Item>
## The Tietze transformation commands will never eliminate a
## generator of a presentation <A>P</A>, if they cannot exclude the
## possibility that the resulting total length of the relators
## exceeds the maximal &GAP; list length of <M>2^{31}-1</M> or the value
## of the option <C>lengthLimit</C>.
## The default value of <C>lengthLimit</C> is <M>2^{31}-1</M>.
## </Item>
## <Mark><C>loopLimit</C>:</Mark>
## <Item>
## Whenever the <Ref Func="TzGo"/> command is called for a presentation
## <A>P</A>, then it will loop over at most <C>loopLimit</C> of its basic
## steps. Hence you may use the <C>loopLimit</C> parameter as a break
## criterion for the <Ref Func="TzGo"/> command. The default value of
## <C>loopLimit</C> is <Ref Var="infinity"/>.
## </Item>
## <Mark><C>printLevel</C>:</Mark>
## <Item>
## Whenever Tietze transformation commands are called for a
## presentation <A>P</A> with <C>printLevel</C> <M>= 0</M>, they will not
## provide any output except for error messages. If <C>printLevel</C>
## <M>= 1</M>, they will display some reasonable amount of output which
## allows you to watch the progress of the computation and to decide
## about your next commands. In the case <C>printLevel</C> <M>= 2</M>, you
## will get a much more generous amount of output. Finally, if
## <C>printLevel</C> <M>= 3</M>, various messages on internal details will
## be added. The default value of <C>printLevel</C> is 1.
## </Item>
## <Mark><C>saveLimit</C>:</Mark>
## <Item>
## Whenever the <Ref Func="TzSearch"/> command has finished its main loop
## over all relators of a presentation <A>P</A>, then it checks whether
## during this loop the total length of the relators has been reduced by
## at least <C>saveLimit</C> per cent. If this is the case, then
## <Ref Func="TzSearch"/> repeats its procedure instead of returning.
## Hence you may use the <C>saveLimit</C> parameter as a break criterion
## for the <Ref Func="TzSearch"/> command and, in particular,
## for the search phase of the <Ref Func="TzGo"/> command.
## The default value of <C>saveLimit</C> is 10.
## </Item>
## <Mark><C>searchSimultaneous</C>:</Mark>
## <Item>
## Whenever the <Ref Func="TzSearch"/> or the <Ref Func="TzSearchEqual"/>
## command is called for a presentation <A>P</A>, then it is allowed to
## handle up to <C>searchSimultaneous</C> short relators simultaneously
## (see the description of the <Ref Func="TzSearch"/> command for more
## details).
## The choice of this parameter may heavily influence the performance as
## well as the result of the <Ref Func="TzSearch"/> and the
## <Ref Func="TzSearchEqual"/> commands and hence also of the search phase
## of the <Ref Func="TzGo"/> command.
## The default value of <C>searchSimultaneous</C> is 20.
## </Item>
## </List>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("TzOptions",IsPresentation,"mutable");
#############################################################################
##
#F TzPrintOptions( <P> )
##
## <#GAPDoc Label="TzPrintOptions">
## <ManSection>
## <Func Name="TzPrintOptions" Arg='P'/>
##
## <Description>
## prints the current values of the Tietze options of the presentation
## <A>P</A>.
## <Example><![CDATA[
## gap> TzPrintOptions( P );
## #I protected = 0
## #I eliminationsLimit = 100
## #I expandLimit = 150
## #I generatorsLimit = 0
## #I lengthLimit = 2147483647
## #I loopLimit = infinity
## #I printLevel = 1
## #I saveLimit = 10
## #I searchSimultaneous = 20
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintOptions");
#############################################################################
##
#F TzPrintPairs( <P> [,<n>] )
##
## <#GAPDoc Label="TzPrintPairs">
## <ManSection>
## <Func Name="TzPrintPairs" Arg='P [,n]'/>
##
## <Description>
## prints the <A>n</A> most often occurring relator subwords of the form
## <M>a b</M>,
## where <M>a</M> and <M>b</M> are different generators or inverses of
## generators, together with the number of their occurrences. The default
## value of <A>n</A> is 10.
## A value <A>n</A> = 0 is interpreted as <Ref Var="infinity"/>.
## <P/>
## The function <Ref Func="TzPrintPairs"/> is useful in the context of
## Tietze transformations which introduce new generators by substituting
## words in the current generators
## (see <Ref Sect="Tietze Transformations that introduce new Generators"/>).
## It gives some evidence for an appropriate choice of
## a word of length 2 to be substituted.
## <Example><![CDATA[
## gap> TzPrintPairs( P, 3 );
## #I 1. 3 occurrences of f2 * f3
## #I 2. 2 occurrences of f2^-1 * f3
## #I 3. 2 occurrences of f1 * f3
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintPairs");
############################################################################
##
#F TzPrintPresentation(<P>)
##
## <#GAPDoc Label="TzPrintPresentation">
## <ManSection>
## <Func Name="TzPrintPresentation" Arg='P'/>
##
## <Description>
## prints the generators and the relators of a Tietze presentation.
## In fact, it is an abbreviation for the successive call of the three
## commands <Ref Func="TzPrintGenerators"/>,
## <Ref Func="TzPrintRelators"/>, and <Ref Func="TzPrintStatus"/>,
## each with the presentation <A>P</A> as only argument.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintPresentation");
############################################################################
##
#F TzPrintRelators(<P>[, <list>])
##
## <#GAPDoc Label="TzPrintRelators">
## <ManSection>
## <Func Name="TzPrintRelators" Arg='P[, list]'/>
##
## <Description>
## prints the relators of the given Tietze presentation <A>P</A>.
## The optional second argument <A>list</A> can be used to specify the
## numbers of the relators to be printed.
## Default: all relators are printed.
## <Example><![CDATA[
## gap> TzPrintRelators( P );
## #I 1. f3^2
## #I 2. f2^4
## #I 3. (f2^-1*f3)^2
## #I 4. f1^5
## #I 5. f1^2*f2*f1*f2^-1
## #I 6. f1^-1*f3*f1*f3*f1^-1*f2^2*f3
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintRelators");
#############################################################################
##
#F TzPrintStatus( <P>[, <norepeat>] )
##
## <#GAPDoc Label="TzPrintStatus">
## <ManSection>
## <Func Name="TzPrintStatus" Arg='P[, norepeat]'/>
##
## <Description>
## is an internal function which is used by the Tietze transformation
## routines to print the number of generators, the number of relators,
## and the total length of all relators in the given Tietze presentation
## <A>P</A>.
## If <A>norepeat</A> is specified as <K>true</K>, the printing is
## suppressed if none of the three values has changed since the last call.
## <Example><![CDATA[
## gap> TzPrintStatus( P );
## #I there are 3 generators and 6 relators of total length 28
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintStatus");
############################################################################
##
#f TzRecoverFromFile
##
#T DeclareGlobalFunction("TzRecoverFromFile");
#T up to now no function is installed
############################################################################
##
#F TzRelator( <P>, <word> )
##
## <ManSection>
## <Func Name="TzRelator" Arg='P, word'/>
##
## <Description>
## <Ref Func="TzRelator"/> assumes <A>word</A> to be an abstract word in the
## group generators associated to the given presentation, and converts it to
## a Tietze relator, i.e. a free and cyclically reduced Tietze word.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TzRelator");
############################################################################
##
#F TzRemoveGenerators(<P>)
##
## <ManSection>
## <Func Name="TzRemoveGenerators" Arg='P'/>
##
## <Description>
## <C>TzRemoveGenerators</C> deletes the redundant Tietze generators and
## renumbers the non-redundant ones accordingly. The redundant generators
## are assumed to be marked in the inverses list by an entry
## <C>invs[numgens+1-i] <> i</C>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TzRemoveGenerators");
############################################################################
##
#F TzSearch(<P>)
##
## <#GAPDoc Label="TzSearch">
## <ManSection>
## <Func Name="TzSearch" Arg='P'/>
##
## <Description>
## searches for relator subwords which, in some relator, have a complement
## of shorter length and which occur in other relators, too, and uses them
## to reduce these other relators.
## <P/>
## The idea is to find pairs of relators <M>r_1</M> and <M>r_2</M> of length
## <M>l_1</M> and <M>l_2</M>, respectively,
## such that <M>l_1 \leq l_2</M> and <M>r_1</M> and <M>r_2</M>
## coincide (possibly after inverting or conjugating one of them) in some
## maximal subword <M>w</M>, say, of length greater than <M>l_1/2</M>,
## and then to substitute each copy of <M>w</M> in <M>r_2</M> by the inverse
## complement of <M>w</M> in <M>r_1</M>.
## <P/>
## Two of the Tietze option parameters which are listed in section
## <Ref Sect="Tietze Options"/> may strongly influence the performance and
## the results of the command <Ref Func="TzSearch"/>.
## These are the parameters <C>saveLimit</C> and <C>searchSimultaneous</C>.
## The first of them has the following effect:
## <P/>
## When <Ref Func="TzSearch"/> has finished its main loop over all relators,
## then, in general, there are relators which have changed and hence should
## be handled again in another run through the whole procedure. However,
## experience shows that it really does not pay to continue this way until
## no more relators change.
## Therefore, <Ref Func="TzSearch"/> starts a new loop only if
## the loop just finished has reduced the total length of the relators by at
## least <C>saveLimit</C> per cent.
## <P/>
## The default value of <C>saveLimit</C> is 10 per cent.
## <P/>
## To understand the effect of the option <C>searchSimultaneous</C>, we
## have to look in more detail at how <Ref Func="TzSearch"/> proceeds:
## <P/>
## First, it sorts the list of relators by increasing lengths. Then it
## performs a loop over this list. In each step of this loop, the current
## relator is treated as <E>short relator</E> <M>r_1</M>, and a subroutine
## is called which loops over the succeeding relators,
## treating them as <E>long relators</E> <M>r_2</M> and performing the
## respective comparisons and substitutions.
## <P/>
## As this subroutine performs a very expensive process, it has been
## implemented as a C routine in the &GAP; kernel. For the given relator
## <M>r_1</M> of length <M>l_1</M>, say, it first determines the
## <E>minimal match length</E> <M>l</M> which is <M>l_1/2+1</M>,
## if <M>l_1</M> is even, or <M>(l_1+1)/2</M>, otherwise.
## Then it builds up a hash list for all subwords of length <M>l</M>
## occurring in the conjugates of <M>r_1</M> or <M>r_1^{{-1}}</M>,
## and finally it loops
## over all long relators <M>r_2</M> and compares the hash values of their
## subwords of length <M>l</M> against this list.
## A comparison of subwords which is much more expensive is only done if a
## hash match has been found.
## <P/>
## To improve the efficiency of this process we allow the subroutine to
## handle several short relators simultaneously provided that they have the
## same minimal match length. If, for example, it handles <M>n</M> short
## relators simultaneously, then you save <M>n - 1</M> loops over the long
## relators <M>r_2</M>, but you pay for it by additional fruitless subword
## comparisons. In general, you will not get the best performance by always
## choosing the maximal possible number of short relators to be handled
## simultaneously. In fact, the optimal choice of the number will depend on
## the concrete presentation under investigation. You can use the parameter
## <C>searchSimultaneous</C> to prescribe an upper bound for the number of
## short relators to be handled simultaneously.
## <P/>
## The default value of <C>searchSimultaneous</C> is 20.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzSearch");
############################################################################
##
#F TzSearchEqual(<P>)
##
## <#GAPDoc Label="TzSearchEqual">
## <ManSection>
## <Func Name="TzSearchEqual" Arg='P'/>
##
## <Description>
## searches for Tietze relator subwords which, in some relator, have a
## complement of equal length and which occur in other relators, too, and
## uses them to modify these other relators.
## <P/>
## The idea is to find pairs of relators <M>r_1</M> and <M>r_2</M> of length
## <M>l_1</M> and <M>l_2</M>, respectively, such that <M>l_1</M> is even,
## <M>l_1 \leq l_2</M>, and <M>r_1</M> and <M>r_2</M> coincide (possibly
## after inverting or conjugating one of them) in some maximal subword
## <M>w</M>, say, of length at least <M>l_1/2</M>.
## Let <M>l</M> be the length of <M>w</M>. Then, if <M>l > l_1/2</M>,
## the pair is handled as in <Ref Func="TzSearch"/>.
## Otherwise, if <M>l = l_1/2</M>, then <Ref Func="TzSearchEqual"/>
## substitutes each copy of <M>w</M> in <M>r_2</M> by the inverse complement
## of <M>w</M> in <M>r_1</M>.
## <P/>
## The Tietze option parameter <C>searchSimultaneous</C> is used by
## <Ref Func="TzSearchEqual"/> in the same way as described for
## <Ref Func="TzSearch"/>. However, <Ref Func="TzSearchEqual"/> does
## not use the parameter <C>saveLimit</C>:
## The loop over the relators is executed exactly once.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzSearchEqual");
############################################################################
##
#F TzSort(<P>)
##
## <#GAPDoc Label="TzSort">
## <ManSection>
## <Func Name="TzSort" Arg='P'/>
##
## <Description>
## sorts the relators of the given presentation <A>P</A> by increasing
## lengths.
## There is no particular ordering defined for the relators of equal length.
## Note that <Ref Func="TzSort"/> does not return a new object.
## It changes the given presentation.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzSort");
#############################################################################
##
#F TzSubstitute( <P>, <word> )
#F TzSubstitute( <P>[, <n>[, <eliminate>]] )
##
## <#GAPDoc Label="TzSubstitute">
## <ManSection>
## <Heading>TzSubstitute</Heading>
## <Func Name="TzSubstitute" Arg='P, word'
## Label="for a presentation and a word"/>
## <Func Name="TzSubstitute" Arg='P[, n[, eliminate]]'
## Label="for a presentation (and an integer and 0/1/2)"/>
##
## <Description>
## In the first form
## <Ref Func="TzSubstitute" Label="for a presentation and a word"/> expects
## <A>P</A> to be a presentation and <A>word</A> to be either an abstract
## word or a Tietze word in the generators of <A>P</A>.
## It substitutes the given word as a new generator of <A>P</A>.
## This is done as follows:
## First, <Ref Func="TzSubstitute" Label="for a presentation and a word"/>
## creates a new abstract generator, <M>g</M> say, and adds it to the
## presentation, then it adds a new relator
## <M>g^{{-1}} \cdot <A>word</A></M>.
## <P/>
## In its second form,
## <Ref Func="TzSubstitute" Label="for a presentation (and an integer and 0/1/2)"/>
## substitutes a squarefree word of length 2 as a new generator and then
## eliminates a generator from the extended generator list.
## We will describe this process in more detail below.
## <P/>
## The parameters <A>n</A> and <A>eliminate</A> are optional.
## If you specify arguments for them, then <A>n</A> is expected to be a
## positive integer, and <A>eliminate</A> is expected to be 0, 1, or 2.
## The default values are <A>n</A> <M>= 1</M> and
## <A>eliminate</A> <M>= 0</M>.
## <P/>
## <Ref Func="TzSubstitute" Label="for a presentation (and an integer and 0/1/2)"/>
## first determines the <A>n</A> most frequently occurring
## relator subwords of the form <M>g_1 g_2</M>,
## where <M>g_1</M> and <M>g_2</M> are different generators or their
## inverses, and sorts them by decreasing numbers of occurrences.
## <P/>
## Let <M>a b</M> be the last word in that list, and let <M>i</M> be the
## smallest positive integer which has not yet been used as a generator
## number in the presentation <A>P</A> so far.
## <Ref Func="TzSubstitute" Label="for a presentation (and an integer and 0/1/2)"/>
## defines a new abstract generator <M>x_i</M> named <C>"_x<A>i</A>"</C> and
## adds it to <A>P</A> (see <Ref Func="AddGenerator"/>).
## Then it adds the word <M>x_i^{{-1}} a b</M> as a new relator to <A>P</A>
## and replaces all occurrences of <M>a b</M> in the relators by <M>x_i</M>.
## Finally, it eliminates some suitable generator from <A>P</A>.
## <P/>
## The choice of the generator to be eliminated depends on the actual
## value of the parameter <A>eliminate</A>:
## <P/>
## If <A>eliminate</A> is zero,
## <Ref Func="TzSubstitute" Label="for a presentation (and an integer and 0/1/2)"/>
## just calls the function
## <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>.
## So it may happen that it is the just introduced generator <M>x_i</M>
## which now is deleted again so that you don't get any
## remarkable progress in simplifying your presentation.
## On the first glance this does not look reasonable,
## but it is a consequence of the request that a call of
## <Ref Func="TzSubstitute" Label="for a presentation (and an integer and 0/1/2)"/>
## with <A>eliminate</A> = 0 must not increase the total length of the
## relators.
## <P/>
## Otherwise, if <A>eliminate</A> is 1 or 2,
## <Ref Func="TzSubstitute" Label="for a presentation (and an integer and 0/1/2)"/>
## eliminates the respective factor of the substituted word <M>a b</M>,
## i. e., it eliminates <M>a</M> if <A>eliminate</A> = 1 or <M>b</M> if
## <A>eliminate</A> = 2.
## In this case, it may happen that the total length of the relators
## increases, but sometimes such an intermediate extension is the only way
## to finally reduce a given presentation.
## <P/>
## There is still another property of the command
## <Ref Func="TzSubstitute" Label="for a presentation and a word"/> which
## should be mentioned.
## If, for instance, <C>word</C> is an abstract word, a call
## <P/>
## <Log><![CDATA[
## TzSubstitute( P, word );
## ]]></Log>
## <P/>
## is more or less equivalent to
## <P/>
## <Log><![CDATA[
## AddGenerator( P );
## g := GeneratorsOfPresentation(P)[Length(GeneratorsOfPresentation(P))];
## AddRelator( P, g^-1 * word );
## ]]></Log>
## <P/>
## However, there is a difference: If you are tracing generator images and
## preimages of <A>P</A> through the Tietze transformations applied to
## <A>P</A> (see
## <Ref Sect="Tracing generator images through Tietze transformations"/>),
## then <Ref Func="TzSubstitute" Label="for a presentation and a word"/>,
## as a Tietze transformation of <A>P</A>, will update and save the
## respective lists, whereas a call of the function
## <Ref Func="AddGenerator"/>
## (which does not perform a Tietze transformation) will delete these lists
## and hence terminate the tracing.
## <P/>
## <Example><![CDATA[
## gap> G := PerfectGroup( IsSubgroupFpGroup, 960, 1 );
## A5 2^4
## gap> P := PresentationFpGroup( G );
## <presentation with 6 gens and 21 rels of total length 84>
## gap> GeneratorsOfPresentation( P );
## [ a, b, s, t, u, v ]
## gap> TzGoGo( P );
## #I there are 3 generators and 10 relators of total length 81
## #I there are 3 generators and 10 relators of total length 80
## gap> TzPrintGenerators( P );
## #I 1. a 31 occurrences involution
## #I 2. b 26 occurrences
## #I 3. t 23 occurrences involution
## gap> a := GeneratorsOfPresentation( P )[1];;
## gap> b := GeneratorsOfPresentation( P )[2];;
## gap> TzSubstitute( P, a*b );
## #I now the presentation has 4 generators, the new generator is _x7
## #I substituting new generator _x7 defined by a*b
## #I there are 4 generators and 11 relators of total length 83
## gap> TzGo( P );
## #I there are 3 generators and 10 relators of total length 74
## gap> TzPrintGenerators( P );
## #I 1. a 23 occurrences involution
## #I 2. t 23 occurrences involution
## #I 3. _x7 28 occurrences
## ]]></Example>
## <P/>
## As an example of an application of the command
## <Ref Func="TzSubstitute" Label="for a presentation and a word"/>
## in its second
## form we handle a subgroup of index 266 in the Janko group <M>J_1</M>.
## <P/>
## <Example><![CDATA[
## gap> F2 := FreeGroup( "a", "b" );;
## gap> J1 := F2 / [ F2.1^2, F2.2^3, (F2.1*F2.2)^7,
## > Comm(F2.1,F2.2)^10, Comm(F2.1,F2.2^-1*(F2.1*F2.2)^2)^6 ];;
## gap> a := J1.1;; b := J1.2;;
## gap> H := Subgroup ( J1, [ a, b^(a*b*(a*b^-1)^2) ] );;
## gap> P := PresentationSubgroup( J1, H );
## <presentation with 23 gens and 82 rels of total length 530>
## gap> TzGoGo( P );
## #I there are 3 generators and 47 relators of total length 1368
## #I there are 2 generators and 46 relators of total length 3773
## #I there are 2 generators and 46 relators of total length 2570
## gap> TzGoGo( P );
## #I there are 2 generators and 46 relators of total length 2568
## gap> TzGoGo( P );
## ]]></Example>
## <P/>
## Here we do not get any more progress without substituting a new
## generator.
## <P/>
## <Example><![CDATA[
## gap> TzSubstitute( P );
## #I substituting new generator _x28 defined by _x6*_x23^-1
## #I eliminating _x28 = _x6*_x23^-1
## ]]></Example>
## <P/>
## &GAP; cannot substitute a new generator without extending the total
## length,
## so we have to explicitly ask for it by using the second form of the
## command <Ref Func="TzSubstitute" Label="for a presentation and a word"/>.
## Our problem is to choose appropriate values for the arguments
## <A>n</A> and <A>eliminate</A>.
## For this purpose it may be helpful to print out a list of the most
## frequently occurring squarefree relator subwords of length 2.
## <P/>
## <Example><![CDATA[
## gap> TzPrintPairs( P );
## #I 1. 504 occurrences of _x6 * _x23^-1
## #I 2. 504 occurrences of _x6^-1 * _x23
## #I 3. 448 occurrences of _x6 * _x23
## #I 4. 448 occurrences of _x6^-1 * _x23^-1
## gap> TzSubstitute( P, 2, 1 );
## #I substituting new generator _x29 defined by _x6^-1*_x23
## #I eliminating _x6 = _x23*_x29^-1
## #I there are 2 generators and 46 relators of total length 2867
## gap> TzGoGo( P );
## #I there are 2 generators and 45 relators of total length 2417
## #I there are 2 generators and 45 relators of total length 2122
## gap> TzSubstitute( P, 1, 2 );
## #I substituting new generator _x30 defined by _x23*_x29^-1
## #I eliminating _x29 = _x30^-1*_x23
## #I there are 2 generators and 45 relators of total length 2192
## gap> TzGoGo( P );
## #I there are 2 generators and 42 relators of total length 1637
## #I there are 2 generators and 40 relators of total length 1286
## #I there are 2 generators and 36 relators of total length 807
## #I there are 2 generators and 32 relators of total length 625
## #I there are 2 generators and 22 relators of total length 369
## #I there are 2 generators and 18 relators of total length 213
## #I there are 2 generators and 13 relators of total length 141
## #I there are 2 generators and 12 relators of total length 121
## #I there are 2 generators and 10 relators of total length 101
## gap> TzPrintPairs( P );
## #I 1. 19 occurrences of _x23 * _x30^-1
## #I 2. 19 occurrences of _x23^-1 * _x30
## #I 3. 14 occurrences of _x23 * _x30
## #I 4. 14 occurrences of _x23^-1 * _x30^-1
## ]]></Example>
## <P/>
## If we save a copy of the current presentation, then later we will be able to
## restart the computation from the current state.
## <P/>
## <Example><![CDATA[
## gap> P1 := ShallowCopy( P );
## <presentation with 2 gens and 10 rels of total length 101>
## ]]></Example>
## <P/>
## Just for demonstration we make an inconvenient choice:
## <P/>
## <Example><![CDATA[
## gap> TzSubstitute( P, 3, 1 );
## #I substituting new generator _x31 defined by _x23*_x30
## #I eliminating _x23 = _x31*_x30^-1
## #I there are 2 generators and 10 relators of total length 122
## gap> TzGoGo( P );
## #I there are 2 generators and 9 relators of total length 105
## ]]></Example>
## <P/>
## This presentation is worse than the one we have saved, so we restart from
## that presentation again.
## <P/>
## <Example><![CDATA[
## gap> P := ShallowCopy( P1 );
## <presentation with 2 gens and 10 rels of total length 101>
## gap> TzSubstitute( P, 2, 1);
## #I substituting new generator _x31 defined by _x23^-1*_x30
## #I eliminating _x23 = _x30*_x31^-1
## #I there are 2 generators and 10 relators of total length 107
## gap> TzGoGo( P );
## #I there are 2 generators and 9 relators of total length 84
## #I there are 2 generators and 8 relators of total length 75
## gap> TzSubstitute( P, 2, 1);
## #I substituting new generator _x32 defined by _x30^-1*_x31
## #I eliminating _x30 = _x31*_x32^-1
## #I there are 2 generators and 8 relators of total length 71
## gap> TzGoGo( P );
## #I there are 2 generators and 7 relators of total length 56
## #I there are 2 generators and 5 relators of total length 36
## gap> TzPrintRelators( P );
## #I 1. _x32^5
## #I 2. _x31^5
## #I 3. (_x31^-1*_x32^-1)^3
## #I 4. _x31*(_x32*_x31^-1)^2*_x32*_x31*_x32^-2
## #I 5. _x31^-1*_x32^2*(_x31*_x32^-1*_x31)^2*_x32^2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzSubstitute");
############################################################################
##
#F TzSubstituteCyclicJoins(<P>)
##
## <#GAPDoc Label="TzSubstituteCyclicJoins">
## <ManSection>
## <Func Name="TzSubstituteCyclicJoins" Arg='P'/>
##
## <Description>
## tries to find pairs of commuting generators <M>a</M> and <M>b</M>, say,
## such that the exponent of <M>a</M> (i. e. the least currently known
## positive integer <M>n</M> such that <M>a^n</M> is a relator in <A>P</A>)
## is prime to the exponent of <M>b</M>.
## For each such pair, their product <M>a b</M> is substituted as a new
## generator, and <M>a</M> and <M>b</M> are eliminated.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TzSubstituteCyclicJoins");
#############################################################################
##
#F TzSubstituteWord( <P>, <word> )
##
## <ManSection>
## <Func Name="TzSubstituteWord" Arg='P, word'/>
##
## <Description>
## <C>TzSubstituteWord</C> expects <A>P</A> to be a presentation and <A>word</A> to be a
## word in the generators of <A>P</A>. It adds a new generator <A>gen</A> and a
## new relator of the form <C><A>gen</A>^-1 * <A>word</A></C> to <A>P</A>.
## <P/>
## The second argument <A>word</A> may be either an abstract word or a Tietze
## word, i. e., a list of positive or negative generator numbers.
## <P/>
## More precisely: The effect of a call
## <P/>
## <Log><![CDATA[
## TzSubstituteWord( T, word );
## ]]></Log>
## <P/>
## is more or less equivalent to that of
## <P/>
## <Log><![CDATA[
## AddGenerator( T );
## gen := T.generators[Length( T.generators )];
## AddRelator( T, gen^-1 * word );
## ]]></Log>
## <P/>
## The essential difference is, that <C>TzSubstituteWord</C>, as a Tietze
## transformation of <A>P</A>, saves and updates the lists of generator images and
## preimages, in case they are being traced under the Tietze transformations
## applied to <A>P</A>, whereas a call of the function <C>AddGenerator</C> (which does
## not perform a Tietze transformation) will delete these lists and hence
## terminate the tracing.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TzSubstituteWord");
#############################################################################
##
#F TzUpdateGeneratorImage( <P>, <n>, <word> )
##
## <ManSection>
## <Func Name="TzUpdateGeneratorImage" Arg='P, n, word'/>
##
## <Description>
## <C>TzUpdateGeneratorImages</C> assumes that it is called by a function that
## performs Tietze transformations to a presentation <A>P</A> in which
## images of the old generators are being traced as Tietze words in the new
## generators as well as preimages of the new generators as Tietze words in
## the old generators.
## <P/>
## If <A>n</A> is zero, it assumes that a new generator defined by the Tietze
## word <A>word</A> has just been added to the presentation. It converts <A>word</A>
## from a Tietze word in the new generators to a Tietze word in the old
## generators and adds that word to the list of preimages.
## <P/>
## If <A>n</A> is greater than zero, it assumes that the <A>n</A>-th generator has
## just been eliminated from the presentation. It updates the images of the
## old generators by replacing each occurrence of the <A>n</A>-th generator by
## the given Tietze word <A>word</A>.
## <P/>
## If <A>n</A> is less than zero, it terminates the tracing of generator images,
## i. e., it deletes the corresponding components of <A>P</A>.
## <P/>
## Note: <C>TzUpdateGeneratorImages</C> is considered to be an internal function.
## Hence it does not check the arguments.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("TzUpdateGeneratorImages");
#############################################################################
##
#E
|