This file is indexed.

/usr/share/gap/lib/tietze.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
#############################################################################
##
#W  tietze.gd                  GAP library                     Volkmar Felsch
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for finitely presented groups
##  (fp groups).
##


#############################################################################
##
##  Some global symbolic constants.
##
TZ_NUMGENS      :=  1;
TZ_NUMRELS      :=  2;
TZ_TOTAL        :=  3;
TZ_GENERATORS   :=  4;
TZ_INVERSES     :=  5;
TZ_RELATORS     :=  6;
TZ_LENGTHS      :=  7;
TZ_FLAGS        :=  8;
TZ_MODIFIED     := 10;
TZ_NUMREDUNDS   := 11;
TZ_STATUS       := 15;
TZ_LENGTHTIETZE := 21;

TZ_FREEGENS     :=  9;
# TZ_ITERATOR     := 12;
TZ_OCCUR        :=21;

TR_TREELENGTH   :=  3;
TR_PRIMARY      :=  4;
TR_TREENUMS     :=  5;
TR_TREEPOINTERS :=  6;
TR_TREELAST     :=  7;


#############################################################################
##
##  Some global variables.
##
PrintRecIndent  := "  ";

TzOptionNames := [ "protected", "eliminationsLimit", "expandLimit",
     "generatorsLimit", "lengthLimit", "loopLimit", "printLevel",
     "saveLimit", "searchSimultaneous" ];


#############################################################################
##
#A  TietzeOrigin( <G> )
##
##  <ManSection>
##  <Attr Name="TietzeOrigin" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "TietzeOrigin", IsSubgroupFpGroup );


#############################################################################
##
#F  AbstractWordTietzeWord( <word>, <fgens> )
##
##  <#GAPDoc Label="AbstractWordTietzeWord">
##  <ManSection>
##  <Func Name="AbstractWordTietzeWord" Arg='word, fgens'/>
##
##  <Description>
##  assumes  <A>fgens</A>  to be  a list  of  free group
##  generators and  <A>word</A> to be a Tietze word in these generators,
##  i. e., a list of positive or negative generator numbers.
##  It converts <A>word</A> to an abstract word.
##  <P/>
##  This function simply calls <Ref Func="AssocWordByLetterRep"/>.
##  <Example><![CDATA[
##  gap> F := FreeGroup( "a", "b", "c" ,"d");
##  <free group on the generators [ a, b, c, d ]>
##  gap> tzword := TietzeWordAbstractWord(
##  > Comm(F.4,F.2) * (F.3^2 * F.2)^-1, GeneratorsOfGroup( F ){[2,3,4]} );
##  [ -3, -1, 3, -2, -2 ]
##  gap> AbstractWordTietzeWord( tzword, GeneratorsOfGroup( F ){[2,3,4]} );
##  d^-1*b^-1*d*c^-2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("AbstractWordTietzeWord");


#############################################################################
##
#F  TietzeWordAbstractWord( <word>, <fgens> )
##
##  <#GAPDoc Label="TietzeWordAbstractWord">
##  <ManSection>
##  <Func Name="TietzeWordAbstractWord" Arg='word, fgens'/>
##
##  <Description>
##  assumes <A>fgens</A> to be a list of free group generators
##  and <A>word</A> to be an abstract word in these generators.
##  It converts <A>word</A> into a Tietze word,
##  i. e., a list of positive or negative generator numbers.
##  <P/>
##  This function simply calls <Ref Func="LetterRepAssocWord"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym("TietzeWordAbstractWord",LetterRepAssocWord);

#############################################################################
##
#F  TzWordAbstractWord( <word> )
#F  AbstractWordTzWord(<fam>, <tzword> )
##
##  <ManSection>
##  <Func Name="TzWordAbstractWord" Arg='word'/>
##  <Func Name="AbstractWordTzWord" Arg='fam, tzword'/>
##
##  <Description>
##  only supported for compatibility.
##  </Description>
##  </ManSection>
##
DeclareSynonym("TzWordAbstractWord",LetterRepAssocWord);
DeclareSynonym("AbstractWordTzWord",AssocWordByLetterRep);


#############################################################################
##
#F  AddGenerator( <P> )
##
##  <#GAPDoc Label="AddGenerator">
##  <ManSection>
##  <Func Name="AddGenerator" Arg='P'/>
##
##  <Description>
##  extends the presentation <A>P</A> by a new generator.
##  <P/>
##  Let <M>i</M> be the smallest positive integer which has not yet been used
##  as a generator number in the given presentation.
##  <Ref Func="AddGenerator"/> defines a new abstract generator <M>x_i</M>
##  with the name <C>"_x</C><M>i</M><C>"</C> and adds it to the
##  list of generators of <A>P</A>.
##  <P/>
##  You may access the generator <M>x_i</M> by typing
##  <A>P</A><C>!.</C><M>i</M>. However, this
##  is only practicable if you are running an interactive job because you
##  have to know the value of <M>i</M>. Hence the proper way to access the new
##  generator is to write
##  <C>GeneratorsOfPresentation(P)[Length(GeneratorsOfPresentation(P))]</C>.
##  <Example><![CDATA[
##  gap> G := PerfectGroup( 120 );;
##  gap> H := Subgroup( G, [ G.1^G.2, G.3 ] );;
##  gap> P := PresentationSubgroup( G, H );
##  <presentation with 4 gens and 7 rels of total length 21>
##  gap> AddGenerator( P );
##  #I  now the presentation has 5 generators, the new generator is _x7
##  gap> gens := GeneratorsOfPresentation( P );
##  [ _x1, _x2, _x4, _x5, _x7 ]
##  gap> gen := gens[Length( gens )];
##  _x7
##  gap> gen = P!.7;
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("AddGenerator");


#############################################################################
##
#F  AddRelator( <P>, <word> )
##
##  <#GAPDoc Label="AddRelator">
##  <ManSection>
##  <Func Name="AddRelator" Arg='P, word'/>
##
##  <Description>
##  adds the relator <A>word</A> to the presentation <A>P</A>, probably
##  changing the group defined by <A>P</A>.
##  <A>word</A> must be an abstract word in the generators of <A>P</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("AddRelator");


#############################################################################
##
#F  DecodeTree(<P>)
##
##  <#GAPDoc Label="DecodeTree">
##  <ManSection>
##  <Func Name="DecodeTree" Arg='P'/>
##
##  <Description>
##  assumes that <A>P</A> is a subgroup presentation provided by the Reduced
##  Reidemeister-Schreier or by the Modified Todd-Coxeter method (see
##  <Ref Func="PresentationSubgroupRrs"
##  Label="for two groups (and a string)"/>,
##  <Ref Func="PresentationNormalClosureRrs"/>,
##  <Ref Func="PresentationSubgroupMtc"/>).
##  It eliminates the secondary generators of <A>P</A>
##  (see Section <Ref Sect="Subgroup Presentations"/>) by applying the
##  so called <Q>decoding tree</Q> procedure.
##  <P/>
##  <Ref Func="DecodeTree"/> is called automatically by the command
##  <Ref Func="PresentationSubgroupMtc"/> where it
##  reduces <A>P</A> to a presentation on the given (primary) subgroup
##  generators.
##  <Index>secondary subgroup generators</Index>
##  <P/>
##  In order to explain the effect of this command we need to insert a few
##  remarks on the subgroup presentation commands described in section
##  <Ref Sect="Subgroup Presentations"/>.
##  All these commands have the common property that in the process of
##  constructing a presentation for a given subgroup <A>H</A> of a finitely
##  presented group <A>G</A> they first build up a highly
##  redundant list of generators of <A>H</A> which consists of an (in general
##  small) list of <Q>primary</Q> generators, followed by an (in general
##  large) list of <Q>secondary</Q> generators, and then construct a
##  presentation <M>P_0</M>, say,
##  <E>on a sublist of these generators</E> by rewriting
##  the defining relators of <A>G</A>.
##  This sublist contains all primary, but, at least in general,
##  by far not all secondary generators.
##  <Index>primary subgroup generators</Index>
##  <P/>
##  The role of the primary generators depends on the concrete choice of the
##  subgroup presentation command. If the Modified Todd-Coxeter method is
##  used, they are just the given generators of <A>H</A>,
##  whereas in the case of the Reduced Reidemeister-Schreier algorithm they
##  are constructed by the program.
##  <P/>
##  Each of the secondary generators is defined by a word of length two in
##  the preceding generators and their inverses. By historical reasons, the
##  list of these definitions is called the <E>subgroup generators tree</E>
##  though in fact it is not a tree but rather a kind of bush.
##  <Index>subgroup generators tree</Index>
##  <P/>
##  Now we have to distinguish two cases. If <M>P_0</M> has been constructed
##  by the Reduced Reidemeister-Schreier routines, it is a presentation of
##  <A>H</A>. However, if the Modified Todd-Coxeter routines have been used
##  instead, then the relators in <M>P_0</M> are valid relators of <A>H</A>,
##  but they do not necessarily define <A>H</A>.
##  We handle these cases in turn, starting with the latter one.
##  <P/>
##  In fact, we could easily receive a presentation of <A>H</A> also in this
##  case if we extended <M>P_0</M> by adding to it all the
##  secondary generators which are not yet contained in it and all the
##  definitions from the generators tree as additional generators and
##  relators.
##  Then we could recursively eliminate all secondary generators by Tietze
##  transformations using the new relators.
##  However, this procedure turns out to be too inefficient to
##  be of interest.
##  <P/>
##  Instead, we use the so called <E>decoding tree</E> procedure
##  (see <Cite Key="AMW82"/>, <Cite Key="AR84"/>). It proceeds as follows.
##  <P/>
##  Starting from <M>P = P_0</M>, it runs through a number of steps in each
##  of which it eliminates the current <Q>last</Q> generator (with respect to
##  the list of all primary and secondary generators). If the last generator
##  <A>g</A>, say, is a primary generator, then the procedure terminates.
##  Otherwise it checks whether there is a relator in the current
##  presentation which can be used to substitute <A>g</A> by a Tietze
##  transformation. If so, this is done.
##  Otherwise, and only then, the tree definition of <A>g</A> is added to
##  <A>P</A> as a new relator, and the generators involved are added as new
##  generators if they have not yet been contained in <A>P</A>.
##  Subsequently, <A>g</A> is eliminated.
##  <P/>
##  Note that the extension of <A>P</A> by one or two new generators is
##  <E>not</E> a Tietze transformation.
##  In general, it will change the isomorphism type
##  of the group defined by <A>P</A>.
##  However, it is a remarkable property of this procedure, that at the end,
##  i.e., as soon as all secondary generators have been eliminated,
##  it provides a presentation <M>P = P_1</M>,
##  say, which defines a group isomorphic to <A>H</A>. In fact, it is this
##  presentation which is returned by the command <Ref Func="DecodeTree"/>
##  and hence by the command <Ref Func="PresentationSubgroupMtc"/>.
##  <P/>
##  If, in the other case, the presentation <M>P_0</M> has been constructed
##  by the Reduced Reidemeister-Schreier algorithm,
##  then <M>P_0</M> itself is a presentation of <A>H</A>,
##  and the corresponding subgroup presentation command
##  (<Ref Func="PresentationSubgroupRrs"
##  Label="for two groups (and a string)"/> or
##  <Ref Func="PresentationNormalClosureRrs"/>) just returns <M>P_0</M>.
##  <P/>
##  As mentioned in section <Ref Sect="Subgroup Presentations"/>,
##  we recommend to further simplify this presentation before you use it.
##  The standard way to do this is to start from <M>P_0</M> and to apply
##  suitable Tietze transformations,
##  e. g., by calling the commands <Ref Func="TzGo"/> or
##  <Ref Func="TzGoGo"/>.
##  This is probably the most efficient approach, but you will end up with a
##  presentation on some unpredictable set of generators.
##  As an alternative, &GAP; offers you the <Ref Func="DecodeTree"/> command
##  which you can use to eliminate all secondary
##  generators (provided that there are no space or time problems). For this
##  purpose, the subgroup presentation commands do not only return the
##  resulting presentation, but also the tree (together with some associated
##  lists) as a kind of side result in a component <A>P</A><C>!.tree</C> of
##  the resulting presentation <A>P</A>.
##  <P/>
##  Note, however, that the decoding tree routines will not work correctly
##  any more on a presentation from which generators have already been
##  eliminated by Tietze transformations.
##  Therefore, to prevent you from getting wrong results by calling
##  <Ref Func="DecodeTree"/> in such a situation,
##  &GAP; will automatically remove the subgroup generators tree
##  from a presentation as soon as one of the generators is substituted by a
##  Tietze transformation.
##  <P/>
##  Nevertheless, a certain misuse of the command is still possible, and we
##  want to explicitly warn you from this.
##  The reason is that the Tietze option parameters described in
##  Section <Ref Sect="Tietze Options"/> apply to
##  <Ref Func="DecodeTree"/> as well.
##  Hence, in case of inadequate values of these parameters, it may happen that
##  <Ref Func="DecodeTree"/> stops before all the secondary generators have
##  vanished. In this case &GAP;
##  will display an appropriate warning. Then you should change the
##  respective parameters and continue the process by calling
##  <Ref Func="DecodeTree"/> again. Otherwise, if you would apply Tietze
##  transformations, it might happen because of the convention described
##  above that the tree is removed and that you end up with a wrong
##  presentation.
##  <P/>
##  After a successful run of <Ref Func="DecodeTree"/> it is convenient to
##  further simplify the resulting presentation by suitable Tietze
##  transformations.
##  <P/>
##  As an example of an explicit call of <Ref Func="DecodeTree"/> we compute
##  two presentations of a subgroup of order <M>384</M> in a group of order
##  <M>6912</M>. In both cases we use the Reduced Reidemeister-Schreier
##  algorithm, but in the first run we just apply the Tietze transformations
##  offered by the <Ref Func="TzGoGo"/> command with its default parameters,
##  whereas in the second run we call the <Ref Func="DecodeTree"/> command
##  before.
##  <P/>
##  <Example><![CDATA[
##  gap> F2 := FreeGroup( "a", "b" );;
##  gap> G := F2 / [ F2.1*F2.2^2*F2.1^-1*F2.2^-1*F2.1^3*F2.2^-1,
##  >                F2.2*F2.1^2*F2.2^-1*F2.1^-1*F2.2^3*F2.1^-1 ];;
##  gap> a := G.1;;  b := G.2;;
##  gap> H := Subgroup( G, [ Comm(a^-1,b^-1), Comm(a^-1,b), Comm(a,b) ] );;
##  ]]></Example>
##  <P/>
##  We use the Reduced Reidemeister Schreier method and default Tietze
##  transformations to get a presentation for <A>H</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> P := PresentationSubgroupRrs( G, H );
##  <presentation with 18 gens and 35 rels of total length 169>
##  gap> TzGoGo( P );
##  #I  there are 3 generators and 20 relators of total length 488
##  #I  there are 3 generators and 20 relators of total length 466
##  ]]></Example>
##  <P/>
##  We end up with 20 relators of total length 466. Now we repeat the
##  procedure, but we call the decoding tree algorithm before doing the Tietze
##  transformations.
##  <P/>
##  <Example><![CDATA[
##  gap> P := PresentationSubgroupRrs( G, H );
##  <presentation with 18 gens and 35 rels of total length 169>
##  gap> DecodeTree( P );
##  #I  there are 9 generators and 26 relators of total length 185
##  #I  there are 6 generators and 23 relators of total length 213
##  #I  there are 3 generators and 20 relators of total length 252
##  #I  there are 3 generators and 20 relators of total length 244
##  gap> TzGoGo( P );
##  #I  there are 3 generators and 19 relators of total length 168
##  #I  there are 3 generators and 17 relators of total length 138
##  #I  there are 3 generators and 15 relators of total length 114
##  #I  there are 3 generators and 13 relators of total length 96
##  #I  there are 3 generators and 12 relators of total length 84
##  ]]></Example>
##  <P/>
##  This time we end up with a shorter presentation.
##  <P/>
##  As an example of an implicit call of the function
##  <Ref Func="DecodeTree"/> via the command
##  <Ref Func="PresentationSubgroupMtc"/> we handle a subgroup
##  of index 240 in a
##  group of order 40320 given by a presentation due to
##  B.&nbsp;H.&nbsp;Neumann.
##  Note that we increase the level of <Ref InfoClass="InfoFpGroup"/>
##  temporarily to get some additional output.
##  <P/>
##  <Example><![CDATA[
##  gap> F3 := FreeGroup( "a", "b", "c" );;
##  gap> a := F3.1;;  b := F3.2;;  c := F3.3;;
##  gap> G := F3 / [ a^3, b^3, c^3, (a*b)^5, (a^-1*b)^5, (a*c)^4,
##  >     (a*c^-1)^4, a*b^-1*a*b*c^-1*a*c*a*c^-1, (b*c)^3, (b^-1*c)^4 ];;
##  gap> a := G.1;;  b := G.2;;  c := G.3;;
##  gap> H := Subgroup( G, [ a, c ] );;
##  gap> SetInfoLevel( InfoFpGroup, 1 );
##  gap> P := PresentationSubgroupMtc( G, H );;
##  #I  index = 240  total = 4737  max = 4507
##  #I  MTC defined 2 primary and 4444 secondary subgroup generators
##  #I  there are 246 generators and 617 relators of total length 2893
##  #I  calling DecodeTree
##  #I  there are 114 generators and 385 relators of total length 1860
##  #I  there are 69 generators and 294 relators of total length 1855
##  #I  there are 43 generators and 235 relators of total length 2031
##  #I  there are 35 generators and 207 relators of total length 2348
##  #I  there are 25 generators and 181 relators of total length 3055
##  #I  there are 19 generators and 165 relators of total length 3290
##  #I  there are 20 generators and 160 relators of total length 5151
##  #I  there are 23 generators and 159 relators of total length 8177
##  #I  there are 25 generators and 159 relators of total length 12241
##  #I  there are 29 generators and 159 relators of total length 18242
##  #I  there are 34 generators and 159 relators of total length 27364
##  #I  there are 38 generators and 159 relators of total length 41480
##  #I  there are 41 generators and 159 relators of total length 62732
##  #I  there are 45 generators and 159 relators of total length 88872
##  #I  there are 46 generators and 159 relators of total length 111092
##  #I  there are 44 generators and 155 relators of total length 158181
##  #I  there are 32 generators and 155 relators of total length 180478
##  #I  there are 7 generators and 133 relators of total length 29897
##  #I  there are 4 generators and 119 relators of total length 28805
##  #I  there are 3 generators and 116 relators of total length 35209
##  #I  there are 2 generators and 111 relators of total length 25658
##  #I  there are 2 generators and 111 relators of total length 22634
##  gap> TzGoGo( P );
##  #I  there are 2 generators and 108 relators of total length 11760
##  #I  there are 2 generators and 95 relators of total length 6482
##  #I  there are 2 generators and 38 relators of total length 1464
##  #I  there are 2 generators and 8 relators of total length 116
##  #I  there are 2 generators and 7 relators of total length 76
##  #I  there are 2 generators and 6 relators of total length 66
##  #I  there are 2 generators and 6 relators of total length 52
##  gap> TzPrintGenerators( P );
##  #I  1.  _x1   26 occurrences
##  #I  2.  _x2   26 occurrences
##  gap> TzPrint( P );
##  #I  generators: [ _x1, _x2 ]
##  #I  relators:
##  #I  1.  3  [ 1, 1, 1 ]
##  #I  2.  3  [ 2, 2, 2 ]
##  #I  3.  8  [ 2, -1, 2, -1, 2, -1, 2, -1 ]
##  #I  4.  8  [ 2, 1, 2, 1, 2, 1, 2, 1 ]
##  #I  5.  14  [ -1, -2, 1, 2, 1, -2, -1, 2, 1, -2, -1, -2, 1, 2 ]
##  #I  6.  16  [ 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2 ]
##  gap> K :=  FpGroupPresentation( P );
##  <fp group on the generators [ _x1, _x2 ]>
##  gap> SetInfoLevel( InfoFpGroup, 0 );
##  gap> Size( K );
##  168
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("DecodeTree");


#############################################################################
##
#F  FpGroupPresentation( <P> [,<nam>] )
##
##  <#GAPDoc Label="FpGroupPresentation">
##  <ManSection>
##  <Func Name="FpGroupPresentation" Arg='P [,nam]'/>
##
##  <Description>
##  constructs an f. p. group as defined by the given Tietze
##  presentation <A>P</A>.
##  <Example><![CDATA[
##  gap> h := FpGroupPresentation( p );
##  <fp group on the generators [ a, b ]>
##  gap> h = g;
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("FpGroupPresentation");


#############################################################################
##
#F  PresentationFpGroup( <G> [,<printlevel>] ) . . .  create a presentation
##
##  <#GAPDoc Label="PresentationFpGroup">
##  <ManSection>
##  <Func Name="PresentationFpGroup" Arg='G [,printlevel]'/>
##
##  <Description>
##  creates a presentation, i. e., a Tietze object, for the given finitely
##  presented group <A>G</A>. This presentation will be exactly as the
##  presentation of <A>G</A> and <E>no</E> initial Tietze transformations
##  are applied to it.
##  <P/>
##  The  optional <A>printlevel</A> parameter can be used to restrict or to
##  extend the amount of output provided by Tietze transformation
##  commands when being applied to the created presentation.  The
##  default value 1 is designed  for  interactive  use  and  implies
##  explicit  messages  to  be displayed  by most of  these  commands. A
##  <A>printlevel</A> value of  0 will suppress these messages, whereas a
##  <A>printlevel</A>  value of 2  will enforce some additional output.
##  <Example><![CDATA[
##  gap> f := FreeGroup( "a", "b" );
##  <free group on the generators [ a, b ]>
##  gap> g := f / [ f.1^3, f.2^2, (f.1*f.2)^3 ];
##  <fp group on the generators [ a, b ]>
##  gap> p := PresentationFpGroup( g );
##  <presentation with 2 gens and 3 rels of total length 11>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("PresentationFpGroup");


#############################################################################
##
#F  PresentationRegularPermutationGroup(<G>)
#F  PresentationRegularPermutationGroupNC(<G>)
##
##  <ManSection>
##  <Func Name="PresentationRegularPermutationGroup" Arg='G'/>
##  <Func Name="PresentationRegularPermutationGroupNC" Arg='G'/>
##
##  <Description>
##  constructs a presentation from the given regular permutation group using
##  the algorithm which has been described in <Cite Key="Can73"/> and <Cite Key="Neu82"/>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("PresentationRegularPermutationGroup");
DeclareGlobalFunction("PresentationRegularPermutationGroupNC");


#############################################################################
##
#F  PresentationViaCosetTable( <G>[, <F>, <words>] )
##
##  <#GAPDoc Label="PresentationViaCosetTable">
##  <ManSection>
##  <Func Name="PresentationViaCosetTable" Arg='G[, F, words]'/>
##
##  <Description>
##  constructs a presentation for a given concrete finite group.
##  It applies the relations finding algorithm which has been described in
##  <Cite Key="Can73"/> and <Cite Key="Neu82"/>.
##  It automatically applies Tietze transformations to the presentation
##  found.
##  <P/>
##  If only a group <A>G</A> has been specified, the single stage algorithm
##  is applied.
##  <P/>
##  The operation <Ref Func="IsomorphismFpGroup"/> in contrast uses a
##  multiple-stage algorithm using a chief series and stabilizer chains.
##  It usually should be used rather than
##  <Ref Func="PresentationViaCosetTable"/>.
##  (It does not apply Tietze transformations automatically.)
##  <P/>
##  If the two stage algorithm is to be used,
##  <Ref Func="PresentationViaCosetTable"/> expects a subgroup <A>H</A> of
##  <A>G</A> to be provided in form of two additional arguments <A>F</A> and
##  <A>words</A>, where <A>F</A> is a free group with the same number
##  of generators as <A>G</A>, and <A>words</A> is a list of words in the
##  generators of <A>F</A> which supply a list of generators of <A>H</A> if
##  they are evaluated as words in the corresponding generators of <A>G</A>.
##  <Example><![CDATA[
##  gap> G := GeneralLinearGroup( 2, 7 );
##  GL(2,7)
##  gap> GeneratorsOfGroup( G );
##  [ [ [ Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)^0 ] ], 
##    [ [ Z(7)^3, Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ] ]
##  gap> Size( G );
##  2016
##  gap> P := PresentationViaCosetTable( G );
##  <presentation with 2 gens and 5 rels of total length 46>
##  gap> TzPrintRelators( P );
##  #I  1. f2^3
##  #I  2. f1^6
##  #I  3. (f1^-1*f2^-1)^6
##  #I  4. f1*f2*f1^-1*f2^-1*f1*f2^-1*f1^-1*f2*f1*f2^-1*f1^-1*f2^-1
##  #I  5. f1^-3*f2*f1*f2*(f1^-1*f2^-1)^2*f1^-2*f2
##  ]]></Example>
##  <P/>
##  The two stage algorithm saves an essential amount of space by
##  constructing two coset tables of lengths <M>|H|</M> and <M>|G|/|H|</M>
##  instead of just one coset table of length <M>|G|</M>.
##  The next example shows an application
##  of this option in the case of a subgroup of size 7920 and index 12 in a
##  permutation group of size 95040.
##  <P/>
##  <Example><![CDATA[
##  gap> M12 := Group( [ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6),
##  > (1,12)(2,11)(3,6)(4,8)(5,9)(7,10) ], () );;
##  gap> F := FreeGroup( "a", "b", "c" );
##  <free group on the generators [ a, b, c ]>
##  gap> words := [ F.1, F.2 ];
##  [ a, b ]
##  gap> P := PresentationViaCosetTable( M12, F, words );
##  <presentation with 3 gens and 10 rels of total length 97>
##  gap> G := FpGroupPresentation( P );
##  <fp group on the generators [ a, b, c ]>
##  gap> RelatorsOfFpGroup( G );
##  [ c^2, b^4, (a*c)^3, (a*b^-2)^3, a^11, 
##    a^2*b*a^-2*b^-1*(b^-1*a)^2*a*b^-1, (a*(b*a^-1)^2*b^-1)^2, 
##    a^2*b*a^2*b^-2*a^-1*b*(a^-1*b^-1)^2, 
##    (a*b)^2*a^2*b^-1*a^-1*b^-1*a*c*b*c, a^2*(a^2*b)^2*a^-2*c*a*b*a^-1*c 
##   ]
##  ]]></Example>
##  <P/>
##  Before it is returned, the resulting presentation is being simplified by
##  appropriate calls of the function <Ref Func="SimplifyPresentation"/>
##  (see <Ref Sect="Tietze Transformations"/>),
##  but without allowing any eliminations of generators.
##  This restriction guarantees that we get a bijection between the list of
##  generators of <A>G</A> and the list of generators in the presentation.
##  Hence, if the generators of <A>G</A> are redundant and if you don't care
##  for the bijection, you may get a shorter presentation by calling the
##  function <Ref Func="SimplifyPresentation"/>,
##  now without this restriction, once more yourself.
##  <P/>
##  <Example><![CDATA[
##  gap> H := Group(
##  > [ (2,5,3), (2,7,5), (1,8,4), (1,8,6), (4,8,6), (3,5,7) ], () );;
##  gap> P := PresentationViaCosetTable( H );
##  <presentation with 6 gens and 12 rels of total length 42>
##  gap> SimplifyPresentation( P );
##  #I  there are 4 generators and 10 relators of total length 36
##  ]]></Example>
##  <P/>
##  If you apply the function <Ref Func="FpGroupPresentation"/> to the
##  resulting presentation you will get a finitely presented group isomorphic
##  to <A>G</A>.
##  Note, however, that the function <Ref Func="IsomorphismFpGroup"/>
##  is recommended for this purpose.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("PresentationViaCosetTable");


#############################################################################
##
#F  RelsViaCosetTable(<G>,<cosets>,<F>)
#F  RelsViaCosetTable(<G>,<cosets>,<F>,<ggens>)
#F  RelsViaCosetTable(<G>,<cosets>,<F>,<words>,<H>,<R1>)
##
##  <ManSection>
##  <Func Name="RelsViaCosetTable" Arg='G,cosets,F'/>
##  <Func Name="RelsViaCosetTable" Arg='G,cosets,F,ggens'/>
##  <Func Name="RelsViaCosetTable" Arg='G,cosets,F,words,H,R1'/>
##
##  <Description>
##  constructs a defining set of relators  for the given
##  concrete group using the algorithm
##  which has been described in <Cite Key="Can73"/> and <Cite Key="Neu82"/>.
##  <P/>
##  It is a  subroutine  of function  <C>PresentationViaCosetTable</C>.  Hence its
##  input and output are specifically designed only for this purpose,  and it
##  does not check the arguments.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RelsViaCosetTable");


#############################################################################
##
#F  RemoveRelator( <P>, <n> )
##
##  <#GAPDoc Label="RemoveRelator">
##  <ManSection>
##  <Func Name="RemoveRelator" Arg='P, n'/>
##
##  <Description>
##  removes the <A>n</A>-th relator from the presentation <A>P</A>,
##  probably changing the group defined by <A>P</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("RemoveRelator");


#############################################################################
##
#F  SimplifiedFpGroup( <G> )
##
##  <#GAPDoc Label="SimplifiedFpGroup">
##  <ManSection>
##  <Func Name="SimplifiedFpGroup" Arg='G'/>
##
##  <Description>
##  applies Tietze transformations to a copy of the presentation of the
##  given finitely presented group <A>G</A> in order to reduce it
##  with respect to the number of generators, the number of relators,
##  and the relator lengths.
##  <P/>
##  <Ref Func="SimplifiedFpGroup"/> returns a group isomorphic to
##  the given one  with a presentation which has been tried to simplify
##  via Tietze transformations.
##  <P/>
##  If the connection to the original group is important, then the operation
##  <Ref Func="IsomorphismSimplifiedFpGroup"/> should be used instead.
##  <P/>
##  <Example><![CDATA[
##  gap> F6 := FreeGroup( 6, "G" );;
##  gap> G := F6 / [ F6.1^2, F6.2^2, F6.4*F6.6^-1, F6.5^2, F6.6^2,
##  > F6.1*F6.2^-1*F6.3, F6.1*F6.5*F6.3^-1, F6.2*F6.4^-1*F6.3,
##  > F6.3*F6.4*F6.5^-1, F6.1*F6.6*F6.3^-2, F6.3^4 ];;
##  gap> H := SimplifiedFpGroup( G );
##  <fp group on the generators [ G1, G3 ]>
##  gap> RelatorsOfFpGroup( H );
##  [ G1^2, (G1*G3^-1)^2, G3^4 ]
##  ]]></Example>
##  <P/>
##  In fact, the command
##  <P/>
##  <Log><![CDATA[
##  H := SimplifiedFpGroup( G );
##  ]]></Log>
##  <P/>
##  is an abbreviation of the command sequence
##  <P/>
##  <Log><![CDATA[
##  P := PresentationFpGroup( G, 0 );;
##  SimplifyPresentation( P );
##  H := FpGroupPresentation( P );
##  ]]></Log>
##  <P/>
##  which applies a rather simple-minded strategy of Tietze transformations
##  to the intermediate presentation <A>P</A>.
##  If, for some concrete group, the resulting presentation is unsatisfying,
##  then you should try a more sophisticated, interactive use of the
##  available Tietze transformation commands
##  (see <Ref Sect="Tietze Transformations"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("SimplifiedFpGroup");


############################################################################
##
#F  TzCheckRecord
##
##  <ManSection>
##  <Func Name="TzCheckRecord" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TzCheckRecord");


#############################################################################
##
#F  TzEliminate( <P>[, <gen>] )
#F  TzEliminate( <P>[, <n>] )
##
##  <#GAPDoc Label="TzEliminate">
##  <ManSection>
##  <Heading>TzEliminate</Heading>
##  <Func Name="TzEliminate" Arg='P[, gen]'
##   Label="for a presentation (and a generator)"/>
##  <Func Name="TzEliminate" Arg='P[, n]'
##   Label="for a presentation (and an integer)"/>
##
##  <Description>
##  tries to eliminate a generator from a presentation <A>P</A> via
##  Tietze transformations.
##  <P/>
##  Any relator which contains some generator just once can be used to
##  substitute that generator by a word in the remaining generators.
##  If such generators and relators exist, then
##  <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
##  chooses a generator for which the product of its number of occurrences
##  and the length of the substituting word is minimal,
##  and then it eliminates this generator from the presentation,
##  provided that the resulting total length of the relators does not exceed
##  the associated Tietze option parameter <C>spaceLimit</C>
##  (see <Ref Sect="Tietze Options"/>). The default value of that parameter
##  is <Ref Var="infinity"/>, but you may alter it appropriately.
##  <P/>
##  If a generator <A>gen</A> has been specified,
##  <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
##  eliminates it if possible, i. e. if there is a relator in which
##  <A>gen</A> occurs just once.
##  If no second argument has been specified,
##  <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
##  eliminates some appropriate generator if possible and if the resulting
##  total length of the relators will not exceed the Tietze options parameter
##  <C>lengthLimit</C>.
##  <P/>
##  If an integer <A>n</A> has been specified,
##  <Ref Func="TzEliminate" Label="for a presentation (and an integer)"/>
##  tries to eliminate up to <A>n</A> generators.
##  Note that the calls <C>TzEliminate(<A>P</A>)</C> and
##  <C>TzEliminate(<A>P</A>,1)</C> are equivalent.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzEliminate");


#############################################################################
##
#F  TzEliminateFromTree( <P> )
##
##  <ManSection>
##  <Func Name="TzEliminateFromTree" Arg='P'/>
##
##  <Description>
##  <Ref Func="TzEliminateFromTree"/> eliminates the last Tietze generator.
##  If that generator cannot be isolated in any Tietze relator,
##  then its definition is taken from the tree and added as an additional
##  Tietze relator, extending the set of Tietze generators appropriately,
##  if necessary.
##  However, the elimination will not be performed if the resulting total
##  length of the relators cannot be guaranteed to not exceed the parameter
##  <C>lengthLimit</C>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TzEliminateFromTree");


#############################################################################
##
#F  TzEliminateGen( <P>, <n> )
##
##  <ManSection>
##  <Func Name="TzEliminateGen" Arg='P, n'/>
##
##  <Description>
##  eliminates the Tietze generator <C>GeneratorsOfPresentation(P)[n]</C>
##  if possible, i. e. if that generator can be isolated  in some appropriate
##  Tietze relator.  However,  the elimination  will not be  performed if the
##  resulting total length of the relators cannot be guaranteed to not exceed
##  the parameter <C>lengthLimit</C>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TzEliminateGen");


#############################################################################
##
#F  TzEliminateGen1( <P> )
##
##  <ManSection>
##  <Func Name="TzEliminateGen1" Arg='P'/>
##
##  <Description>
##  tries to  eliminate a  Tietze generator:  If there are
##  Tietze generators which occur just once in certain Tietze relators,  then
##  one of them is chosen  for which the product of the length of its minimal
##  defining word  and the  number of its  occurrences  is minimal.  However,
##  the elimination  will not be performed  if the resulting  total length of
##  the  relators   cannot  be  guaranteed   to  not  exceed   the  parameter
##  <C>lengthLimit</C>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TzEliminateGen1");


#############################################################################
##
#F  TzEliminateGens( <P> [, <decode>] )
##
##  <ManSection>
##  <Func Name="TzEliminateGens" Arg='P [, decode]'/>
##
##  <Description>
##  <Ref Func="TzEliminateGens"/> repeatedly eliminates generators from the
##  presentation of the given group until at least one of the following
##  conditions is violated:
##  <P/>
##  <Enum>
##  <Item>
##     The current number of generators is not greater than the
##     parameter <C>generatorsLimit</C>.
##  </Item>
##  <Item>
##     The number of generators eliminated so far is less than
##      the parameter <C>eliminationsLimit</C>.
##  </Item>
##  <Item>
##     The total length of the relators has not yet grown to a percentage
##     greater than the parameter <C>expandLimit</C>.
##  </Item>
##  <Item>
##     The next elimination will not extend the total length to a value
##     greater than the parameter <C>lengthLimit</C>.
##  </Item>
##  </Enum>
##  <P/>
##  If a second argument has been specified, then it is assumed that we
##  are in the process of decoding a tree.
##  <P/>
##  If not, then the function will not eliminate any protected generators.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TzEliminateGens");


#############################################################################
##
#F  TzFindCyclicJoins( <P> )
##
##  <#GAPDoc Label="TzFindCyclicJoins">
##  <ManSection>
##  <Func Name="TzFindCyclicJoins" Arg='P'/>
##
##  <Description>
##  searches for  power and commutator relators in order
##  to find  pairs of generators  which  generate a  common  cyclic subgroup.
##  It uses these pairs to introduce new relators,  but it does not introduce
##  any new generators as is done by <Ref Func="TzSubstituteCyclicJoins"/>.
##  <P/>
##  More precisely:
##  <Ref Func="TzFindCyclicJoins"/> searches for pairs of generators <M>a</M>
##  and <M>b</M> such that (possibly after inverting or conjugating some
##  relators) the set of relators contains the commutator <M>[a,b]</M>,
##  a power <M>a^n</M>, and a product of the form <M>a^s b^t</M>
##  with <M>s</M> prime to <M>n</M>.
##  For each such pair, <Ref Func="TzFindCyclicJoins"/> uses the
##  Euclidean algorithm to express <M>a</M> as a power of <M>b</M>,
##  and then it eliminates <M>a</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzFindCyclicJoins");


############################################################################
##
#F  TzGeneratorExponents(<P>)
##
##  <ManSection>
##  <Func Name="TzGeneratorExponents" Arg='P'/>
##
##  <Description>
##  <Ref Func="TzGeneratorExponents"/> tries to find exponents for the
##  Tietze generators and returns them in a list parallel to the list of the
##  generators.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TzGeneratorExponents");


#############################################################################
##
#F  TzGo( <P>[, <silent>] )
##
##  <#GAPDoc Label="TzGo">
##  <ManSection>
##  <Func Name="TzGo" Arg='P[, silent]'/>
##
##  <Description>
##  automatically performs suitable Tietze transformations of the given
##  presentation <A>P</A>. It is perhaps the most convenient one among the
##  interactive Tietze transformation commands. It offers a kind of default
##  strategy which, in general, saves you from explicitly calling the
##  lower-level commands it involves.
##  <P/>
##  If <A>silent</A> is specified as <K>true</K>,
##  the printing of the status line by <Ref Func="TzGo"/> is suppressed
##  if the Tietze option <C>printLevel</C>
##  (see <Ref Sect="Tietze Options"/>) has a value less than <M>2</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzGo");

############################################################################
##
#F  SimplifyPresentation(<P>)
##
##  <#GAPDoc Label="SimplifyPresentation">
##  <ManSection>
##  <Func Name="SimplifyPresentation" Arg='P'/>
##
##  <Description>
##  <Ref Func="SimplifyPresentation"/> is a synonym for <Ref Func="TzGo"/>.
##  <Example><![CDATA[
##  gap> F2 := FreeGroup( "a", "b" );;
##  gap> G := F2 / [ F2.1^9, F2.2^2, (F2.1*F2.2)^4, (F2.1^2*F2.2)^3 ];;
##  gap> a := G.1;; b := G.2;;
##  gap> H := Subgroup( G, [ (a*b)^2, (a^-1*b)^2 ] );;
##  gap> Index( G, H );
##  408
##  gap> P := PresentationSubgroup( G, H );
##  <presentation with 8 gens and 36 rels of total length 111>
##  gap> PrimaryGeneratorWords( P );
##  [ b, a*b*a ]
##  gap> TzOptions( P ).protected := 2;
##  2
##  gap> TzOptions( P ).printLevel := 2;
##  2
##  gap> SimplifyPresentation( P );
##  #I  eliminating _x7 = _x5^-1
##  #I  eliminating _x5 = _x4
##  #I  eliminating _x18 = _x3
##  #I  eliminating _x8 = _x3
##  #I  there are 4 generators and 8 relators of total length 21
##  #I  there are 4 generators and 7 relators of total length 18
##  #I  eliminating _x4 = _x3^-1*_x2^-1
##  #I  eliminating _x3 = _x2*_x1^-1
##  #I  there are 2 generators and 4 relators of total length 14
##  #I  there are 2 generators and 4 relators of total length 13
##  #I  there are 2 generators and 3 relators of total length 9
##  gap> TzPrintRelators( P );
##  #I  1. _x1^2
##  #I  2. _x2^3
##  #I  3. (_x2*_x1)^2
##  ]]></Example>
##  <P/>
##  Roughly speaking, <Ref Func="TzGo"/> consists of a loop over a
##  procedure which involves two phases: In the <E>search phase</E> it calls
##  <Ref Func="TzSearch"/> and <Ref Func="TzSearchEqual"/> described below
##  which try to reduce the relator lengths by substituting common subwords
##  of relators, in the <E>elimination phase</E> it calls the command
##  <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
##  described below (or, more precisely, a subroutine of
##  <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
##  in order to save some administrative overhead) which tries to eliminate
##  generators that can be expressed as words in the remaining generators.
##  <P/>
##  If <Ref Func="TzGo"/> succeeds in reducing the number of generators,
##  the number of relators, or the total length of all relators, it
##  displays the new status before returning (provided that you did not set
##  the print level to zero). However, it does not provide any output if all
##  these three values have remained unchanged, even if the command
##  <Ref Func="TzSearchEqual"/> involved has changed the presentation
##  such that another call of <Ref Func="TzGo"/> might provide further
##  progress.
##  Hence, in such a case it makes sense to repeat the call of the command
##  for several times (or to call the command <Ref Func="TzGoGo"/> instead).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
SimplifyPresentation := TzGo;


############################################################################
##
#F  TzGoGo(<P>)
##
##  <#GAPDoc Label="TzGoGo">
##  <ManSection>
##  <Func Name="TzGoGo" Arg='P'/>
##
##  <Description>
##  calls the command <Ref Func="TzGo"/> again and again until it does not
##  reduce the presentation any more.
##  <P/>
##  The result of the Tietze transformations can be affected substantially by
##  the options parameters (see <Ref Sect="Tietze Options"/>).
##  To demonstrate the effect of the <C>eliminationsLimit</C> parameter,
##  we will give an example in which we handle a subgroup of index 240 in a
##  group of order 40320 given by a presentation due to B.&nbsp;H. Neumann.
##  First we construct a presentation of the subgroup, and then we apply to
##  it the command <Ref Func="TzGoGo"/> for different
##  values of the parameter <C>eliminationsLimit</C>
##  (including the default value 100). In fact, we also alter the
##  <C>printLevel</C> parameter, but this is only done in order to suppress
##  most of the output.  In all cases the resulting presentations cannot be
##  improved any more by applying the command <Ref Func="TzGoGo"/> again,
##  i.e., they are the best results which we can get without substituting new
##  generators.
##  <P/>
##  <Example><![CDATA[
##  gap> F3 := FreeGroup( "a", "b", "c" );;
##  gap> G := F3 / [ F3.1^3, F3.2^3, F3.3^3, (F3.1*F3.2)^5,
##  > (F3.1^-1*F3.2)^5, (F3.1*F3.3)^4, (F3.1*F3.3^-1)^4,
##  > F3.1*F3.2^-1*F3.1*F3.2*F3.3^-1*F3.1*F3.3*F3.1*F3.3^-1,
##  > (F3.2*F3.3)^3, (F3.2^-1*F3.3)^4 ];;
##  gap> a := G.1;; b := G.2;; c := G.3;;
##  gap> H := Subgroup( G, [ a, c ] );;
##  gap> for i in [ 61, 62, 63, 90, 97 ] do
##  > Pi := PresentationSubgroup( G, H );
##  > TzOptions( Pi ).eliminationsLimit := i;
##  > Print("#I eliminationsLimit set to ",i,"\n");
##  > TzOptions( Pi ).printLevel := 0;
##  > TzGoGo( Pi );
##  > TzPrintStatus( Pi );
##  > od;
##  #I eliminationsLimit set to 61
##  #I  there are 2 generators and 104 relators of total length 7012
##  #I eliminationsLimit set to 62
##  #I  there are 2 generators and 7 relators of total length 56
##  #I eliminationsLimit set to 63
##  #I  there are 3 generators and 97 relators of total length 5998
##  #I eliminationsLimit set to 90
##  #I  there are 3 generators and 11 relators of total length 68
##  #I eliminationsLimit set to 97
##  #I  there are 4 generators and 109 relators of total length 3813
##  ]]></Example>
##  <P/>
##  Similarly, we demonstrate the influence of the <C>saveLimit</C> parameter
##  by just continuing the preceding example for some different values of the
##  <C>saveLimit</C> parameter (including its default value 10), but without
##  changing the <C>eliminationsLimit</C> parameter which keeps its default
##  value 100.
##  <P/>
##  <Example><![CDATA[
##  gap> for i in [ 7 .. 11 ] do
##  > Pi := PresentationSubgroup( G, H );
##  > TzOptions( Pi ).saveLimit := i;
##  > Print( "#I saveLimit set to ", i, "\n" );
##  > TzOptions( Pi ).printLevel := 0;
##  > TzGoGo( Pi );
##  > TzPrintStatus( Pi );
##  > od;
##  #I saveLimit set to 7
##  #I  there are 3 generators and 99 relators of total length 2713
##  #I saveLimit set to 8
##  #I  there are 2 generators and 103 relators of total length 11982
##  #I saveLimit set to 9
##  #I  there are 2 generators and 6 relators of total length 41
##  #I saveLimit set to 10
##  #I  there are 3 generators and 118 relators of total length 13713
##  #I saveLimit set to 11
##  #I  there are 3 generators and 11 relators of total length 58
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzGoGo");


#############################################################################
##
#F  TzHandleLength1Or2Relators( <P> )
##
##  <ManSection>
##  <Func Name="TzHandleLength1Or2Relators" Arg='P'/>
##
##  <Description>
##  <Ref Func="TzHandleLength1Or2Relators"/>  searches for  relators of length 1 or 2 and
##  performs suitable Tietze transformations for each of them:
##  <P/>
##  Generators occurring in relators of length 1 are eliminated.
##  <P/>
##  Generators  occurring  in square relators  of length 2  are marked  to be
##  involutions.
##  <P/>
##  If a relator  of length 2  involves two  different  generators,  then the
##  generator with the  larger number is substituted  by the other one in all
##  relators and finally eliminated from the set of generators.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TzHandleLength1Or2Relators");

#############################################################################
##
#F  GeneratorsOfPresentation(<P>)
##
##  <#GAPDoc Label="GeneratorsOfPresentation">
##  <ManSection>
##  <Func Name="GeneratorsOfPresentation" Arg='P'/>
##
##  <Description>
##  returns a list of free generators that is a shallow copy
##  (see <Ref Func="ShallowCopy"/>) of the current
##  generators of the presentation <A>P</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("GeneratorsOfPresentation");

#############################################################################
##
#F  TzInitGeneratorImages( <P> )
##
##  <#GAPDoc Label="TzInitGeneratorImages">
##  <ManSection>
##  <Func Name="TzInitGeneratorImages" Arg='P'/>
##
##  <Description>
##  expects <A>P</A> to be a presentation. It defines the current generators
##  to be the <Q>old generators</Q> of <A>P</A> and initializes the
##  (pre)image tracing.
##  See <Ref Func="TzImagesOldGens"/> and <Ref Func="TzPreImagesNewGens"/>
##  for details.
##  <P/>
##  You can reinitialize the tracing of the generator images at any later
##  state by just calling the function <Ref Func="TzInitGeneratorImages"/>
##  again.
##  <P/>
##  Note:
##  A subsequent call of the function <Ref Func="DecodeTree"/> will imply
##  that the images and preimages are deleted and reinitialized
##  after decoding the tree.
##  <P/>
##  Moreover, if you introduce a new generator by calling the function
##  <Ref Func="AddGenerator"/> described
##  in Section <Ref Sect="Changing Presentations"/>, this
##  new generator cannot be traced in the old generators.
##  Therefore <Ref Func="AddGenerator"/> will terminate the tracing of the
##  generator images and preimages and delete the respective lists
##  whenever it is called.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzInitGeneratorImages");

#############################################################################
##
#F  OldGeneratorsOfPresentation(<P>)
##
##  <#GAPDoc Label="OldGeneratorsOfPresentation">
##  <ManSection>
##  <Func Name="OldGeneratorsOfPresentation" Arg='P'/>
##
##  <Description>
##  assumes that <A>P</A> is a presentation for which the generator images
##  and preimages are being traced under Tietze transformations. It
##  returns the list of old generators of <A>P</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("OldGeneratorsOfPresentation");

#############################################################################
##
#F  TzImagesOldGens(<P>)
##
##  <#GAPDoc Label="TzImagesOldGens">
##  <ManSection>
##  <Func Name="TzImagesOldGens" Arg='P'/>
##
##  <Description>
##  assumes that <A>P</A> is a presentation for which the generator images
##  and preimages are being traced under Tietze transformations. It
##  returns a list <M>l</M> of words in the (current)
##  <Ref Func="GeneratorsOfPresentation"/> value of <A>P</A>
##  such that the <M>i</M>-th word
##  <M>l[i]</M> represents the <M>i</M>-th old generator of <A>P</A>, i. e.,
##  the <M>i</M>-th entry of the <Ref Func="OldGeneratorsOfPresentation"/>
##  value of <A>P</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzImagesOldGens");

#############################################################################
##
#F  TzPreImagesNewGens(<P>)
##
##  <#GAPDoc Label="TzPreImagesNewGens">
##  <ManSection>
##  <Func Name="TzPreImagesNewGens" Arg='P'/>
##
##  <Description>
##  assumes that <A>P</A> is a presentation for which the generator images
##  and preimages are being traced under Tietze transformations.
##  It returns a list <M>l</M> of words in the old generators of <A>P</A>
##  (the <Ref Func="OldGeneratorsOfPresentation"/> value of <A>P</A>)
##  such that the <M>i</M>-th entry of <M>l</M>
##  represents the <M>i</M>-th (current) generator of <A>P</A>
##  (the <Ref Func="GeneratorsOfPresentation"/> value of <A>P</A>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzPreImagesNewGens");


#############################################################################
##
#F  TzMostFrequentPairs( <P>, <n> )
##
##  <ManSection>
##  <Func Name="TzMostFrequentPairs" Arg='P, n'/>
##
##  <Description>
##  <Ref Func="TzMostFrequentPairs"/> returns a list describing the <A>n</A>
##  most frequently occurring relator subwords of the form <M>g_1 g_2</M>,
##  where <M>g_1</M> and <M>g_2</M> are different generators or their
##  inverses.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TzMostFrequentPairs");


############################################################################
##
#F  TzNewGenerator(<P>)
##
##  <#GAPDoc Label="TzNewGenerator">
##  <ManSection>
##  <Func Name="TzNewGenerator" Arg='P'/>
##
##  <Description>
##  is an internal function which defines a new abstract generator and
##  adds it to the presentation <A>P</A>.
##  It is called by <Ref Func="AddGenerator"/> and
##  by several Tietze transformation commands. As it does not know which
##  global lists have to be kept consistent, you should not call it.
##  Instead, you should call the function <Ref Func="AddGenerator"/>,
##  if needed.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzNewGenerator");


#############################################################################
##
#F  TzPrint( <P>[, <list>] )
##
##  <#GAPDoc Label="TzPrint">
##  <ManSection>
##  <Func Name="TzPrint" Arg='P[, list]'/>
##
##  <Description>
##  prints the current generators of the given presentation <A>P</A>,
##  and prints the relators of <A>P</A> as Tietze words (without converting
##  them back to abstract words as the functions
##  <Ref Func="TzPrintRelators"/> and <Ref Func="TzPrintPresentation"/> do).
##  The optional second argument can be used to specify the numbers of the
##  relators to be printed.
##  Default: all relators are printed.
##  <Example><![CDATA[
##  gap> TzPrint( P );
##  #I  generators: [ f1, f2, f3 ]
##  #I  relators:
##  #I  1.  2  [ 3, 3 ]
##  #I  2.  4  [ 2, 2, 2, 2 ]
##  #I  3.  4  [ -2, 3, -2, 3 ]
##  #I  4.  5  [ 1, 1, 1, 1, 1 ]
##  #I  5.  5  [ 1, 1, 2, 1, -2 ]
##  #I  6.  8  [ -1, 3, 1, 3, -1, 2, 2, 3 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzPrint");


#############################################################################
##
#F  TzPrintGeneratorImages(<P>)
##
##  <#GAPDoc Label="TzPrintGeneratorImages">
##  <ManSection>
##  <Func Name="TzPrintGeneratorImages" Arg='P'/>
##
##  <Description>
##  assumes that <A>P</A> is a presentation for which the generator images
##  and preimages are being traced under Tietze transformations. It
##  displays the preimages of the current generators as Tietze words in
##  the old generators, and the images of the old generators as Tietze
##  words in the current generators.
##  <Example><![CDATA[
##  gap> G := PerfectGroup( IsSubgroupFpGroup, 960, 1 );
##  A5 2^4
##  gap> P := PresentationFpGroup( G );
##  <presentation with 6 gens and 21 rels of total length 84>
##  gap> TzInitGeneratorImages( P );
##  gap> TzGo( P );
##  #I  there are 3 generators and 11 relators of total length 96
##  #I  there are 3 generators and 10 relators of total length 81
##  gap> TzPrintGeneratorImages( P );
##  #I  preimages of current generators as Tietze words in the old ones:
##  #I  1. [ 1 ]
##  #I  2. [ 2 ]
##  #I  3. [ 4 ]
##  #I  images of old generators as Tietze words in the current ones:
##  #I  1. [ 1 ]
##  #I  2. [ 2 ]
##  #I  3. [ 1, -2, 1, 3, 1, 2, 1 ]
##  #I  4. [ 3 ]
##  #I  5. [ -2, 1, 3, 1, 2 ]
##  #I  6. [ 1, 3, 1 ]
##  gap> gens := GeneratorsOfPresentation( P );
##  [ a, b, t ]
##  gap> oldgens := OldGeneratorsOfPresentation( P );
##  [ a, b, s, t, u, v ]
##  gap> TzImagesOldGens( P );
##  [ a, b, a*b^-1*a*t*a*b*a, t, b^-1*a*t*a*b, a*t*a ]
##  gap> for i in [ 1 .. Length( oldgens ) ] do
##  > Print( oldgens[i], " = ", TzImagesOldGens( P )[i], "\n" );
##  > od;
##  a = a
##  b = b
##  s = a*b^-1*a*t*a*b*a
##  t = t
##  u = b^-1*a*t*a*b
##  v = a*t*a
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintGeneratorImages");


#############################################################################
##
#F  TzPrintGenerators( <P>[, <list>] )
##
##  <#GAPDoc Label="TzPrintGenerators">
##  <ManSection>
##  <Func Name="TzPrintGenerators" Arg='P[, list]'/>
##
##  <Description>
##  prints the generators of the given Tietze presentation <A>P</A> together
##  with the number of their occurrences in the relators. The optional second
##  argument can be used to specify the numbers of the generators to be
##  printed. Default: all generators are printed.
##  <Example><![CDATA[
##  gap> G := Group( [ (1,2,3,4,5), (2,3,5,4), (1,6)(3,4) ], () );
##  Group([ (1,2,3,4,5), (2,3,5,4), (1,6)(3,4) ])
##  gap> P := PresentationViaCosetTable( G );
##  <presentation with 3 gens and 6 rels of total length 28>
##  gap> TzPrintGenerators( P );
##  #I  1.  f1   11 occurrences
##  #I  2.  f2   10 occurrences
##  #I  3.  f3   7 occurrences   involution
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintGenerators");


#############################################################################
##
#F  TzPrintLengths( <P> )
##
##  <#GAPDoc Label="TzPrintLengths">
##  <ManSection>
##  <Func Name="TzPrintLengths" Arg='P'/>
##
##  <Description>
##  prints just a list of all relator lengths of the given presentation
##  <A>P</A>.
##  <Example><![CDATA[
##  gap> TzPrintLengths( P );
##  [ 2, 4, 4, 5, 5, 8 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintLengths");

#############################################################################
##
#A  TzOptions(<P>)
##
##  <#GAPDoc Label="TzOptions">
##  <ManSection>
##  <Attr Name="TzOptions" Arg='P'/>
##
##  <Description>
##  is a record whose components direct the heuristics applied by the Tietze
##  transformation functions.
##  <P/>
##  You may alter the value of any of these Tietze options by just assigning
##  a new value to the respective record component.
##  <P/>
##  The following Tietze options are recognized by &GAP;:
##  <P/>
##  <List>
##  <Mark><C>protected</C>:</Mark>
##  <Item>
##    The first <C>protected</C> generators in a presentation <A>P</A> are
##    protected from being eliminated by the Tietze transformations
##    functions.  There are only  two exceptions:  The option
##    <C>protected</C>   is   ignored   by   the   functions
##    <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
##    and <Ref Func="TzSubstitute" Label="for a presentation and a word"/>
##    because they explicitly specify the generator to be eliminated.
##    The default value of <C>protected</C> is 0.
##  </Item>
##  <Mark><C>eliminationsLimit</C>:</Mark>
##  <Item>
##    Whenever the elimination phase of the <Ref Func="TzGo"/> command is
##    entered for a presentation <A>P</A>,  then it  will eliminate at most
##    <C>eliminationsLimit</C> generators (except for further ones which
##    have turned out to  be trivial). Hence you may use  the
##    <C>eliminationsLimit</C> parameter as a break criterion for the
##    <Ref Func="TzGo"/> command. Note, however, that it is ignored by the
##    <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
##    command. The default value of <C>eliminationsLimit</C> is 100.
##  </Item>
##  <Mark><C>expandLimit</C>:</Mark>
##  <Item>
##    Whenever the routine for eliminating more than 1 generators is
##    called for a presentation <A>P</A> by the
##    <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>
##    command or the elimination phase of the <Ref Func="TzGo"/> command,
##    then it saves the given total length of the relators,
##    and subsequently it checks the current total length against its value
##    before each elimination.
##    If the total length has increased to more than <C>expandLimit</C>
##    per cent of its original value, then the routine returns instead
##    of  eliminating another generator.
##    Hence you may use the <C>expandLimit</C> parameter as a break criterion
##    for the <Ref Func="TzGo"/> command.
##    The default value of <C>expandLimit</C> is 150.
##  </Item>
##  <Mark><C>generatorsLimit</C>:</Mark>
##  <Item>
##    Whenever the elimination phase of the <Ref Func="TzGo"/> command is
##    entered for a presentation <A>P</A> with <M>n</M> generators,
##    then it will eliminate at most <M>n - </M><C>generatorsLimit</C>
##    generators (except for generators which turn out to be trivial).
##    Hence you may use the <C>generatorsLimit</C> parameter as a break
##    criterion for the <Ref Func="TzGo"/> command.
##    The default value of <C>generatorsLimit</C> is 0.
##  </Item>
##  <Mark><C>lengthLimit</C>:</Mark>
##  <Item>
##    The Tietze transformation commands will never eliminate  a
##    generator of a presentation <A>P</A>, if they cannot exclude the
##    possibility that the resulting total length of the relators
##    exceeds the maximal &GAP; list length of <M>2^{31}-1</M> or the value
##    of the option <C>lengthLimit</C>.
##    The default value of <C>lengthLimit</C> is <M>2^{31}-1</M>.
##  </Item>
##  <Mark><C>loopLimit</C>:</Mark>
##  <Item>
##    Whenever the <Ref Func="TzGo"/> command is called for a presentation
##    <A>P</A>, then it will loop over at most <C>loopLimit</C> of its basic
##    steps. Hence you may use the <C>loopLimit</C> parameter as a break
##    criterion for  the <Ref Func="TzGo"/>  command. The  default value of
##    <C>loopLimit</C> is <Ref Var="infinity"/>.
##  </Item>
##  <Mark><C>printLevel</C>:</Mark>
##  <Item>
##    Whenever  Tietze transformation commands are called for  a
##    presentation <A>P</A> with <C>printLevel</C> <M>= 0</M>, they will not
##    provide any output except for error messages. If <C>printLevel</C>
##    <M>= 1</M>, they will display some reasonable amount of output which
##    allows you to watch the progress of the computation and to decide
##    about your next commands. In the case <C>printLevel</C> <M>= 2</M>, you
##    will get a much more generous amount of output. Finally, if
##    <C>printLevel</C> <M>= 3</M>, various messages on internal details will
##    be added. The default value of <C>printLevel</C> is 1.
##  </Item>
##  <Mark><C>saveLimit</C>:</Mark>
##  <Item>
##    Whenever the <Ref Func="TzSearch"/> command has finished its main loop
##    over all relators of a presentation <A>P</A>, then it checks whether
##    during this loop the total length of the relators has been reduced by
##    at least <C>saveLimit</C> per cent. If this is the case, then
##    <Ref Func="TzSearch"/> repeats its procedure instead of returning.
##    Hence you may use the <C>saveLimit</C> parameter as a break criterion
##    for the <Ref Func="TzSearch"/> command and, in particular,
##    for the search phase of the <Ref Func="TzGo"/> command.
##    The default value of <C>saveLimit</C> is 10.
##  </Item>
##  <Mark><C>searchSimultaneous</C>:</Mark>
##  <Item>
##    Whenever the <Ref Func="TzSearch"/> or the <Ref Func="TzSearchEqual"/>
##    command is called for a presentation <A>P</A>, then it is allowed to
##    handle up to <C>searchSimultaneous</C> short relators simultaneously
##    (see the description of the <Ref Func="TzSearch"/> command for more
##    details).
##    The choice of this parameter may heavily influence the performance as
##    well as the result of the <Ref Func="TzSearch"/> and the
##    <Ref Func="TzSearchEqual"/> commands and hence also of the search phase
##    of the <Ref Func="TzGo"/> command.
##    The default value of <C>searchSimultaneous</C> is 20.
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("TzOptions",IsPresentation,"mutable");


#############################################################################
##
#F  TzPrintOptions( <P> )
##
##  <#GAPDoc Label="TzPrintOptions">
##  <ManSection>
##  <Func Name="TzPrintOptions" Arg='P'/>
##
##  <Description>
##  prints the current values of the Tietze options of the presentation
##  <A>P</A>.
##  <Example><![CDATA[
##  gap> TzPrintOptions( P );
##  #I  protected          = 0
##  #I  eliminationsLimit  = 100
##  #I  expandLimit        = 150
##  #I  generatorsLimit    = 0
##  #I  lengthLimit        = 2147483647
##  #I  loopLimit          = infinity
##  #I  printLevel         = 1
##  #I  saveLimit          = 10
##  #I  searchSimultaneous = 20
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintOptions");


#############################################################################
##
#F  TzPrintPairs( <P> [,<n>] )
##
##  <#GAPDoc Label="TzPrintPairs">
##  <ManSection>
##  <Func Name="TzPrintPairs" Arg='P [,n]'/>
##
##  <Description>
##  prints the <A>n</A> most often occurring relator subwords of the form
##  <M>a b</M>,
##  where <M>a</M> and <M>b</M> are different generators or inverses of
##  generators, together with the number of their occurrences. The default
##  value of <A>n</A> is 10.
##  A value <A>n</A> = 0 is interpreted as <Ref Var="infinity"/>.
##  <P/>
##  The function <Ref Func="TzPrintPairs"/> is useful in the context of
##  Tietze transformations which introduce new generators by substituting
##  words in the current generators
##  (see <Ref Sect="Tietze Transformations that introduce new Generators"/>).
##  It gives some evidence for an appropriate choice of
##  a word of length 2 to be substituted.
##  <Example><![CDATA[
##  gap> TzPrintPairs( P, 3 );
##  #I  1.  3  occurrences of  f2 * f3
##  #I  2.  2  occurrences of  f2^-1 * f3
##  #I  3.  2  occurrences of  f1 * f3
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintPairs");


############################################################################
##
#F  TzPrintPresentation(<P>)
##
##  <#GAPDoc Label="TzPrintPresentation">
##  <ManSection>
##  <Func Name="TzPrintPresentation" Arg='P'/>
##
##  <Description>
##  prints the generators and the relators of a Tietze presentation.
##  In fact, it is an abbreviation for the successive call of the three
##  commands <Ref Func="TzPrintGenerators"/>,
##  <Ref Func="TzPrintRelators"/>, and <Ref Func="TzPrintStatus"/>,
##  each with the presentation <A>P</A> as only argument.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintPresentation");


############################################################################
##
#F  TzPrintRelators(<P>[, <list>])
##
##  <#GAPDoc Label="TzPrintRelators">
##  <ManSection>
##  <Func Name="TzPrintRelators" Arg='P[, list]'/>
##
##  <Description>
##  prints the relators of the given  Tietze presentation <A>P</A>.
##  The optional second argument <A>list</A> can be used to specify the
##  numbers of the relators to be printed.
##  Default: all relators are printed.
##  <Example><![CDATA[
##  gap> TzPrintRelators( P );
##  #I  1. f3^2
##  #I  2. f2^4
##  #I  3. (f2^-1*f3)^2
##  #I  4. f1^5
##  #I  5. f1^2*f2*f1*f2^-1
##  #I  6. f1^-1*f3*f1*f3*f1^-1*f2^2*f3
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintRelators");


#############################################################################
##
#F  TzPrintStatus( <P>[, <norepeat>] )
##
##  <#GAPDoc Label="TzPrintStatus">
##  <ManSection>
##  <Func Name="TzPrintStatus" Arg='P[, norepeat]'/>
##
##  <Description>
##  is an internal function which is used by the Tietze transformation
##  routines to print the number of generators, the number of relators,
##  and the total length of all relators in the given Tietze presentation
##  <A>P</A>.
##  If <A>norepeat</A> is specified as <K>true</K>, the printing is
##  suppressed if none of the three values has changed since the last call.
##  <Example><![CDATA[
##  gap> TzPrintStatus( P );
##  #I  there are 3 generators and 6 relators of total length 28
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzPrintStatus");


############################################################################
##
#f  TzRecoverFromFile
##
#T DeclareGlobalFunction("TzRecoverFromFile");
#T up to now no function is installed


############################################################################
##
#F  TzRelator( <P>, <word> )
##
##  <ManSection>
##  <Func Name="TzRelator" Arg='P, word'/>
##
##  <Description>
##  <Ref Func="TzRelator"/> assumes <A>word</A> to be an abstract word in the
##  group generators associated to the given presentation, and converts it to
##  a Tietze relator, i.e. a free and cyclically reduced Tietze word.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TzRelator");


############################################################################
##
#F  TzRemoveGenerators(<P>)
##
##  <ManSection>
##  <Func Name="TzRemoveGenerators" Arg='P'/>
##
##  <Description>
##  <C>TzRemoveGenerators</C> deletes the redundant Tietze generators and
##  renumbers the non-redundant ones accordingly. The redundant generators
##  are assumed to be marked in the inverses list by an entry
##  <C>invs[numgens+1-i] &lt;> i</C>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TzRemoveGenerators");


############################################################################
##
#F  TzSearch(<P>)
##
##  <#GAPDoc Label="TzSearch">
##  <ManSection>
##  <Func Name="TzSearch" Arg='P'/>
##
##  <Description>
##  searches for relator subwords which, in some relator, have a complement
##  of shorter length and which occur in other relators, too, and uses them
##  to reduce these other relators.
##  <P/>
##  The idea is to find pairs of relators <M>r_1</M> and <M>r_2</M> of length
##  <M>l_1</M> and <M>l_2</M>, respectively,
##  such that <M>l_1 \leq l_2</M> and <M>r_1</M> and <M>r_2</M>
##  coincide (possibly after inverting or conjugating one of them) in some
##  maximal subword <M>w</M>, say, of length greater than <M>l_1/2</M>,
##  and then to substitute each copy of <M>w</M> in <M>r_2</M> by the inverse
##  complement of <M>w</M> in <M>r_1</M>.
##  <P/>
##  Two of the Tietze option parameters which are listed in section
##  <Ref Sect="Tietze Options"/> may strongly influence the performance and
##  the results of the command <Ref Func="TzSearch"/>.
##  These are the parameters <C>saveLimit</C> and <C>searchSimultaneous</C>.
##  The first of them has the following effect:
##  <P/>
##  When <Ref Func="TzSearch"/> has finished its main loop over all relators,
##  then, in general, there are relators which have changed and hence should
##  be handled again in another run through the whole procedure. However,
##  experience shows that it really does not pay to continue this way until
##  no more relators change.
##  Therefore, <Ref Func="TzSearch"/> starts a new loop only if
##  the loop just finished has reduced the total length of the relators by at
##  least <C>saveLimit</C> per cent.
##  <P/>
##  The default value of <C>saveLimit</C> is 10 per cent.
##  <P/>
##  To understand the effect of the option <C>searchSimultaneous</C>, we
##  have to look in more detail at how <Ref Func="TzSearch"/> proceeds:
##  <P/>
##  First, it sorts the list of relators by increasing lengths. Then it
##  performs a loop over this list. In each step of this loop, the current
##  relator is treated as <E>short relator</E> <M>r_1</M>, and a subroutine
##  is called which loops over the succeeding relators,
##  treating them as <E>long relators</E> <M>r_2</M> and performing the
##  respective comparisons and substitutions.
##  <P/>
##  As this subroutine performs a very expensive process, it has been
##  implemented as a C routine in the &GAP; kernel. For the given relator
##  <M>r_1</M> of length <M>l_1</M>, say, it first determines the
##  <E>minimal match length</E> <M>l</M> which is <M>l_1/2+1</M>,
##  if <M>l_1</M> is even, or <M>(l_1+1)/2</M>, otherwise.
##  Then it builds up a hash list for all subwords of length <M>l</M>
##  occurring in the conjugates of <M>r_1</M> or <M>r_1^{{-1}}</M>,
##  and finally it loops
##  over all long relators <M>r_2</M> and compares the hash values of their
##  subwords of length <M>l</M> against this list.
##  A comparison of subwords which is much more expensive is only done if a
##  hash match has been found.
##  <P/>
##  To improve the efficiency of this process we allow the subroutine to
##  handle several short relators simultaneously provided that they have the
##  same minimal match length.  If, for example, it handles <M>n</M> short
##  relators simultaneously, then you save <M>n - 1</M> loops over the long
##  relators <M>r_2</M>, but you pay for it by additional fruitless subword
##  comparisons. In general, you will not get the best performance by always
##  choosing the maximal possible number of short relators to be handled
##  simultaneously. In fact, the optimal choice of the number will depend on
##  the concrete presentation under investigation. You can use the parameter
##  <C>searchSimultaneous</C> to prescribe an upper bound for the number of
##  short relators to be handled simultaneously.
##  <P/>
##  The default value of <C>searchSimultaneous</C> is 20.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzSearch");


############################################################################
##
#F  TzSearchEqual(<P>)
##
##  <#GAPDoc Label="TzSearchEqual">
##  <ManSection>
##  <Func Name="TzSearchEqual" Arg='P'/>
##
##  <Description>
##  searches for Tietze relator subwords which, in some relator, have a
##  complement of equal length and which occur in other relators, too, and
##  uses them to modify these other relators.
##  <P/>
##  The idea is to find pairs of relators <M>r_1</M> and <M>r_2</M> of length
##  <M>l_1</M> and <M>l_2</M>, respectively, such that <M>l_1</M> is even,
##  <M>l_1 \leq l_2</M>, and <M>r_1</M> and <M>r_2</M> coincide (possibly 
##  after inverting or conjugating one of them) in some maximal subword
##  <M>w</M>, say, of length at least <M>l_1/2</M>.
##  Let <M>l</M> be the length of <M>w</M>. Then, if <M>l > l_1/2</M>,
##  the pair is handled as in <Ref Func="TzSearch"/>.
##  Otherwise, if <M>l = l_1/2</M>, then <Ref Func="TzSearchEqual"/>
##  substitutes each copy of <M>w</M> in <M>r_2</M> by the inverse complement
##  of <M>w</M> in <M>r_1</M>.
##  <P/>
##  The Tietze option parameter <C>searchSimultaneous</C> is used by
##  <Ref Func="TzSearchEqual"/> in the same way as described for
##  <Ref Func="TzSearch"/>. However, <Ref Func="TzSearchEqual"/> does
##  not use the parameter <C>saveLimit</C>:
##  The loop over the relators is executed exactly once.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzSearchEqual");


############################################################################
##
#F  TzSort(<P>)
##
##  <#GAPDoc Label="TzSort">
##  <ManSection>
##  <Func Name="TzSort" Arg='P'/>
##
##  <Description>
##  sorts the relators of the given presentation <A>P</A> by increasing
##  lengths.
##  There is no particular ordering defined for the relators of equal length.
##  Note that <Ref Func="TzSort"/> does not return a new object.
##  It changes the given presentation.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzSort");


#############################################################################
##
#F  TzSubstitute( <P>, <word> )
#F  TzSubstitute( <P>[, <n>[, <eliminate>]] )
##
##  <#GAPDoc Label="TzSubstitute">
##  <ManSection>
##  <Heading>TzSubstitute</Heading>
##  <Func Name="TzSubstitute" Arg='P, word'
##   Label="for a presentation and a word"/>
##  <Func Name="TzSubstitute" Arg='P[, n[, eliminate]]'
##   Label="for a presentation (and an integer and 0/1/2)"/>
##
##  <Description>
##  In the first form
##  <Ref Func="TzSubstitute" Label="for a presentation and a word"/> expects
##  <A>P</A> to be a presentation and <A>word</A> to be either an abstract
##  word or a Tietze word in the generators of <A>P</A>.
##  It substitutes the given word as a new generator of <A>P</A>.
##  This is done as follows:
##  First, <Ref Func="TzSubstitute" Label="for a presentation and a word"/>
##  creates a new abstract generator, <M>g</M> say, and adds it to the
##  presentation, then it adds a new relator
##  <M>g^{{-1}} \cdot <A>word</A></M>.
##  <P/>
##  In its second form,
##  <Ref Func="TzSubstitute" Label="for a presentation (and an integer and 0/1/2)"/>
##  substitutes a squarefree word of length 2 as a new generator and then
##  eliminates a generator from the extended generator list.
##  We will describe this process in more detail below.
##  <P/>
##  The parameters <A>n</A> and <A>eliminate</A> are optional.
##  If you specify arguments for them, then <A>n</A> is expected to be a
##  positive integer, and <A>eliminate</A> is expected to be 0, 1, or 2.
##  The default values are <A>n</A> <M>= 1</M> and
##  <A>eliminate</A> <M>= 0</M>.
##  <P/>
##  <Ref Func="TzSubstitute" Label="for a presentation (and an integer and 0/1/2)"/>
##  first determines the <A>n</A> most frequently occurring
##  relator subwords of the form <M>g_1 g_2</M>,
##  where <M>g_1</M> and <M>g_2</M> are different generators or their
##  inverses, and sorts them by decreasing numbers of occurrences.
##  <P/>
##  Let <M>a b</M> be the last word in that list, and let <M>i</M> be the
##  smallest positive integer which has not yet been used as a generator
##  number in the presentation <A>P</A> so far.
##  <Ref Func="TzSubstitute" Label="for a presentation (and an integer and 0/1/2)"/>
##  defines a new abstract generator <M>x_i</M> named <C>"_x<A>i</A>"</C> and
##  adds it to <A>P</A> (see <Ref Func="AddGenerator"/>).
##  Then it adds the word <M>x_i^{{-1}} a b</M> as a new relator to <A>P</A>
##  and replaces all occurrences of <M>a b</M> in the relators by <M>x_i</M>.
##  Finally, it eliminates some suitable generator from <A>P</A>.
##  <P/>
##  The choice of the generator to be eliminated depends on the actual
##  value of the parameter <A>eliminate</A>:
##  <P/>
##  If <A>eliminate</A> is zero,
##  <Ref Func="TzSubstitute" Label="for a presentation (and an integer and 0/1/2)"/>
##  just calls the function
##  <Ref Func="TzEliminate" Label="for a presentation (and a generator)"/>.
##  So it may happen that it is the just introduced generator <M>x_i</M>
##  which now is deleted again so that you don't get any
##  remarkable progress in simplifying your presentation.
##  On the first glance this does not look reasonable,
##  but it is a consequence of the request that a call of
##  <Ref Func="TzSubstitute" Label="for a presentation (and an integer and 0/1/2)"/>
##  with <A>eliminate</A> = 0 must not increase the total length of the
##  relators.
##  <P/>
##  Otherwise, if <A>eliminate</A> is 1 or 2,
##  <Ref Func="TzSubstitute" Label="for a presentation (and an integer and 0/1/2)"/>
##  eliminates the respective factor of the substituted word <M>a b</M>,
##  i. e., it eliminates <M>a</M> if <A>eliminate</A> = 1 or <M>b</M> if
##  <A>eliminate</A> = 2.
##  In this case, it may happen that the total length of the relators
##  increases, but sometimes such an intermediate extension is the only way
##  to finally reduce a given presentation.
##  <P/>
##  There is still another property of the command
##  <Ref Func="TzSubstitute" Label="for a presentation and a word"/> which
##  should be mentioned.
##  If, for instance, <C>word</C> is an abstract word, a call
##  <P/>
##  <Log><![CDATA[
##  TzSubstitute( P, word );
##  ]]></Log>
##  <P/>
##  is more or less equivalent to
##  <P/>
##  <Log><![CDATA[
##  AddGenerator( P );
##  g := GeneratorsOfPresentation(P)[Length(GeneratorsOfPresentation(P))];
##  AddRelator( P, g^-1 * word );
##  ]]></Log>
##  <P/>
##  However, there is a difference: If you are tracing generator images and
##  preimages of <A>P</A> through the Tietze transformations applied to
##  <A>P</A> (see
##  <Ref Sect="Tracing generator images through Tietze transformations"/>),
##  then <Ref Func="TzSubstitute" Label="for a presentation and a word"/>,
##  as a Tietze transformation of <A>P</A>, will update and save the
##  respective lists, whereas a call of the function
##  <Ref Func="AddGenerator"/>
##  (which does not perform a Tietze transformation) will delete these lists
##  and hence terminate the tracing.
##  <P/>
##  <Example><![CDATA[
##  gap> G := PerfectGroup( IsSubgroupFpGroup, 960, 1 );
##  A5 2^4
##  gap> P := PresentationFpGroup( G );
##  <presentation with 6 gens and 21 rels of total length 84>
##  gap> GeneratorsOfPresentation( P );
##  [ a, b, s, t, u, v ]
##  gap> TzGoGo( P );
##  #I  there are 3 generators and 10 relators of total length 81
##  #I  there are 3 generators and 10 relators of total length 80
##  gap> TzPrintGenerators( P );
##  #I  1.  a   31 occurrences   involution
##  #I  2.  b   26 occurrences
##  #I  3.  t   23 occurrences   involution
##  gap> a := GeneratorsOfPresentation( P )[1];;
##  gap> b := GeneratorsOfPresentation( P )[2];;
##  gap> TzSubstitute( P, a*b );
##  #I  now the presentation has 4 generators, the new generator is _x7
##  #I  substituting new generator _x7 defined by a*b
##  #I  there are 4 generators and 11 relators of total length 83
##  gap> TzGo( P );
##  #I  there are 3 generators and 10 relators of total length 74
##  gap> TzPrintGenerators( P );
##  #I  1.  a   23 occurrences   involution
##  #I  2.  t   23 occurrences   involution
##  #I  3.  _x7   28 occurrences
##  ]]></Example>
##  <P/>
##  As an example of an application of the command
##  <Ref Func="TzSubstitute" Label="for a presentation and a word"/>
##  in its second
##  form we handle a subgroup of index 266 in the Janko group <M>J_1</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> F2 := FreeGroup( "a", "b" );;
##  gap> J1 := F2 / [ F2.1^2, F2.2^3, (F2.1*F2.2)^7,
##  > Comm(F2.1,F2.2)^10, Comm(F2.1,F2.2^-1*(F2.1*F2.2)^2)^6 ];;
##  gap> a := J1.1;; b := J1.2;;
##  gap> H := Subgroup ( J1, [ a, b^(a*b*(a*b^-1)^2) ] );;
##  gap> P := PresentationSubgroup( J1, H );
##  <presentation with 23 gens and 82 rels of total length 530>
##  gap> TzGoGo( P );
##  #I  there are 3 generators and 47 relators of total length 1368
##  #I  there are 2 generators and 46 relators of total length 3773
##  #I  there are 2 generators and 46 relators of total length 2570
##  gap> TzGoGo( P );
##  #I  there are 2 generators and 46 relators of total length 2568
##  gap> TzGoGo( P );
##  ]]></Example>
##  <P/>
##  Here we do not get any more progress without substituting a new
##  generator.
##  <P/>
##  <Example><![CDATA[
##  gap> TzSubstitute( P );
##  #I  substituting new generator _x28 defined by _x6*_x23^-1
##  #I  eliminating _x28 = _x6*_x23^-1
##  ]]></Example>
##  <P/>
##  &GAP; cannot substitute a new generator without extending the total
##  length,
##  so we have to explicitly ask for it by using the second form of the
##  command <Ref Func="TzSubstitute" Label="for a presentation and a word"/>.
##  Our problem is to choose appropriate values for the arguments
##  <A>n</A> and <A>eliminate</A>.
##  For this purpose it may be helpful to print out a list of the most
##  frequently occurring squarefree relator subwords of length 2.
##  <P/>
##  <Example><![CDATA[
##  gap> TzPrintPairs( P );
##  #I  1.  504  occurrences of  _x6 * _x23^-1
##  #I  2.  504  occurrences of  _x6^-1 * _x23
##  #I  3.  448  occurrences of  _x6 * _x23
##  #I  4.  448  occurrences of  _x6^-1 * _x23^-1
##  gap> TzSubstitute( P, 2, 1 );
##  #I  substituting new generator _x29 defined by _x6^-1*_x23
##  #I  eliminating _x6 = _x23*_x29^-1
##  #I  there are 2 generators and 46 relators of total length 2867
##  gap> TzGoGo( P );
##  #I  there are 2 generators and 45 relators of total length 2417
##  #I  there are 2 generators and 45 relators of total length 2122
##  gap> TzSubstitute( P, 1, 2 );
##  #I  substituting new generator _x30 defined by _x23*_x29^-1
##  #I  eliminating _x29 = _x30^-1*_x23
##  #I  there are 2 generators and 45 relators of total length 2192
##  gap> TzGoGo( P );
##  #I  there are 2 generators and 42 relators of total length 1637
##  #I  there are 2 generators and 40 relators of total length 1286
##  #I  there are 2 generators and 36 relators of total length 807
##  #I  there are 2 generators and 32 relators of total length 625
##  #I  there are 2 generators and 22 relators of total length 369
##  #I  there are 2 generators and 18 relators of total length 213
##  #I  there are 2 generators and 13 relators of total length 141
##  #I  there are 2 generators and 12 relators of total length 121
##  #I  there are 2 generators and 10 relators of total length 101
##  gap> TzPrintPairs( P );
##  #I  1.  19  occurrences of  _x23 * _x30^-1
##  #I  2.  19  occurrences of  _x23^-1 * _x30
##  #I  3.  14  occurrences of  _x23 * _x30
##  #I  4.  14  occurrences of  _x23^-1 * _x30^-1
##  ]]></Example>
##  <P/>
##  If we save a copy of the current presentation, then later we will be able to
##  restart the computation from the current state.
##  <P/>
##  <Example><![CDATA[
##  gap> P1 := ShallowCopy( P );
##  <presentation with 2 gens and 10 rels of total length 101>
##  ]]></Example>
##  <P/>
##  Just for demonstration we make an inconvenient choice:
##  <P/>
##  <Example><![CDATA[
##  gap> TzSubstitute( P, 3, 1 );
##  #I  substituting new generator _x31 defined by _x23*_x30
##  #I  eliminating _x23 = _x31*_x30^-1
##  #I  there are 2 generators and 10 relators of total length 122
##  gap> TzGoGo( P );
##  #I  there are 2 generators and 9 relators of total length 105
##  ]]></Example>
##  <P/>
##  This presentation is worse than the one we have saved, so we restart from
##  that presentation again.
##  <P/>
##  <Example><![CDATA[
##  gap> P := ShallowCopy( P1 );
##  <presentation with 2 gens and 10 rels of total length 101>
##  gap> TzSubstitute( P, 2, 1);
##  #I  substituting new generator _x31 defined by _x23^-1*_x30
##  #I  eliminating _x23 = _x30*_x31^-1
##  #I  there are 2 generators and 10 relators of total length 107
##  gap> TzGoGo( P );
##  #I  there are 2 generators and 9 relators of total length 84
##  #I  there are 2 generators and 8 relators of total length 75
##  gap> TzSubstitute( P, 2, 1);
##  #I  substituting new generator _x32 defined by _x30^-1*_x31
##  #I  eliminating _x30 = _x31*_x32^-1
##  #I  there are 2 generators and 8 relators of total length 71
##  gap> TzGoGo( P );
##  #I  there are 2 generators and 7 relators of total length 56
##  #I  there are 2 generators and 5 relators of total length 36
##  gap> TzPrintRelators( P );
##  #I  1. _x32^5
##  #I  2. _x31^5
##  #I  3. (_x31^-1*_x32^-1)^3
##  #I  4. _x31*(_x32*_x31^-1)^2*_x32*_x31*_x32^-2
##  #I  5. _x31^-1*_x32^2*(_x31*_x32^-1*_x31)^2*_x32^2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzSubstitute");


############################################################################
##
#F  TzSubstituteCyclicJoins(<P>)
##
##  <#GAPDoc Label="TzSubstituteCyclicJoins">
##  <ManSection>
##  <Func Name="TzSubstituteCyclicJoins" Arg='P'/>
##
##  <Description>
##  tries to find pairs of commuting generators <M>a</M> and <M>b</M>, say,
##  such that the exponent of <M>a</M> (i. e. the least currently known
##  positive integer <M>n</M> such that <M>a^n</M> is a relator in <A>P</A>)
##  is prime to the exponent of <M>b</M>.
##  For each such pair, their product <M>a b</M> is substituted as a new
##  generator, and <M>a</M> and <M>b</M> are eliminated.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TzSubstituteCyclicJoins");


#############################################################################
##
#F  TzSubstituteWord( <P>, <word> )
##
##  <ManSection>
##  <Func Name="TzSubstituteWord" Arg='P, word'/>
##
##  <Description>
##  <C>TzSubstituteWord</C>  expects <A>P</A> to be a presentation  and <A>word</A> to be a
##  word in the generators of <A>P</A>.  It adds a new generator <A>gen</A> and a
##  new relator of the form  <C><A>gen</A>^-1 * <A>word</A></C> to <A>P</A>.
##  <P/>
##  The second argument <A>word</A> may be  either an abstract word  or a Tietze
##  word, i. e., a list of positive or negative generator numbers.
##  <P/>
##  More precisely: The effect of a call
##  <P/>
##  <Log><![CDATA[
##     TzSubstituteWord( T, word );
##  ]]></Log>
##  <P/>
##  is more or less equivalent to that of
##  <P/>
##  <Log><![CDATA[
##     AddGenerator( T );
##     gen := T.generators[Length( T.generators )];
##     AddRelator( T, gen^-1 * word );
##  ]]></Log>
##  <P/>
##  The  essential  difference  is,  that  <C>TzSubstituteWord</C>,  as  a  Tietze
##  transformation of <A>P</A>,  saves and updates the lists of generator images and
##  preimages, in case they are being traced under the Tietze transformations
##  applied to <A>P</A>,  whereas a call of the function <C>AddGenerator</C> (which  does
##  not perform a Tietze transformation)  will delete  these lists  and hence
##  terminate the tracing.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TzSubstituteWord");


#############################################################################
##
#F  TzUpdateGeneratorImage( <P>, <n>, <word> )
##
##  <ManSection>
##  <Func Name="TzUpdateGeneratorImage" Arg='P, n, word'/>
##
##  <Description>
##  <C>TzUpdateGeneratorImages</C>  assumes  that it is called  by a function that
##  performs  Tietze transformations  to a presentation <A>P</A>  in which
##  images of the old generators  are being traced as Tietze words in the new
##  generators  as well as preimages of the new generators as Tietze words in
##  the old generators.
##  <P/>
##  If  <A>n</A>  is zero,  it assumes that  a new generator defined by the Tietze
##  word <A>word</A> has just been added to the presentation.  It converts  <A>word</A>
##  from a  Tietze word  in the new generators  to a  Tietze word  in the old
##  generators and adds that word to the list of preimages.
##  <P/>
##  If  <A>n</A>  is greater than zero,  it assumes that the  <A>n</A>-th generator has
##  just been eliminated from the presentation.  It updates the images of the
##  old generators  by replacing each occurrence of the  <A>n</A>-th  generator by
##  the given Tietze word <A>word</A>.
##  <P/>
##  If <A>n</A> is less than zero,  it terminates the tracing of generator images,
##  i. e., it deletes the corresponding components of <A>P</A>.
##  <P/>
##  Note: <C>TzUpdateGeneratorImages</C> is considered to be an internal function.
##  Hence it does not check the arguments.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TzUpdateGeneratorImages");


#############################################################################
##
#E