This file is indexed.

/usr/share/gap/lib/tietze.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
#############################################################################
##
#W  tietze.gi                  GAP library                     Volkmar Felsch
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the methods for Tietze transformations of presentation
##  records (i.e., of presentations of finitely presented groups (fp groups).
##

#############################################################################
##
#F  TzTestInitialSetup(<Tietze object>)
##
##  This function calls TzHandleLength1Or2Relators on a presentation for
##  which is has not yet been called. (Needed because we cannot yet call it
##  while the presentation is created, as it may remove generators.)
TzTestInitialSetup := function( T )
  if not IsBound( T!.hasRun1Or2 ) then
    TzHandleLength1Or2Relators( T );
    T!.hasRun1Or2:=true;
    TzSort( T );
  fi;
end;


#############################################################################
##
#M  AddGenerator( <Tietze record> )  . . . . . . . . . . . .  add a generator
##
##  extends the given Tietze presentation by a new generator.
##
##  Let i be the smallest positive integer which has not yet been used as
##  a generator number and for which no component T!.i exists so far in the
##  given presentation T, say. `AddGenerator' defines a new abstract
##  generator _xi and adds it, as component T!.i, to the given presentation.
##
InstallGlobalFunction( AddGenerator, function ( T )

    local gen, numgens, tietze;

    # check the given argument to be a Tietze record.
    TzCheckRecord( T );

    # define an abstract generator and add it to the set of generators.
    gen := TzNewGenerator( T );

    # display a message.
    if TzOptions(T).printLevel >= 1 then
        tietze := T!.tietze;
        numgens := tietze[TZ_NUMGENS];
        Print( "#I  now the presentation has ", numgens,
            " generators, the new generator is ", gen, "\n");
    fi;

    # if there is a tree of generators, delete it.
    if IsBound( T!.tree ) then  Unbind( T!.tree );  fi;

    # if generator images and preimages are being traced through the
    # Tietze transformations applied to T, delete them.
    if IsBound( T!.imagesOldGens ) then
        TzUpdateGeneratorImages( T, -1, 0 );
    fi;

    tietze[TZ_MODIFIED] := true;
    tietze[TZ_OCCUR]:=false;
end );


#############################################################################
##
#M  AddRelator( <Tietze record>, <word> )  . . . . . . . . . .  add a relator
##
##  adds the given relator to the given Tietze presentation.
##
InstallGlobalFunction( AddRelator, function ( T, word )

    local flags, leng, lengths, numrels, rel, rels, tietze;

    # check the first argument to be a Tietze record.
    TzCheckRecord( T );

    if TzOptions(T).printLevel >= 3 then
        Print( "#I  adding relator ",word,"\n" );
    fi;

    tietze := T!.tietze;
    rels := tietze[TZ_RELATORS];
    numrels := tietze[TZ_NUMRELS];
    flags := tietze[TZ_FLAGS];
    lengths := tietze[TZ_LENGTHS];

    # add rel to the relators of T, and make the Tietze lists consistent.
    rel := TzRelator( T, word );
    leng := Length( rel );
    if leng > 0 then
        numrels := numrels + 1;
        rels[numrels] := rel;
        lengths[numrels] := leng;
        flags[numrels] := 1;
        tietze[TZ_NUMRELS] := numrels;
        tietze[TZ_TOTAL] := tietze[TZ_TOTAL] + leng;
        tietze[TZ_MODIFIED] := true;
	tietze[TZ_OCCUR]:=false;
    fi;
end );


#############################################################################
##
#M  DecodeTree( <Tietze record> )  . . . .  decode a subgroup generators tree
##
##  `DecodeTree'  applies the tree decoding method to a subgroup presentation
##  provided by the  Reduced Reidemeister-Schreier  or by the  Modified Todd-
##  Coxeter method.
##
##  rels    is the set of relators.
##  gens    is the set of generators.
##  total   is the total length of all relators.
##
InstallGlobalFunction( DecodeTree, function ( T )

    local count, decode, looplimit, primary, protected, tietze, trlast;

    # check the given argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "argument must be a Presentation" );
    fi;
    tietze := T!.tietze;
    protected := TzOptions(T).protected;

    # check if there is a tree of generators.
    if not IsBound( T!.tree ) then
        Error( "there is not tree to decode it" );
    fi;
    decode := true;
    TzOptions(T).protected := Maximum( protected, T!.tree[TR_PRIMARY] );

    # if generator images are being traced, delete them.
    if IsBound( T!.imagesOldGens ) then
        Unbind( T!.imagesOldGens );
    fi;

    # substitute substrings by shorter ones.
    TzSearch( T );

    # now run our standard strategy and repeat it.
    looplimit := TzOptions(T).loopLimit;
    count := 0;
    while count < looplimit and tietze[TZ_TOTAL] > 0 do

        # replace substrings by substrings of equal length.
        TzSearchEqual( T );
        if tietze[TZ_MODIFIED] then  TzSearch( T );  fi;

        # eliminate generators.
        TzEliminateGens( T, decode  );
        if tietze[TZ_MODIFIED] then
            TzSearch( T );
            if tietze[TZ_MODIFIED] then  TzSearch( T );  fi;
            if tietze[TZ_MODIFIED] then  TzSearchEqual( T );  fi;
            if tietze[TZ_MODIFIED] then  TzSearch( T );  fi;
            count := count + 1;
        else
            count := looplimit;
        fi;

        if TzOptions(T).printLevel = 1 then  TzPrintStatus( T, true );  fi;
    od;

    # check if the tree decoding has been finished.
    primary := T!.tree[TR_PRIMARY];
    trlast := T!.tree[TR_TREELAST];
    if trlast <= primary then
        # if yes, delete the tree ...
        Unbind( T!.tree );
        # ... and reinitialize the tracing of generator images images if
        # it had been initialized before.
        if IsBound( T!.preImagesNewGens ) then
            TzInitGeneratorImages( T );
            if TzOptions(T).printLevel > 0 then
                Print( "#I  Warning: ",
                "the generator images have been reinitialized\n" );
            fi;
        fi;
    else
        # if not, display a serious warning.
        Print( "\n", "#I  **********  WARNING:  the tree decoding is",
            " incomplete !  **********\n\n",
            "#I  hence the isomporphism type of the presented group may",
            " have changed,\n",
            "#I  you should continue by first calling the `DecodeTree'",
            " command again,\n",
            "#I  possibly after changing the Tietze option parameters",
            " appropriately\n\n" );
    fi;

    TzOptions(T).protected := protected;
end );


#############################################################################
##
#M  FpGroupPresentation( <Tietze record> ) . . . .  converts the given Tietze
#M                                         presentation to a fin. pres. group
##
##  `FpGroupPresentation'  constructs the group  defined by the  given Tietze
##  presentation and returns the group record.
##
InstallGlobalFunction( FpGroupPresentation, function (arg)

local P,F, fgens, freegens, frels, G, gens, names, numgens, origin,
      redunds, rels, T, tietze, tzword;

    P:=arg[1];

    if TzOptions(P).printLevel >= 3 then
        Print( "#I  converting the Tietze presentation to a group\n" );
    fi;

    # check the given argument to be a Tietze record.
    TzCheckRecord( P );

    # do not change the given presentation, so work on a copy.
    T := ShallowCopy( P );

    # get some local variables.
    tietze := T!.tietze;
    gens := tietze[TZ_GENERATORS];
    numgens := tietze[TZ_NUMGENS];
    rels := tietze[TZ_RELATORS];
    redunds := tietze[TZ_NUMREDUNDS];

    # tidy up the Tietze presentation.
    if redunds > 0 then  TzRemoveGenerators( T );  fi;
    TzSort( T );

    # create an appropriate free group.
    freegens := tietze[TZ_FREEGENS];
    names := List( gens, g ->
        FamilyObj( gens[1] )!.names[Position( freegens, g )] );

    if Length(arg)>1 then
      F:=FreeGroup(Length(names),arg[2]);
    else
      F := FreeGroup( names );
    fi;

    fgens := GeneratorsOfGroup( F );

    # convert the relators from Tietze words to words in the generators of F.
    frels := [ ];
    for tzword in rels do
        if tzword <> [ ] then
            Add( frels, AbstractWordTietzeWord( tzword, fgens ) );
        fi;
    od;

    # get the resulting finitely presented group.
    G := F / frels;

    # save the generator images, if available.
    origin := rec( );
    if IsBound( T!.imagesOldGens ) then
        origin!.imagesOldGens := Immutable( T!.imagesOldGens );
        origin!.preImagesNewGens := Immutable( T!.preImagesNewGens );
    fi;
    SetTietzeOrigin( G, origin );
    
    return G;
end );


#############################################################################
##
#M  PresentationFpGroup( <G> [,<print level>] ) . . .  create a Tietze record
##
##  `PresentationFpGroup'  creates a presentation, i.e. a  Tietze record, for
##   the given finitely presented group.
##
InstallGlobalFunction( PresentationFpGroup, function ( arg )

    local F, G, fggens, freegens, frels, gens, grels, i, invs, lengths,
          numgens, numrels, printlevel, rels, T, tietze, total;

    # check the first argument to be a finitely presented group.
    G := arg[1];
    if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
        Error( "<G> must be a finitely presented group" );
    fi;

    # check the second argument to be an integer.
    printlevel := 1;
    if Length( arg ) = 2 then  printlevel := arg[2];  fi;
    if not IsInt( printlevel ) then
        Error( "second argument must be an integer" );
    fi;

    # Create the Presentation.
    T := Objectify( NewType( PresentationsFamily, 
                                 IsPresentationDefaultRep
                             and IsPresentation                            
                             and IsMutable ),
                    rec() ); 
    tietze := ListWithIdenticalEntries( TZ_LENGTHTIETZE, 0 );
    tietze[TZ_OCCUR]:=false;
    T!.tietze := tietze;

    # initialize the Tietze stack.
    fggens := FreeGeneratorsOfFpGroup( G );
    grels := RelatorsOfFpGroup( G );
    F := FreeGroup( IsLetterWordsFamily,infinity, "_x",
        ElementsFamily( FamilyObj( FreeGroupOfFpGroup( G ) ) )!.names );
    freegens := GeneratorsOfGroup( F );
    tietze[TZ_FREEGENS] := freegens;
    numgens := Length( fggens );
    tietze[TZ_NUMGENS] := numgens;
    gens := List( [ 1 .. numgens ], i -> freegens[i] );
    tietze[TZ_GENERATORS] := gens;
    invs := ShallowCopy( numgens - [ 0 .. 2 * numgens ] );
    tietze[TZ_INVERSES] := invs;
    frels := List( grels, rel -> MappedWord( rel, fggens, gens ) );
    numrels := Length( frels );
    rels := List( [ 1 .. numrels ], i -> TzRelator( T, frels[i] ) );
    lengths := List( [ 1 .. numrels ], i -> Length( rels[i] ) );
    total := Sum( lengths );
    tietze[TZ_NUMRELS] := numrels;
    tietze[TZ_RELATORS] := rels;
    tietze[TZ_LENGTHS] := lengths;
    tietze[TZ_FLAGS] := ListWithIdenticalEntries( numrels, 1 );
    tietze[TZ_TOTAL] := total;
    tietze[TZ_STATUS] := [ 0, 0, -1 ];
    tietze[TZ_MODIFIED] := false;
    T!.generators := tietze[TZ_GENERATORS];
    T!.components := [ 1 .. numgens ];
    for i in [ 1 .. numgens ] do
        T!.(String( i )) := gens[i];
    od;
    T!.nextFree := numgens + 1;
    SetOne(T,Identity( F ));
    T!.identity:=Identity( F );

    # initialize some Tietze options
    TzOptions(T).protected := 0;
    TzOptions(T).printLevel:=printlevel;

    # print the status line.
    if TzOptions(T).printLevel >= 2 then  TzPrintStatus( T, true );  fi;

    # return the Tietze record.
    return T;
end );


#############################################################################
##
#M  PrintObj( <T> ) . . . . . . . . . . .  pretty print a presentation record
##
InstallMethod( PrintObj,
    "for a presentation in default representation",
    true,
    [ IsPresentation and IsPresentationDefaultRep ], 0,
    function( T )

    local numgens, numrels, tietze, total;

    # get number of generators, number of relators, and total length.
    tietze := T!.tietze;
    numgens := tietze[TZ_NUMGENS] - tietze[TZ_NUMREDUNDS];
    numrels := tietze[TZ_NUMRELS];
    total := tietze[TZ_TOTAL];

    # print the Tietze status line.
    Print( "<presentation with ", numgens, " gens and ", numrels,
        " rels of total length ", total, ">" );

end );


#############################################################################
##
#M  ShallowCopy( <T> )
##
InstallMethod( ShallowCopy,
    "for a presentation in default representation", true,
    [ IsPresentation and IsPresentationDefaultRep ], 0, StructuralCopy );


#############################################################################
##
#M  PresentationRegularPermutationGroup(<G>)  . . .  construct a presentation
#M                                           from a regular permutation group
##
##  `PresentationRegularPermutationGroup'  constructs a presentation from the
##  given  regular permutation group  using  John Cannon's  relations finding
##  algorithm.
##
InstallGlobalFunction( PresentationRegularPermutationGroup, function ( G )

    # check G to be a regular permutation group.
    if not ( IsPermGroup( G ) and IsRegular( G ) ) then
        Error( "the given group must be a regular permutation group" );
    fi;
    return PresentationRegularPermutationGroupNC( G );
end );


#############################################################################
##
#M  PresentationRegularPermutationGroupNC(<G>)  . .  construct a presentation
#M                                           from a regular permutation group
##
##  `PresentationRegularPermutationGroupNC' constructs a presentation from
##  the given regular permutation group using John Cannon's relations finding
##  algorithm.
##
##  In this NC version it is assumed, but not checked that G is a regular
##  permutation group.
##
InstallGlobalFunction( PresentationRegularPermutationGroupNC, function ( G )
    local   cosets,       # right cosets of G by its trivial subgroup H
            F,            # given free group
            R,            # record containing an fp group isomorphic to G
            P,            # presentation to be consructed
            ng1,          # position number of identity element in G
            idword,       # identity element of F
            table,        # columns in the table for gens
            rels,         # representatives of the relators
            relsGen,      # relators sorted by start generator
            subgroup,     # rows for the subgroup gens
            i, j,         # loop variables
            gen,          # loop variables for generator
            gen0, inv0,   # loop variables for generator cols
            g, g1,        # loop variables for generator cols
            c,            # loop variable for coset
            rel,          # loop variables for relator
            rels1,        # list of relators
            app,          # arguments list for `MakeConsequences'
            index,        # index of the table
            col,          # generator col in auxiliary table
            perm,         # variable for permutations
            fgens,        # generators of F
            gens2,        # the above abstract gens and their inverses
            perms,        # permutation generators of G
            moved,        # list of points on which G acts,
            ngens,        # number of generators of G
            ngens2,       # twice the above number
            order,        # order of a generator
            actcos,       # part 1 of Schreier vector of G by H
            actgen,       # part 2 of Schreier vector of G by H
            tab0,         # auxiliary table in parallel to table <table>
            cosRange,     # range from 1 to index (= number of cosets)
            genRange,     # range of the odd integers from 1 to 2*ngens-1
            geners,       # order in which the table cols are worked off
            next,         # local coset number
            n;            # number of subgroup element

    # initialize some local variables.
    perms := GeneratorsOfGroup( G );
    ngens := Length( perms );
    ngens2 := ngens * 2;
    ng1 := 1;
    index := NrMovedPoints( perms );
    tab0 := [];
    table := [];
    subgroup := [];
    cosRange := [ 1 .. index ];
    genRange := List( [ 1 .. ngens ], i -> 2*i-1 );
    rels := [];
    F := FreeGroup( ngens );
    fgens := GeneratorsOfGroup( F );
    gens2 := [];
    idword := One( fgens[1] );

    # ensure that the permutations act on the points 1 to index (note that
    # index is the degree of G).
    if LargestMovedPoint( perms ) > index then
        moved := MovedPoints( perms );
        perm := MappingPermListList( moved, [ 1 .. index ] );
        perms := OnTuples( perms, perm );
    fi;

    # get a coset table from the permutations,
    # and introduce appropriate relators for the involutory generators
    for i in [ 1 .. ngens ] do
        Add( gens2, fgens[i] );
        Add( gens2, fgens[i]^-1 );
        perm := perms[i];
        col := OnTuples( cosRange, perm );
        gen := ListWithIdenticalEntries( index, 0 );
        Add( tab0, col );
        Add( table, gen );
        order := Order( perms[i] );
        if order = 2 then
            Add( rels, fgens[i]^2 );
        else
            col := OnTuples( cosRange, perm^-1 );
            gen := ListWithIdenticalEntries( index, 0 );
        fi;
        Add( tab0, col );
        Add( table, gen );
    od;

    # define an appropriate ordering of the cosets,
    # enter the definitions in the table,
    # and construct the Schreier vector,
    cosets := ListWithIdenticalEntries( index, 0 );
    actcos := ListWithIdenticalEntries( index, 0 );
    actgen := ListWithIdenticalEntries( index, 0 );
    cosets[1] := ng1;
    actcos[ng1] := ng1;
    j := 1;
    i := 0;
    while i < index do
        i := i + 1;
        c := cosets[i];
        g := 0;
        while g < ngens2 do
            g := g + 1;
            next := tab0[g][c];
            if next > 0 and actcos[next] = 0 then
                g1 := g + 2*(g mod 2) - 1;
                table[g][c] := next;
                table[g1][next] := c;
                tab0[g][c] := 0;
                tab0[g1][next] := 0;
                actcos[next] := c;
                actgen[next] := g;
                j := j + 1;
                cosets[j] := next;
                if j = index then
                    g := ngens2;
                    i := index;
                fi;
            fi;
        od;
    od;

    # compute the representatives for the relators
    rels := RelatorRepresentatives( rels );

    # make the structure that is passed to `MakeConsequences'
    app := ListWithIdenticalEntries( 12, 0 );

    # note: we have, in particular, set app[12] to zero as we do not want
    # minimal gaps to be marked in the coset table

    app[1] := table;
    app[5] := subgroup;

    # run through the coset table and find the next undefined entry
    geners := [ 1 .. ngens2 ];
    for i in cosets do
        for j in geners do
            if table[j][i] <= 0 then

                # define the entry appropriately,
                g := j + 2*(j mod 2) - 1;
                c := tab0[j][i];
                table[j][i] := c;
                table[g][c] := i;
                tab0[j][i] := 0;
                tab0[g][c] := 0;

                # construct the associated relator
                rel := idword;
                while c <> ng1 do
                    g := actgen[c];
                    rel := rel * gens2[g]^-1;
                    c := actcos[c];
                od;
                rel := rel^-1 * gens2[j]^-1;
                c := i;
                while c <> ng1 do
                    g := actgen[c];
                    rel := rel * gens2[g]^-1;
                    c := actcos[c];
                od;

                # compute its representative,
                # and add it to the set of relators
                rels1 := RelatorRepresentatives( [ rel ] );
                if Length( rels1 ) > 0 then
                    rel := rels1[1];
                    if not rel in rels then
                        Add( rels, rel );
                    fi;
                fi;

                # make the rows for the relators and distribute over relsGen
                relsGen := RelsSortedByStartGen( fgens, rels, table, true );
                app[4] := relsGen;

                # mark all already defined entries of table by a zero in
                # tab0
                for g in genRange do
                    gen := table[g];
                    gen0 := tab0[g];
                    inv0 := tab0[g+1];
                    for c in cosRange do
                        if gen[c] > 0 then
                            gen0[c] := 0;
                            inv0[gen[c]] := 0;
                        fi;
                    od;
                od;

                # continue the enumeration and find all consequences
                for g in genRange do
                    gen0 := tab0[g];
                    for c in cosRange do
                        if gen0[c] = 0 then
                            app[10] := g;
                            app[11] := c;
                            n := MakeConsequences( app );
                        fi;
                    od;
                od;
            fi;
        od;
    od;

    # construct a finitely presented group from the relations,
    # add the Schreier vector to its components, and return it
    P := PresentationFpGroup( F / rels, 0 );
    TzOptions(P).protected := ngens;
    TzGoGo( P );
    TzOptions(P).protected := 0;
    TzOptions(P).printLevel := 1;

    # return the resulting presentation
    return P;
end );


#############################################################################
##
#M  PresentationViaCosetTable(<G>)  . . . . . . . .  construct a presentation
#M  PresentationViaCosetTable(<G>,<F>,<words>) . . . . .  for the given group
##
##  `PresentationViaCosetTable'   constructs   a  presentation  for  a  given
##  concrete  group.  It applies  John  Cannon's  relations finding algorithm
##  which has been described in
##
##    John J. Cannon:  Construction of  defining relators  for  finte groups.
##    Discrete Math. 5 (1973), 105-129, and in
##
##    Joachim Neubueser: An elementary introduction to coset table methods in
##    computational  group theory.  Groups-St Andrews 1981,  edited by C. M.
##    Campbell and E. F. Robertson, pp. 1-45.  London Math. Soc. Lecture Note
##    Series no. 71, Cambridge Univ. Press, Cambridge, 1982.
##
##  If only a group  <G>  has been  specified,  the single stage algorithm is
##  applied.
##
##  If the  two stage algorithm  is to  be used,  `PresentationViaCosetTable'
##  expects a subgroup <H> of <G> to be described by two additional arguments
##  <F>  and  <words>,  where  <F>  is a  free group  with the same number of
##  generators as  <G>,  and  <words> is a list of words in the generators of
##  <F>  which supply  a list of generators of  <H>  if they are evaluated as
##  words in the corresponding generators of <G>.
##
InstallGlobalFunction( PresentationViaCosetTable, function ( arg )
    local   G,          # given group
            F,          # given or constructed free group
            fgens,      # generators of F
            words,      # words (in the generators of F) defing H
            twords,     # tidied up list of words
            H,          # subgroup
            elts,       # elements of G or H
            cosets,     # right cosets of G with respect to H
            R1,         # record containing an fp group isomorphic to H
            R2,         # record containing an fp group isomorphic to G
            P,          # resulting presentation
            ggens,      # concrete generators of G
            hgens,      # concrete generators of H
            thgens,     # tidied up list of generators of H
            ngens,      # number of generators of G
            one,        # identity element of G
            size,       # size of G
            F1,         # free group with same number of generators as H
            FP2,        # fp group isomorphic to G
            i;          # loop variable

    # check the first argument to be a group
    G := arg[1];
    if not IsGroup( G ) then
        Error( "first argument must be a group" );
    fi;
    ggens := GeneratorsOfGroup( G );
    ngens := Length( ggens );

    # check if a subgroup has been specified
    if Length( arg ) = 1 then

        # apply the single stage algorithm
        Info( InfoFpGroup, 1,
            "calling the single stage relations finding algorithm" );

        # use a special method for regular permutation groups
        if IsPermGroup( G ) then
            # compute the size of G to speed up the regularity check
            size := Size( G );
            if IsRegular( G ) then
                return PresentationRegularPermutationGroupNC( G );
            fi;
        fi;

        # construct a presentation for G
        elts := AsSSortedList( G );
        F := FreeGroup( ngens );
        R2 := RelsViaCosetTable( G, elts, F );

    else

        # check the second argument to be an fp group.
        F := arg[2];
        if not IsFreeGroup( F ) then
            Error( "second argument must be a free group" );
        fi;

        # check F for having the same number of generators as G
        fgens := GeneratorsOfGroup( F );
        if Length( fgens ) <> ngens then
            Error( "the given groups have different number of generators" );
        fi;

        # get the subgroup H
        words := arg[3];
        hgens := List( words, w -> MappedWord( w, fgens, ggens ) );
        H := Subgroup( G, hgens );

        if Size( H ) = 1 or Size( H ) = Size( G ) then

            # apply the single stage algorithm
            Info( InfoFpGroup, 1,
                "calling the single stage relations finding algorithm" );
            elts := AsSSortedList( G );
            R2 := RelsViaCosetTable( G, elts, F );

        else

            # apply the two stage algorithm
            Info( InfoFpGroup, 1,
                "calling the two stage relations finding algorithm" );
            Info( InfoFpGroup, 1,
                "using a subgroup of size ", Size( H ), " and index ",
                Size( G ) / Size( H ) );
            # eliminate words which define the identity of G
            one := One( ggens[1] );
            thgens := [];
            twords := [];
            for i in [ 1 .. Length( hgens ) ] do
                if hgens[i] <> one and not hgens[i] in thgens
                    and not hgens[i]^-1 in thgens then
                    Add( thgens, hgens[i] );
                    Add( twords, words[i] );
                fi;
            od;
            hgens := thgens;
            words := twords;

            # construct a presentation for the subgroup H
            elts := AsSSortedList( H );
            F1 := FreeGroup( Length( hgens ) );
            R1 := RelsViaCosetTable( H, elts, F1, hgens );

            # construct a presentation for the group G
            cosets := RightCosets( G, H );
            R2 := RelsViaCosetTable( G, cosets, F, words, H, R1 );

        fi;
    fi;

    # simplify the resulting presentation by Tietze transformations,
    # but do not eliminate any generators
    FP2 := R2.fpGroup;
    P := PresentationFpGroup( FP2, 0 );
    TzOptions(P).protected := ngens;
    TzGoGo( P );
    TzOptions(P).protected := 0;
    TzOptions(P).printLevel := 1;

    # return the resulting presentation
    return P;
end );


#############################################################################
##
#M  RelsViaCosetTable(<G>,<cosets>,<F>)  . . . . . construct relators for the
#M  RelsViaCosetTable(<G>,<cosets>,<F>,<ggens>)  . . . . . . . given concrete
#M  RelsViaCosetTable(<G>,<cosets>,<F>,<words>,<H>,<R1>)  . . . . . . . group
##
##  `RelsViaCosetTable'  constructs a defining set of relators  for the given
##  concrete group using John Cannon's relations finding algorithm.
##
##  It is a  subroutine  of function  `PresentationViaCosetTable'.  Hence its
##  input and output are specifically designed only for this purpose,  and it
##  does not check the arguments.
##

InstallGlobalFunction( RelsViaCosetTable, function ( arg )
    local   G,            # given group
            cosets,       # right cosets of G with respect to H
            F,            # given free group
            words,        # given words for the generators of H
            H,            # subgroup, if specified
            F1,           # free group associated to H
            R1,           # record containing an fp group isomorphic to H
            R2,           # record containing an fp group isomorphic to G
            FP1,          # fp group isomorphic to H
            fhgens,       # generators of F1
            hrels,        # relators of F1
            helts,        # list of elements of H
            ng1,          # position number of identity element in G
            nh1,          # position number of identity element in H
            idword,       # identity element of F
            perms,        # permutations induced by the gens on the cosets
            stage,        # 1 or 2
            table,        # columns in the table for gens
            rels,         # representatives of the relators
            relsGen,      # relators sorted by start generator
            subgroup,     # rows for the subgroup gens
            i, j,         # loop variables
            gen,          # loop variables for generator
            gen0, inv0,   # loop variables for generator cols
            g, g1,        # loop variables for generator cols
            c,            # loop variable for coset
            rel,          # loop variables for relator
            rels1,        # list of relators
            app,          # arguments list for `MakeConsequences'
            index,        # index of the table
            col,          # generator col in auxiliary table
            perm,         # permutations induced by a generator on the cosets
            fgens,        # generators of F
            gens2,        # the above abstract gens and their inverses
            ggens,        # concrete generators of G
            ngens,        # number of generators of G
            ngens2,       # twice the above number
            order,        # order of a generator
            actcos,       # part 1 of Schreier vector of G by H
            actgen,       # part 2 of Schreier vector of G by H
            tab0,         # auxiliary table in parallel to table <table>
            cosRange,     # range from 1 to index (= number of cosets)
            genRange,     # range of the odd integers from 1 to 2*ngens-1
            geners,       # order in which the table cols are worked off
            next,         # local coset number
            left1,        # part 1 of Schreier vector of H by trivial group
            right1,       # part 2 of Schreier vector of H by trivial group
            n,            # number of subgroup element
            words2,       # words for the generators of H and their inverses
            h;            # subgroup element

    # get the arguments, and initialize some local variables

    G := arg[1];
    cosets := arg[2];
    F := arg[3];
    if Length( arg ) = 4 then
        ggens := arg[4];
    else
        ggens := GeneratorsOfGroup( G );
    fi;
    ngens := Length( ggens );
    ngens2 := ngens * 2;
    if cosets[1] in G then
        ng1 := PositionSorted( cosets, cosets[1]^0 );
    else
        ng1 := 1;
    fi;
    index := Length( cosets );
    tab0 := [];
    table := [];
    subgroup := [];
    cosRange := [ 1 .. index ];
    genRange := List( [ 1 .. ngens ], i -> 2*i-1 );

    if Length( arg ) < 5 then
        stage := 1;
        rels := [];
    else
        stage := 2;
        words := arg[4];
        H := arg[5];
        helts := AsSSortedList( H );
        nh1 := PositionSorted( helts, helts[1]^0 );
        R1 := arg[6];
        FP1 := R1.fpGroup;
        F1 := FreeGroupOfFpGroup( FP1 );
        fhgens := GeneratorsOfGroup( F1 );
        hrels := RelatorsOfFpGroup( FP1 );
        # initialize the relators of F2 by the rewritten relators of F1
        rels := List( hrels, rel -> MappedWord( rel, fhgens, words ) );
        # get the Schreier vector for the elements of H
        left1 := R1.actcos;
        right1 := R1.actgen;
        # extend the list of the generators of F1 as words in the abstract
        # generators of F2 by their inverses
        words2 := [];
        for i in [ 1 .. Length( words ) ] do
            Add( words2, words[i] );
            Add( words2, words[i]^-1 );
        od;
    fi;

    fgens := GeneratorsOfGroup( F );
    gens2 := [];
    idword := One( fgens[1] );

    # get the permutations induced by the generators of G on the given
    # cosets
    perms := List( ggens, gen -> Permutation( gen, cosets, OnRight ) );

    # get a coset table from the permutations,
    # and introduce appropriate relators for the involutory generators
    for i in [ 1 .. ngens ] do
        Add( gens2, fgens[i] );
        Add( gens2, fgens[i]^-1 );
        perm := perms[i];
        col := OnTuples( cosRange, perm );
        gen := ListWithIdenticalEntries( index, 0 );
        Add( tab0, col );
        Add( table, gen );
        order := Order( ggens[i] );
        if order = 2 then
            Add( rels, fgens[i]^2 );
        else
            col := OnTuples( cosRange, perm^-1 );
            gen := ListWithIdenticalEntries( index, 0 );
        fi;
        Add( tab0, col );
        Add( table, gen );
    od;

    # define an appropriate ordering of the cosets,
    # enter the definitions in the table,
    # and construct the Schreier vector,
    cosets := ListWithIdenticalEntries( index, 0 );
    actcos := ListWithIdenticalEntries( index, 0 );
    actgen := ListWithIdenticalEntries( index, 0 );
    cosets[1] := ng1;
    actcos[ng1] := ng1;
    j := 1;
    i := 0;
    while i < index do
        i := i + 1;
        c := cosets[i];
        g := 0;
        while g < ngens2 do
            g := g + 1;
            next := tab0[g][c];
            if next > 0 and actcos[next] = 0 then
                g1 := g + 2*(g mod 2) - 1;
                table[g][c] := next;
                table[g1][next] := c;
                tab0[g][c] := 0;
                tab0[g1][next] := 0;
                actcos[next] := c;
                actgen[next] := g;
                j := j + 1;
                cosets[j] := next;
                if j = index then
                    g := ngens2;
                    i := index;
                fi;
            fi;
        od;
    od;

    # compute the representatives for the relators
    rels := RelatorRepresentatives( rels );

    # make the structure that is passed to `MakeConsequences'
    app := ListWithIdenticalEntries( 12, 0 );

    # note: we have, in particular, set app[12] to zero as we do not want
    # minimal gaps to be marked in the coset table

    app[1] := table;
    app[5] := subgroup;

    # in case stage = 2 we have to handle subgroup relators
    if stage = 2 then

        # make the rows for the relators and distribute over relsGen
        relsGen := RelsSortedByStartGen( fgens, rels, table, true );
        app[4] := relsGen;

        # start the enumeration and find all consequences
        for g in genRange do
            gen0 := tab0[g];
            for c in cosRange do
                if gen0[c] = 0 then
                    app[10] := g;
                    app[11] := c;
                    n := MakeConsequences( app );
                fi;
            od;
        od;
    fi;

    # run through the coset table and find the next undefined entry
    geners := [ 1 .. ngens2 ];
    for i in cosets do
        for j in geners do
            if table[j][i] <= 0 then

                # define the entry appropriately,
                g := j + 2*(j mod 2) - 1;
                c := tab0[j][i];
                table[j][i] := c;
                table[g][c] := i;
                tab0[j][i] := 0;
                tab0[g][c] := 0;

                # construct the associated relator
                rel := idword;
                while c <> ng1 do
                    g := actgen[c];
                    rel := rel * gens2[g]^-1;
                    c := actcos[c];
                od;
                rel := rel^-1 * gens2[j]^-1;
                c := i;
                while c <> ng1 do
                    g := actgen[c];
                    rel := rel * gens2[g]^-1;
                    c := actcos[c];
                od;
                if stage = 2 then
                    h := MappedWord( rel, fgens, ggens );
                    n := PositionSorted( helts, h );
                    while n <> nh1 do
                        g := right1[n];
                        rel := rel * words2[g]^-1;
                        n := left1[n];
                    od;
                fi;

                # compute its representative,
                # and add it to the set of relators
                rels1 := RelatorRepresentatives( [ rel ] );
                if Length( rels1 ) > 0 then
                    rel := rels1[1];
                    if not rel in rels then
                        Add( rels, rel );
                    fi;
                fi;

                # make the rows for the relators and distribute over relsGen
                relsGen := RelsSortedByStartGen( fgens, rels, table, true );
                app[4] := relsGen;

                # mark all already defined entries of table by a zero in
                # tab0
                for g in genRange do
                    gen := table[g];
                    gen0 := tab0[g];
                    inv0 := tab0[g+1];
                    for c in cosRange do
                        if gen[c] > 0 then
                            gen0[c] := 0;
                            inv0[gen[c]] := 0;
                        fi;
                    od;
                od;

                # continue the enumeration and find all consequences
                for g in genRange do
                    gen0 := tab0[g];
                    for c in cosRange do
                        if gen0[c] = 0 then
                            app[10] := g;
                            app[11] := c;
                            n := MakeConsequences( app );
                        fi;
                    od;
                od;
            fi;
        od;
    od;

    # construct a finitely presented group from the relations,
    # add the Schreier vector to its components, and return it
    R2 := rec( );
    R2.fpGroup := F / rels;
    R2.actcos := actcos;
    R2.actgen := actgen;
    return R2;
end );


#############################################################################
##
#M  RemoveRelator( <Tietze record>, <n> ) . . . . . . . . .  remove a relator
#M                                                        from a presentation
##
##  removes the <n>-th relator from the given Tietze presentation.
##
InstallGlobalFunction( RemoveRelator, function ( T, n )

    local invs, leng, lengths, num, numgens1, numrels, rels, tietze;

    # check the first argument to be a Tietze record.
    TzCheckRecord( T );

    # get some local variables.
    tietze := T!.tietze;
    rels := tietze[TZ_RELATORS];
    numrels := tietze[TZ_NUMRELS];
    lengths := tietze[TZ_LENGTHS];
    invs := tietze[TZ_INVERSES];
    numgens1 := tietze[TZ_NUMGENS] + 1;

    # check the second argument to be in range.
    if ( n < 1 or n > numrels ) then
        Error( "relator number out of range" );
    fi;

    # print a message.
    if TzOptions(T).printLevel >= 3 then
        Print( "#I  removing the ", n, "th relator\n" );
    fi;

    # check if the nth relator has defined an involution.
    leng := lengths[n];
    if leng = 2 and rels[n][1] = rels[n][2] then
        num := rels[n][1];
        if num < 0 then  num := -num;  fi;
        if invs[numgens1+num] = num then  invs[numgens1+num] := -num;  fi;
    fi;

    # remove the nth relator, and make the Tietze lists consistent.
    rels[n] := [ ];
    lengths[n] := 0;
    tietze[TZ_TOTAL] := tietze[TZ_TOTAL] - leng;
    TzSort( T );
    if TzOptions(T).printLevel >= 2 then  TzPrintStatus( T, true );  fi;
end );


#############################################################################
##
#M  SimplifiedFpGroup( <FpGroup> ) . . . . . . . . .  sinplify the FpGroup by
#M                                                     Tietze transformations
##
##  `SimplifiedFpGroup'  returns a group  isomorphic to the given one  with a
##  presentation which has been tried to simplify via Tietze transformations.
##
InstallGlobalFunction( SimplifiedFpGroup, function ( G )

    local H, T;

    # check the given argument to be a finitely presented group.
    if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
        Error( "argument must be a finitely presented group" );
    fi;

    # convert the given group presentation to a Tietze presentation.
    T := PresentationFpGroup( G, 0 );

    # perform Tietze transformations.
    TzGo( T );

    # reconvert the Tietze presentation to a group presentation.
    H := FpGroupPresentation( T );

    # return the resulting group record.
    return H;
end );


#############################################################################
##
#M  AbstractWordTietzeWord( <word>, <fgens> )  . . . .  convert a Tietze word
#M                                                        to an abstract word
##
InstallGlobalFunction( AbstractWordTietzeWord,
function(w,gens)
  return AssocWordByLetterRep(FamilyObj(gens[1]),w,gens);
end);


#############################################################################
##
#M  TzCheckRecord( <Tietze record> )  . . . .  check Tietze record components
##
##  `TzCheckRecord'  checks some components of the  given Tietze record to be
##  consistent.
##
InstallGlobalFunction( TzCheckRecord, function ( T )

    local tietze;

    # check the given argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "argument must be a Presentation" );
    fi;

    # check the generator lists to be consistent.
    tietze := T!.tietze;
    if not ( IsIdenticalObj( T!.generators, tietze[TZ_GENERATORS] ) ) or
        Length( tietze[TZ_GENERATORS] ) <> tietze[TZ_NUMGENS] then
        Error( "inconsistent generator lists" );
    fi;

    # check the inverses list.
    if Length( tietze[TZ_INVERSES] ) <> 2 * tietze[TZ_NUMGENS] + 1 then
        Error( "inconsistent generator inverses" );
    fi;

    # check the relator list.
    if Length( tietze[TZ_RELATORS] ) <> tietze[TZ_NUMRELS] or
        Length( tietze[TZ_LENGTHS] ) <> tietze[TZ_NUMRELS] or
        Length( tietze[TZ_FLAGS] ) <> tietze[TZ_NUMRELS] then
        Error( "inconsistent relators" );
    fi;

end );


#############################################################################
##
#M  TzEliminate( <Tietze record> ) . . . . . . . . . . eliminates a generator
#M  TzEliminate( <Tietze record>, <gen> )  . . . . . eliminates generator gen
#M  TzEliminate( <Tietze record>, <n> ) . . . . . . . eliminates n generators
##
##  If a generator has been specified,  then  `TzEliminate'  eliminates it if
##  possible, i. e. if it can be isolated in some appropriate relator.  If no
##  generator  has  been  specified ,   then  `TzEliminate'  eliminates  some
##  appropriate  generator  if possible  and if the resulting total length of
##  the relators will not exceed  the parameter  TzOptions(T).lengthLimit  or
##  the value 2^31-1.
##
InstallGlobalFunction( TzEliminate, function ( arg )

    local eliminations, gennum, n, numgens, numgenslimit, T, tietze;

    # check the number of arguments.
    if Length( arg ) > 2 or Length( arg ) < 1 then
        Error( "usage: TzEliminate( <Tietze record> [, <generator> ] )" );
    fi;

    # check the first argument to be a Tietze record.
    T := arg[1];
    TzCheckRecord( T );
    TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
    tietze := T!.tietze;

    # get the arguments.
    gennum := 0;
    n := 1;
    if Length( arg ) = 2 then
        if IsInt( arg[2] ) then
            n := arg[2];
        else
            gennum := Position( tietze[TZ_GENERATORS], arg[2] );
            if gennum = fail then  Error(
                "usage: TzEliminate( <Tietze record> [, <generator> ] )" );
            fi;
        fi;
    fi;

    if n = 1 then

        # call the appropriate routine to eliminate one generator.
        if gennum = 0 then  TzEliminateGen1( T );
        else  TzEliminateGen( T, gennum );  fi;
        if tietze[TZ_NUMREDUNDS] > 0 then  TzRemoveGenerators( T );  fi;

        # handle relators of length 1 or 2.
        TzHandleLength1Or2Relators( T );

        # sort the relators and print the status line.
        TzSort( T );
        if TzOptions(T).printLevel >= 1 then  TzPrintStatus( T, true );  fi;

    else

        # eliminate n generators.
        numgens := tietze[TZ_NUMGENS];
        eliminations := TzOptions(T).eliminationsLimit;
        numgenslimit := TzOptions(T).generatorsLimit;
        TzOptions(T).eliminationsLimit := n;
        TzOptions(T).generatorsLimit := numgens - n;
        TzEliminateGens( T );
        TzOptions(T).eliminationsLimit := eliminations;
        TzOptions(T).generatorsLimit := numgenslimit;
    fi;
end );


#############################################################################
##
#M  TzEliminateFromTree( <Tietze record> ) . .  eliminates the last generator
#M                                                              from the tree
##
##  `TzEliminateFromTree'  eliminates  the  last  Tietze  generator.  If that
##  generator cannot be isolated in any Tietze relator,  then it's definition
##  is  taken  from  the tree  and added  as an  additional  Tietze  relator,
##  extending  the  set  of  Tietze generators  appropriately,  if necessary.
##  However,  the elimination  will not be  performed  if the resulting total
##  length of the relators  cannot be guaranteed  to not exceed the parameter
##  TzOptions(T).lengthLimit or the value 2^31-1.
##
InstallGlobalFunction( TzEliminateFromTree, function ( T )

    local exp, factor, flags, gen, gens, i, invnum, invs, leng, length,
          lengths, num, numgens, numrels, occRelNum, occur, occTotal, pair,
          pair1, pointers, pos, primary, ptr, rel, rels, space,
          spacelimit, tietze, tree, treelength, treeNums, trlast, word;

    # check the first argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "argument must be a Presentation" );
    fi;
    TzTestInitialSetup(T); # run `1Or2Relators' if not yet done

    # get some local variables.
    tietze := T!.tietze;
    gens := tietze[TZ_GENERATORS];
    numgens := tietze[TZ_NUMGENS];
    invs := tietze[TZ_INVERSES];
    rels := tietze[TZ_RELATORS];
    numrels := tietze[TZ_NUMRELS];
    flags := tietze[TZ_FLAGS];
    lengths := tietze[TZ_LENGTHS];

    # get some more local variables.
    tree := T!.tree;
    treelength := tree[TR_TREELENGTH];
    primary := tree[TR_PRIMARY];
    trlast := tree[TR_TREELAST];
    treeNums := tree[TR_TREENUMS];
    pointers := tree[TR_TREEPOINTERS];

    spacelimit := Minimum( TzOptions(T).lengthLimit, 2^31 - 1 );
    tietze[TZ_MODIFIED] := false;
    occTotal := 0;

    # get the number of the last occurring generator.
    while occTotal = 0 do

        # get the number of the last generator.
        while trlast > primary and pointers[trlast] <= treelength do
            trlast := trlast - 1;
        od;
        tree[TR_TREELAST] := trlast;
        if trlast <= primary then  return;  fi;

        # determine the number of occurrences of the last generator.
        num := pointers[trlast] - treelength;
        occur := TzOccurrences( tietze, num );
        occTotal := occur[1][1];

        # if the last generator does not occur in the relators, mark it to
        # be redundant.
        if occTotal = 0 then
            invs[numgens+1-num] := 0;
            tietze[TZ_NUMREDUNDS] := tietze[TZ_NUMREDUNDS] + 1;
            trlast := trlast - 1;
        fi;
    od;

    if occur[3][1] > 1 then

        # print a message.
        if TzOptions(T).printLevel >= 2 then
            Print( "#I  adding relator from tree position ", trlast, "\n" );
        fi;

        # get the defining word from the tree.
        pair := [ 0, 0 ];
        for i in [ 1 .. 2 ] do

            exp := 1;
            ptr := tree[i][trlast];
            if ptr < 0 then
                exp := - exp;
                ptr := - ptr;
            fi;

            if pointers[ptr] = ptr then
                # add this tree generator to the list of generators.
                gen := TzNewGenerator( T );
                numgens := tietze[TZ_NUMGENS];
                gens := tietze[TZ_GENERATORS];
                invs := tietze[TZ_INVERSES];
                treeNums[numgens] := ptr;
                pointers[ptr] := treelength + numgens;
                if TzOptions(T).printLevel >= 2 then
                    Print( "#I  adding generator ", gens[numgens],
                    " from tree position ", ptr, "\n" );
                fi;
            else
                # find this tree generator in the list of generators.
                while ptr > 0 and pointers[ptr] <= treelength do
                    ptr := pointers[ptr];
                    if ptr < 0 then
                        exp := - exp;
                        ptr := - ptr;
                    fi;
                od;
            fi;

            # now get the generator number of the current factor.
            if ptr = 0 then
                factor := 0;
            else
                factor := pointers[ptr] - treelength;
                if treeNums[factor] < 0 then  exp := - exp;  fi;
                if exp < 0 then  factor := invs[numgens+1+factor];  fi;
            fi;
            pair[i] := factor;
        od;

        # invert the defining word, if necessary.
        if treeNums[num] < 0 then
            pair1 := pair[1];
            pair[1] := invs[numgens+1+pair[2]];
            pair[2] := invs[numgens+1+pair1];
        fi;

        # add the corresponding relator to the set of relators.
        invnum := invs[numgens+1+num];
        if pair[1] = invs[numgens+1+pair[2]] then
            rel := [ invnum ];  leng := 1;
        elif pair[1] = 0 then
            rel := [ invnum, pair[2] ];  leng := 2;
        elif pair[2] = 0 then
            rel := [ invnum, pair[1] ];  leng := 2;
        else
            rel := [ invnum, pair[1], pair[2] ];  leng := 3;
        fi;
        numrels := numrels + 1;
        rels[numrels] := rel;
        lengths[numrels] := leng;
        flags[numrels] := 1;
        tietze[TZ_NUMRELS] := numrels;
        tietze[TZ_TOTAL] := tietze[TZ_TOTAL] + leng;
        tietze[TZ_MODIFIED] := true;
	tietze[TZ_OCCUR]:=false;

        # if the new relator has length at most 2, handle it by calling the
        # appropriate subroutine, and then return.
        if leng <= 2 then
            TzHandleLength1Or2Relators( T );
            trlast := trlast - 1;
            while trlast > primary and pointers[trlast] <= treelength do
                trlast := trlast - 1;
            od;
            tree[TR_TREELAST] := trlast;
            return;
        fi;

        # else update the number of occurrences of the last generator, and
        # continue.
        occTotal := occTotal + 1;
        occur[1][1] := occTotal;
        occur[2][1] := numrels;
        occur[3][1] := 1;
    fi;

    occRelNum := occur[2][1];

    length := lengths[occRelNum];
    space := (occTotal - 1) * (length - 1) - length;

    if tietze[TZ_TOTAL] + space <= spacelimit then

        # find the substituting word.
        gen := num;
        rel := rels[occRelNum];
        length := lengths[occRelNum];
        pos := Position( rel, gen );
        if pos = fail then
            gen := -gen;
            pos := Position( rel, gen );
        fi;
        word := Concatenation( rel{ [pos+1..length] }, rel{ [1..pos-1] } );

        # replace all occurrences of gen by word^-1.
        if TzOptions(T).printLevel >= 2 then
            Print( "#I  eliminating ", gens[num], " = " );
            if gen > 0 then
                Print( AbstractWordTietzeWord( word, gens )^-1, "\n");
            else
                Print( AbstractWordTietzeWord( word, gens ), "\n" );
           fi;
        fi;
        TzSubstituteGen( tietze, -gen, word );

        # mark gen to be redundant.
        invs[numgens+1-num] := 0;
        tietze[TZ_NUMREDUNDS] := tietze[TZ_NUMREDUNDS] + 1;
        tietze[TZ_MODIFIED] := true;
	tietze[TZ_OCCUR]:=false;
        trlast := trlast - 1;
        while trlast > primary and pointers[trlast] <= treelength do
            trlast := trlast - 1;
        od;
        tree[TR_TREELAST] := trlast;
    elif TzOptions(T).printLevel >= 1 then
        Print( "#I  replacement of generators stopped by length limit\n" );
    fi;
end );


#############################################################################
##
#M  TzEliminateGen( <Tietze record>, <n> ) . . . eliminates the nth generator
##
##  `TzEliminateGen' eliminates the Tietze generator tietze[TZ_GENERATORS][n]
##  if possible, i. e. if that generator can be isolated  in some appropriate
##  Tietze relator.  However,  the elimination  will not be  performed if the
##  resulting total length of the relators cannot be guaranteed to not exceed
##  the parameter TzOptions(T).lengthLimit or the value 2^31-1.
##
InstallGlobalFunction( TzEliminateGen, function ( T, num )

    local gen, gens, invs, length, lengths, numgens, numrels, occRelNum,
          occur, occTotal, pos, rel, rels, space, spacelimit, tietze, word;

    # check the first argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "argument must be a Presentation" );
    fi;
    TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
    tietze := T!.tietze;
    spacelimit := Minimum( TzOptions(T).lengthLimit, 2^31 - 1 );

    tietze[TZ_MODIFIED] := false;

    gens := tietze[TZ_GENERATORS];
    numgens := tietze[TZ_NUMGENS];
    invs := tietze[TZ_INVERSES];
    rels := tietze[TZ_RELATORS];
    numrels := tietze[TZ_NUMRELS];
    lengths := tietze[TZ_LENGTHS];

    # check the second argument to be a generator number in range.
    if not IsInt( num ) or num <= 0 or num > numgens then  Error(
        "TzEliminateGen: second argument is not a valid generator number" );
    fi;

    # determine the number of occurrences of the given generator.
    occur := TzOccurrences( tietze, num );
    occTotal := occur[1][1];
    if occTotal > 0 and occur[3][1] = 1 then

        occRelNum := occur[2][1];

        length := lengths[occRelNum];
        space := (occTotal - 1) * (length - 1) - length;

        if tietze[TZ_TOTAL] + space <= spacelimit then

            # if there is a tree of generators and if the generator to be
            # deleted is not the last generator, then delete the tree.
            if num < numgens and IsBound( T!.tree ) then
                Unbind( T!.tree );
            fi;

            # find the substituting word.
            gen := num;
            rel := rels[occRelNum];
            length := lengths[occRelNum];
            pos := Position( rel, gen );
            if pos = fail then
                gen := -gen;
                pos := Position( rel, gen );
            fi;
            word := Concatenation( rel{ [pos+1..length] },
                rel{ [1..pos-1] } );

            # replace all occurrences of gen by word^-1.
            if TzOptions(T).printLevel >= 2 then
                Print( "#I  eliminating ", gens[num], " = " );
                if gen > 0 then
                    Print( AbstractWordTietzeWord( word, gens )^-1, "\n" );
                else
                    Print( AbstractWordTietzeWord( word, gens ), "\n" );
                fi;
            fi;
            TzSubstituteGen( tietze, -gen, word );

            # update the generator images, if available.
            if IsBound( T!.imagesOldGens ) then
                if gen > 0 then  word := -1 * Reversed( word );  fi;
                TzUpdateGeneratorImages( T, num, word );
            fi;
            
            # mark gen to be redundant.
            invs[numgens+1-num] := 0;
            tietze[TZ_NUMREDUNDS] := tietze[TZ_NUMREDUNDS] + 1;
            tietze[TZ_MODIFIED] := true;
	    tietze[TZ_OCCUR]:=false;
        elif TzOptions(T).printLevel >= 1 then
            Print( "#I  replacement of generators stopped by length limit\n" );
        fi;
    fi;
end );


#############################################################################
##
#M  TzEliminateGen1( <Tietze record> )  . . . . . . .  eliminates a generator
##
##  `TzEliminateGen1'  tries to  eliminate a  Tietze generator:  If there are
##  Tietze generators which occur just once in certain Tietze relators,  then
##  one of them is chosen  for which the product of the length of its minimal
##  defining word  and the  number of its  occurrences  is minimal.  However,
##  the elimination  will not be performed  if the resulting  total length of
##  the  relators   cannot  be  guaranteed   to  not  exceed   the  parameter
##  TzOptions(T).lengthLimit or the value 2^31-1.
##
InstallGlobalFunction( TzEliminateGen1, function ( T )

    local gen, gens, i,j, invs, ispace, length, lengths, modified, num,
          numgens, numrels, occur, occMultiplicities, occRelNum, occRelNums,
          occTotals, pos, protected, rel, rels, space, spacelimit, tietze,
          total, word,k,max,oldlen,bestlen,stoplen,oldrels,changed,olen;

    # check the given argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "argument must be a Presentation" );
    fi;
    TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
    tietze := T!.tietze;
    protected := TzOptions(T).protected;
    spacelimit := Minimum( TzOptions(T).lengthLimit, 2^31 - 1 );

    gens := tietze[TZ_GENERATORS];
    numgens := tietze[TZ_NUMGENS];
    invs := tietze[TZ_INVERSES];
    rels := tietze[TZ_RELATORS];
    oldrels:=ShallowCopy(rels);
    #oldrels1:=List(rels,ShallowCopy);
    numrels := tietze[TZ_NUMRELS];
    lengths := tietze[TZ_LENGTHS];

    if not IsList(tietze[TZ_OCCUR]) then
      occur := TzOccurrences( tietze );
    else
      occur :=tietze[TZ_OCCUR];
      #Print("used\n");
    fi;
#OLD_OCCUR:=List(occur,ShallowCopy);
    occTotals := occur[1];
    occRelNums := occur[2];
    occMultiplicities := occur[3];
    oldlen:=ShallowCopy(tietze[TZ_LENGTHS]);

#NEW_OCCUR:=TzOccurrences(tietze);
#if occTotals<>false and occTotals <> NEW_OCCUR[1] then
#Error("cla1");
#elif occTotals<>false and occRelNums <> NEW_OCCUR[2] then
#Error("cla2"); 
#elif occTotals<>false and occMultiplicities <> NEW_OCCUR[3] then
#  Error("cla3"); fi;

    modified := false;
    num := 0;
    space := 0;

    for i in [ protected + 1 .. numgens ] do
        if IsBound( occMultiplicities[i] ) and occMultiplicities[i] = 1 then
            total := occTotals[i];
            length := lengths[occRelNums[i]];
            ispace := (total - 1) * (length - 1) - length;
            if num = 0 or ispace <= space then
                num := i;
                space := ispace;
            fi;
        fi;
    od;

    if num > 0 then
      if tietze[TZ_TOTAL] + space <= spacelimit then

        # if there is a tree of generators and if the generator to be deleted
        # is not the last generator, then delete the tree.
        if num < numgens and IsBound( T!.tree ) then
            Unbind( T!.tree );
        fi;

        # find the substituting word.
        gen := num;
        occRelNum := occRelNums[num];
        rel := rels[occRelNum];
        length := lengths[occRelNum];
        pos := Position( rel, gen );
        if pos = fail then
            gen := -gen;
            pos := Position( rel, gen );
        fi;
        word := Concatenation( rel{ [pos+1..length] }, rel{ [1..pos-1] } );

        # replace all occurrences of gen by word^-1.
        if TzOptions(T).printLevel >= 2 then
            Print( "#I  eliminating ", gens[num], " = " );
            if gen > 0 then
                Print( AbstractWordTietzeWord( word, gens )^-1, "\n" );
            else
                Print( AbstractWordTietzeWord( word, gens ), "\n" );
            fi;
        fi;
        changed:=TzSubstituteGen( tietze, -gen, word );
	#if Length(changed)>100 then Error("longchanged!!"); fi;
	#if oldrels1<>oldrels then Error("differ!"); fi;

        # update the generator images, if available.
        if IsBound( T!.imagesOldGens ) then
            if gen > 0 then  word := -1 * Reversed( word );  fi;
            TzUpdateGeneratorImages( T, num, word );
        fi;

        # mark gen to be redundant.
        invs[numgens+1-num] := 0;
        tietze[TZ_NUMREDUNDS] := tietze[TZ_NUMREDUNDS] + 1;

	#update occurrence numbers
	gen:=AbsInt(gen);
	Unbind(occRelNums[num]);
	Unbind(occMultiplicities[num]);
	occTotals[gen]:=0;

	# now check whether the data for the other generators is still OK
	# and correct if necessary
	rels:=tietze[TZ_RELATORS];
	for i in [1..numgens] do

	  if IsBound(occRelNums[i]) then
	    # verify that the relator we store for the shortest
	    #length is still OK.
	    num:=occMultiplicities[i];
	    olen:=oldlen[occRelNums[i]];

	    #What can happen is two things:
	    #a) A changed relator now is shorter and better. If so we take it
	    #b) The best relator got changed and now is not best any more.

	    # first check the changed relators, whether they give any
	    # improvement
	    for j in changed do
	      total:=0;
	      for k in rels[j] do
		if AbsInt(k)=i then total:=total+1;fi;
	      od;
    #if total>0 then Print(j,":",i,":",total,"\n");fi;
	      if total>0 and 
		(total<num or 
		(total=num and Length(rels[j])<olen) or
		(total=num and Length(rels[j])=olen and j<occRelNums[i])
		) then
		# found a better one
		pos:=j;
		num:=total;
		olen:=Length(rels[j]);
		occMultiplicities[i]:=false; # force change
	      fi;

	      #update occurrence numbers
	      # because of cancellation, we need to check with the changed
	      # relators vs. their old selves
	      for k in oldrels[j] do
		if AbsInt(k)=i then total:=total-1;fi;
	      od;
	      occTotals[i]:=occTotals[i]+total;

	    od;

	    if num<>occMultiplicities[i] or
	       olen<>oldlen[occRelNums[i]] then
	      occMultiplicities[i]:=num;
	      occRelNums[i]:=pos;
	    else
	      # the changed relators did not give any improvement. We thus
	      # need to check whether the best stored got worse
	      if occRelNums[i] in changed then
		total:=0;
		for k in rels[occRelNums[i]] do
		  if AbsInt(k)=i then total:=total+1;fi;
		od;
		if total=0 or total>num or
		  Length(rels[occRelNums[i]])>oldlen[occRelNums[i]] then
	    #Print("fixin' ",i,"\n");
		  # the relator changed and might not be good anymore. We
		  # need to find another one.

		  #TODO: Be more clever in checking the later relators first
		  num:=infinity;
		  olen:=infinity;
		  pos:=fail;
		  for j in [1..Length(rels)] do
		    total:=0;
		    for k in rels[j] do
		      if AbsInt(k)=i then total:=total+1;fi;
		    od;
		    if total>0 and
		      (total<num or (total=num and Length(rels[j])<olen)) then
		      # found a better one
		      pos:=j;
		      num:=total;
		      olen:=Length(rels[j]);
		    fi;
		  od;
  #Print("fixing ",i," from ",num,"\n");
		  if pos=fail then
		    Unbind(occRelNums[i]);
		    Unbind(occMultiplicities[i]);
		  else
		    occRelNums[i]:=pos;
		    occMultiplicities[i]:=num;
		  fi;

		fi;
	      fi;
	    fi;

	  fi;
	od;

        modified := true;
      elif TzOptions(T).printLevel >= 1 then
        Print( "#I  replacement of generators stopped by length limit\n" );
      fi;

  #NEW_OCCUR:=TzOccurrences(tietze);
  #if occTotals<>false and occTotals <> NEW_OCCUR[1] then
  #Error("bla1");
  #  elif occTotals<>false and occRelNums <> NEW_OCCUR[2] then
  #Error("bla2"); 
  #  elif occTotals<>false and occMultiplicities <> NEW_OCCUR[3] then
  #    Error("bla3"); fi;
    fi;

    tietze[TZ_MODIFIED] := modified;
    if 0 in occTotals then
      # code might not work if generators vanish.
      tietze[TZ_OCCUR]:=false;
    else
      tietze[TZ_OCCUR]:=[occTotals,occRelNums,occMultiplicities];
    fi;

    #if tietze[TZ_OCCUR]<>TzOccurrences(tietze) then Error("occur!"); fi;

end );


#############################################################################
##
#M  TzEliminateGens( <Tietze record> [, <decode>] )  .  Eliminates generators
##
##  `TzEliminateGens'  repeatedly eliminates generators from the presentation
##  of the given group until at least one  of  the  following  conditions  is
##  violated:
##
##  (1) The  current  number of  generators  is greater  than  the  parameter
##      TzOptions(T).generatorsLimit.
##  (2) The   number   of   generators   eliminated   so  far  is  less  than
##      the parameter TzOptions(T).eliminationsLimit.
##  (3) The  total length of the relators  has not yet grown  to a percentage
##      greater than the parameter TzOptions(T).expandLimit.
##  (4) The  next  elimination  will  not  extend the total length to a value
##      greater  than  the parameter  TzOptions(T).lengthLimit  or  the value 
##      2^31-1.
##
##  If a  second argument  has been  specified,  then it is  assumed  that we
##  are in the process of decoding a tree.
##
##  If not, then the function will not eliminate any protected generators.
##
InstallGlobalFunction( TzEliminateGens, function ( arg )

    local bound, decode, maxnum, modified, num, redundantsLimit, T, tietze;

    # check the number of arguments.
    if Length( arg ) > 2 or Length( arg ) < 1 then
        Error( "usage: TzEliminateGens( <Tietze record> [, <decode> ] )" );
    fi;

    # check the first argument to be a Tietze record.
    T := arg[1];
    TzCheckRecord( T );
    TzTestInitialSetup(T); # run `1Or2Relators' if not yet done

    if TzOptions(T).printLevel >= 3 then
      Print( "#I  eliminating generators\n" );
    fi;

    # get the second argument.
    decode := Length( arg ) = 2;

    tietze := T!.tietze;
    redundantsLimit := 5;
    maxnum := TzOptions(T).eliminationsLimit;
    bound := tietze[TZ_TOTAL] * (TzOptions(T).expandLimit / 100);
    modified := false;
    tietze[TZ_MODIFIED] := true;
    num := 0;
    while  tietze[TZ_MODIFIED]  and  num < maxnum  and
        tietze[TZ_TOTAL] <= bound and
        tietze[TZ_NUMGENS] - tietze[TZ_NUMREDUNDS] > TzOptions(T).generatorsLimit  do
        if decode then
            TzEliminateFromTree( T );
        else
            TzEliminateGen1( T );
        fi;
        if tietze[TZ_NUMREDUNDS] = redundantsLimit then
            TzRemoveGenerators( T );
        fi;
        modified := modified or tietze[TZ_MODIFIED];
        num := num + 1;
    od;
    tietze[TZ_MODIFIED] := modified;
    if tietze[TZ_NUMREDUNDS] > 0 then  TzRemoveGenerators( T );  fi;

    if modified then
        # handle relators of length 1 or 2.
        TzHandleLength1Or2Relators( T );
        # sort the relators and print the status line.
        TzSort( T );
        if TzOptions(T).printLevel >= 2 then  TzPrintStatus( T, true );  fi;
    fi;
end );


#############################################################################
##
#M  TzFindCyclicJoins( <Tietze record> )  . . . . . . handle cyclic subgroups
##
##  `TzFindCyclicJoins'  searches for  power and commutator relators in order
##  to find  pairs of generators  which  generate a  common  cyclic subgroup.
##  It uses these pairs to introduce new relators,  but it does not introduce
##  any new generators as is done by `TzSubstituteCyclicJoins'.
##
InstallGlobalFunction( TzFindCyclicJoins, function ( T )

    local e, exp, exponents, fac, flags, gen, gens, ggt, i, invs, j, k, l,
          length, lengths, n, newstart, next, num, numgens, numrels, prev,
          powers, rel, rels, tietze, word;

    if TzOptions(T).printLevel >= 3 then
        Print( "#I  searching for cyclic joins\n" );
    fi;

    # check the given argument to be a Tietze record.
    TzCheckRecord( T );
    TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
    tietze := T!.tietze;
    tietze[TZ_MODIFIED] := false;

    # start the routine and repeat it whenever a generator has been
    # eliminated.
    newstart := true;
    while newstart do

      # try to find exponents for the generators.
      exponents := TzGeneratorExponents( T );
      if Sum( exponents ) = 0 then  return;  fi;

      # initialize some local variables.
      newstart := false;
      gens := tietze[TZ_GENERATORS];
      numgens := tietze[TZ_NUMGENS];
      rels := tietze[TZ_RELATORS];
      numrels := tietze[TZ_NUMRELS];
      lengths := tietze[TZ_LENGTHS];
      invs := tietze[TZ_INVERSES];
      flags := tietze[TZ_FLAGS];

      # now work off all commutator relators of length 4.
      i := 0;
      while i < numrels do

        # find the next commutator.
        i := i + 1;
        rel := rels[i];
        if lengths[i] = 4 and rel[1] = invs[numgens+1+rel[3]] and
          rel[2] = invs[numgens+1+rel[4]] then

          # There is a commutator relator of the form [a,b]. Check if
          # there are also power relators of the form a^m or b^n.

          num := [ AbsInt( rel[1] ), AbsInt( rel[2] ) ];
          exp := [ exponents[num[1]], exponents[num[2]] ];
          fac := [ 0, 0 ];
          e   := [ 0, 0 ];

          # If there is at least one relator of the form a^m or b^n, then
          # search for a relator of the form  a^s * b^t  (modulo [a,b])
          # with s prime to m or t prime to n, respectively. For, if s is
          # prime to m, then we can use the Euclidean algorithm to
          # express a as a power of b and then eliminate a.

          if exp[1] > 0 or exp[2] > 0 then

             j := 0;
             while j < numrels do

                # get the next relator.
                j := j + 1;
                if lengths[j] > 0 and j <> i then
                   rel := rels[j];

                   # check whether rel is a word in a and b.
                   length := lengths[j];
                   e[1]   := 0;
                   e[2]   := 0;
                   powers := 0;
                   prev   := 0;
                   l      := 0;
                   while l < length do
                      l := l + 1;
                      next := rel[l];
                      if next <> prev then
                         powers := powers + 1;
                         prev := next;
                      fi;
                      if next = num[1] then  e[1] := e[1] + 1;
                      elif next = num[2] then  e[2] := e[2] + 1;
                      elif next = -num[1] then  e[1] := e[1] - 1;
                      elif next = -num[2] then  e[2] := e[2] - 1;
                      else l := length + 1;
                      fi;
                   od;

                   if l = length and powers > 1 then

                      # reduce exponents, if possible.
                      for k in [ 1, 2 ] do
                         fac[k] := num[k];
                         if exp[k] > 0 then
                            e[k] := e[k] mod exp[k];
                            if e[k] > exp[k]/2 then
                               e[k] := exp[k] - e[k];
                               fac[k] := - fac[k];
                            fi;
                         elif e[k] < 0 then
                            e[k] := - e[k];
                            fac[k] := - fac[k];
                         fi;
                         if fac[k] < 0 then
                            fac[k] := invs[numgens+1-fac[k]];
                         fi;
                      od;

                      # now the e[k] are non-negative.
                      for k in [ 1, 2 ] do
                         if e[k] > 0 and e[3-k] = 0 then
                            exp[k] := GcdInt( e[k], exp[k] );
                            if exp[k] <> exponents[num[k]] then
                               exponents[num[k]] := exp[k];
                               e[k] := exp[k];
                            fi;
                         fi;
                      od;

                      # reduce the current relator, if possible.
                      if e[1] + e[2] < length or powers > 2 then
                         rel := [ ];
                         if e[1] > 0 then  rel := Concatenation(
                            rel, ListWithIdenticalEntries( e[1], fac[1] ) );
                         fi;
                         if e[2] > 0 then  rel := Concatenation(
                            rel, ListWithIdenticalEntries( e[2], fac[2] ) );
                         fi;
                         rels[j] := rel;
                         lengths[j] := e[1] + e[2];
                         tietze[TZ_TOTAL] := tietze[TZ_TOTAL] - length
                            + lengths[j];
                         flags[j] := 1;
                         tietze[TZ_MODIFIED] := true;
                         if TzOptions(T).printLevel >= 3 then  Print(
                            "#I  rels[",j,"] reduced to ",rels[j],"\n" );
                         fi;
                      fi;

                      # try to find a generator that can be deleted.
                      if e[1] = 1 then  n := num[1];
                      elif e[2] = 1 then  n := num[2];
                      else n := 0;
                         for k in [ 1, 2 ] do
                            if n = 0 and e[k] > 1 and
                               GcdInt( e[k], exp[k] ) = 1 then
                               ggt := Gcdex( e[k], exp[k] );
                               gen := [gens[num[1]], gens[num[2]]];
                               if fac[1] < 0 then  gen[1] := gen[1]^-1;  fi;
                               if fac[2] < 0 then  gen[2] := gen[2]^-1;  fi;
                               word := gen[k] * gen[3-k]^(e[3-k]*ggt.coeff1);
                               AddRelator( T, word );
                               numrels := tietze[TZ_NUMRELS];
                               n := num[k];
                            fi;
                         od;
                      fi;

                      # eliminate a generator if it is possible and allowed.
                      if n <> 0 and TzOptions(T).generatorsLimit < numgens then
                         TzEliminate( T );
                         tietze[TZ_MODIFIED] := true;
                         j := numrels;
                         i := numrels;
                         if tietze[TZ_NUMGENS] < numgens then
                            newstart := true;
                         fi;
                      fi;
                   fi;
                fi;
             od;
          fi;
        fi;
      od;
    od;

    if tietze[TZ_MODIFIED] then
	tietze[TZ_OCCUR]:=false;
        # handle relators of length 1 or 2.
        TzHandleLength1Or2Relators( T );
        # sort the relators and print the status line.
        TzSort( T );
        if TzOptions(T).printLevel >= 1 then  TzPrintStatus( T, true );  fi;
    fi;
end );


#############################################################################
##
#M  TzGeneratorExponents( <Tietze record> ) . . . list of generator exponents
##
##  `TzGeneratorExponents'  tries to find exponents for the Tietze generators
##  and return them in a list parallel to the list of the generators.
##
InstallGlobalFunction( TzGeneratorExponents, function ( T )

    local exp, exponents, flags, i, invs, j, length, lengths, num, num1,
          numgens, numrels, rel, rels, tietze;

    # check the given argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "argument must be a Presentation" );
    fi;

    if TzOptions(T).printLevel >= 3 then
        Print( "#I  trying to find generator exponents\n" );
    fi;
    TzTestInitialSetup(T); # run `1Or2Relators' if not yet done

    tietze := T!.tietze;

    numgens := tietze[TZ_NUMGENS];
    rels := tietze[TZ_RELATORS];
    numrels := tietze[TZ_NUMRELS];
    lengths := tietze[TZ_LENGTHS];
    invs := tietze[TZ_INVERSES];
    flags := tietze[TZ_FLAGS];

    # Initialize the exponents list.
    exponents := ListWithIdenticalEntries( numgens, 0 );

    # Find all relators which are powers of a single generator.
    for i in [ 1 .. numrels ] do
        if lengths[i] > 0 then
            rel := rels[i];
            length := lengths[i];
            num1 := rel[1];
            j := 2;
            while j <= length and rel[j] = num1 do  j := j + 1;  od;
            if j > length then
                num := AbsInt( num1 );
                if exponents[num] = 0 then  exp := length;
                else  exp := GcdInt( exponents[num], length );  fi;
                exponents[num] := exp;
                if exp < length then
                    rels[i] := ListWithIdenticalEntries( exp, num );
                    lengths[i] := exp;
                    tietze[TZ_TOTAL] := tietze[TZ_TOTAL] - length + exp;
                    flags[i] := 1;
                    tietze[TZ_MODIFIED] := true;
		    tietze[TZ_OCCUR]:=false;
                elif num1 < 0 then
                    rels[i] := List( rel, num -> -num );
                fi;
            fi;
        fi;
    od;

    return exponents;
end );


#############################################################################
##
#M  TzGo( <Tietze record> [, <silent> ) . . . . .  run Tietze transformations
##
##  `TzGo'  automatically  performs  suitable  Tietze transformations  of the
##  presentation in the given Tietze record.
##
##  If "silent" is specified as true, then the printing of the status line
##  by `TzGo' is suppressed if the Tietze option `printLevel' (see "Tietze 
##  Options") has a value less than 2.
##
##  rels    is the set of relators.
##  gens    is the set of generators.
##  total   is the total length of all relators.
##
InstallGlobalFunction( TzGo, function ( arg )

    local count, looplimit, printstatus, T, tietze;

    # get the arguments.
    T := arg[1];
    printstatus := TzOptions(T).printLevel = 1 and
        not ( Length( arg ) > 1 and IsBool( arg[2] ) and arg[2] );

    # check the first argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "argument must be a Presentation" );
    fi;
    TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
    tietze := T!.tietze;

    # substitute substrings by shorter ones.
    TzSearch( T );

    # now run our standard strategy and repeat it.
    looplimit := TzOptions(T).loopLimit;
    count := 0;
    while count < looplimit and tietze[TZ_TOTAL] > 0 do

        # replace substrings by substrings of equal length.
        TzSearchEqual( T );
        if tietze[TZ_MODIFIED] then  TzSearch( T );  fi;

        # eliminate generators.
        TzEliminateGens( T );
        if tietze[TZ_MODIFIED] then
            TzSearch( T );
            count := count + 1;
        else
            count := looplimit;
        fi;

        if printstatus then  TzPrintStatus( T, true );  fi;
    od;

    # try to find cyclic subgroups by looking at power and commutator
    # relators.
    if tietze[TZ_TOTAL] > 0 then
        TzFindCyclicJoins( T );
        if tietze[TZ_MODIFIED] then  TzSearch( T );  fi;
        if printstatus then  TzPrintStatus( T, true );  fi;
    fi;

end );


#############################################################################
##
#M  TzGoGo( <Tietze record> ) . . . . .  run the Tietze go command repeatedly
##
##  `TzGoGo'  calls  the `TzGo' command  again  and again  until it  does not
##  reduce the presentation any more.  `TzGo' automatically performs suitable
##  Tietze  transformations  of the presentation  in the given Tietze record.
##
##  rels    is the set of relators.
##  gens    is the set of generators.
##  total   is the total length of all relators.
##
InstallGlobalFunction( TzGoGo, function ( T )

    local count, numgens, numrels, silentGo, tietze, total;

    # check the given argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "argument must be a Presentation" );
    fi;
    TzTestInitialSetup(T); # run `1Or2Relators' if not yet done

    # initialize the local variables.
    tietze := T!.tietze;
    numgens := tietze[TZ_NUMGENS];
    numrels := tietze[TZ_NUMRELS];
    total := tietze[TZ_TOTAL];
    silentGo := TzOptions(T).printLevel = 1;
    count := 0;

    #loop over the Tietze transformations.
    while count < 5 do
        TzGo( T, silentGo );
        count := count + 1;
        if silentGo and ( tietze[TZ_NUMGENS] < numgens or
            tietze[TZ_NUMRELS] < numrels ) then
            TzPrintStatus( T, true );
        fi;
        if tietze[TZ_NUMGENS] < numgens or tietze[TZ_NUMRELS] < numrels or
            tietze[TZ_TOTAL] < total then
            numgens := tietze[TZ_NUMGENS];
            numrels := tietze[TZ_NUMRELS];
            total := tietze[TZ_TOTAL];
            count := 0;
        fi;
    od;

    if silentGo then  TzPrintStatus( T, true );  fi;
end );


#############################################################################
##
#M  TzHandleLength1Or2Relators( <Tietze record> ) . . . handle short relators
##
##  `TzHandleLength1Or2Relators'  searches for  relators of length 1 or 2 and
##  performs suitable Tietze transformations for each of them:
##
##  Generators occurring in relators of length 1 are eliminated.
##
##  Generators  occurring  in square relators  of length 2  are marked  to be
##  involutions.
##
##  If a relator  of length 2  involves two  different  generators,  then the
##  generator with the  larger number is substituted  by the other one in all
##  relators and finally eliminated from the set of generators.
##
InstallGlobalFunction( TzHandleLength1Or2Relators, function ( T )

    local absrep2, done, flags, gens, i, idword, invs, length, lengths,
          numgens, numgens1, numrels, pointers, protected, ptr, ptr1, ptr2,
          redunds, rels, rep, rep1, rep2, tietze, tracingImages, tree,
          treelength, treeNums,topl;

    topl:=TzOptions(T).printLevel;
    if topl >= 3 then  Print( "#I  handling short relators\n" );  fi;

    # check the given argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "argument must be a Presentation" );
    fi;
    tietze := T!.tietze;
    protected := TzOptions(T).protected;
    tracingImages := IsBound( T!.imagesOldGens );

    gens := tietze[TZ_GENERATORS];
    invs := tietze[TZ_INVERSES];
    rels := tietze[TZ_RELATORS];
    lengths := tietze[TZ_LENGTHS];
    flags := tietze[TZ_FLAGS];
    numgens := tietze[TZ_NUMGENS];
    numrels := tietze[TZ_NUMRELS];
    redunds := tietze[TZ_NUMREDUNDS];
    numgens1 := numgens + 1;
    done := false;
    idword := One(T);

    tree := 0;
    if IsBound( T!.tree ) then
        tree := T!.tree;
        treelength := tree[TR_TREELENGTH];
        pointers := tree[TR_TREEPOINTERS];
        treeNums := tree[TR_TREENUMS];
    fi;

    while not done do

        done := true;

        # loop over all relators and find those of length 1 or 2.
        i := 0;
        while i < numrels do
            i := i + 1;
            length := lengths[i];
            if length <= 2 and length > 0 and flags[i] <= 2 then

                # find the current representative of the first factor.
                rep1 := rels[i][1];
                while invs[numgens1-rep1] <> rep1 do
                    rep1 := invs[numgens1-rep1];
                od;

                if length = 1 then

                    # handle a relator of length 1.
                    rep1 := AbsInt( rep1 );
                    if rep1 > protected then
                        # eliminate generator rep1.
                        invs[numgens1-rep1] := 0;
                        invs[numgens1+rep1] := 0;
                        if tree <> 0 then
                            ptr1 := AbsInt( treeNums[rep1] );
                            pointers[ptr1] := 0;
                            treeNums[rep1] := 0;
                        fi;
                        if topl >= 2 then
                            Print( "#I  eliminating ", gens[rep1],
                                " = idword\n" );
                        fi;
                        # update the generator images, if available.
                        if tracingImages then
                            TzUpdateGeneratorImages( T, rep1, [] );
                        fi;
                        redunds := redunds + 1;
                        done := false;
                    fi;
                else

                    # find the current representative of the second factor.
                    rep2 := rels[i][2];
                    while invs[numgens1-rep2] <> rep2 do
                        rep2 := invs[numgens1-rep2];
                    od;

                    # handle a relator of length 2.
                    if AbsInt( rep2 ) < AbsInt( rep1 ) then
                        rep := rep1;  rep1 := rep2;  rep2 := rep;
                    fi;
                    if rep1 < 0 then  rep1 := - rep1;  rep2 := - rep2;  fi;
                    if rep1 = 0 then

                        # the relator is in fact of length at most 1.
                        rep2 := AbsInt( rep2 );
                        if rep2 > protected then
                            # eliminate generator rep1.
                            invs[numgens1-rep2] := 0;
                            invs[numgens1+rep2] := 0;
                            if tree <> 0 then
                                ptr2 := AbsInt( treeNums[rep2] );
                                pointers[ptr2] := 0;
                                treeNums[rep2] := 0;
                            fi;
                            if topl >= 2 then
                                Print( "#I  eliminating ", gens[rep2],
                                    " = idword\n" );
                            fi;
                            # update the generator images, if available.
                            if tracingImages then
                                TzUpdateGeneratorImages( T, rep2, [] );
                            fi;
                            redunds := redunds + 1;
                            done := false;
                        fi;

                    elif rep1 <> - rep2 then

                        if rep1 <> rep2 then

                          # handle a non-square relator of length 2.
                          if invs[numgens1-rep2] = invs[numgens1+rep2]
                              and invs[numgens1+rep1] < 0 then
                              # add a new square relator for rep1.
                              numrels := numrels + 1;
                              rels[numrels] := [ rep1, rep1 ];
                              lengths[numrels] := 2;
                              flags[numrels] := 1;
                              tietze[TZ_NUMRELS] := numrels;
                              tietze[TZ_TOTAL] := tietze[TZ_TOTAL] + 2;
                          fi;

                          absrep2 := AbsInt( rep2 );
                          if absrep2 > protected then
                             invs[numgens1-rep2] := invs[numgens1+rep1];
                             invs[numgens1+rep2] := rep1;
                             if tree <> 0 then

                                ptr1 := AbsInt( treeNums[rep1] );
                                ptr2 := AbsInt( treeNums[absrep2] );
                                if ptr2 < ptr1 then
                                    ptr := ptr2;
                                    if treeNums[rep1] * treeNums[absrep2]
                                        * rep2 > 0 then
                                        ptr := - ptr;
                                        treeNums[rep1] := ptr;
                                        pointers[ptr2] := treelength + rep1;
                                    fi;
                                    ptr2 := ptr1;
                                    ptr1 := AbsInt( ptr );
                                fi;
                                if rep2 > 0 then
                                    ptr1 := - ptr1;
                                fi;
                                pointers[ptr2] := ptr1;
                                treeNums[absrep2] := 0;
                             fi;
                             if tracingImages or topl >= 2 then
                                if rep2 > 0 then
                                    rep1 := invs[numgens1+rep1];
                                fi;
                                if topl >= 2 then
                                    Print( "#I  eliminating ", gens[absrep2],
                                        " = ", AbstractWordTietzeWord(
                                        [ rep1 ], gens ), "\n");
                                fi;
                                # update the generator images, if available.
                                if tracingImages then
                                    TzUpdateGeneratorImages( T, absrep2,
                                        [ rep1 ] );
                                fi;
                             fi;
                             redunds := redunds + 1;
                             done := false;
                          fi;

                        else

                            # handle a square relator.
                            if invs[numgens1+rep1] < 0 then
                                # make the relator a square relator, ...
                                rels[i][1] := rep1;
                                rels[i][2] := rep1;
                                # ... mark it appropriately, ...
                                flags[i] := 3;
                                # ... and mark rep1 to be an involution.
                                invs[numgens1+rep1] := rep1;
                                done := false;
                            fi;

                        fi;

                    fi;
                fi;
            fi;
        od;

        if not done then

            # for each generator determine its current representative.
            for i in [ 1 .. numgens ] do
                if invs[numgens1-i] <> i then
                    rep := invs[numgens1-i];
                    invs[numgens1-i] := invs[numgens1-rep];
                    invs[numgens1+i] := invs[numgens1+rep];
                fi;
            od;

            # perform the replacements.
            TzReplaceGens( tietze );
        fi;
    od;

    # tidy up the Tietze generators.
    tietze[TZ_NUMREDUNDS] := redunds;
    if redunds > 0 then  TzRemoveGenerators( T );  fi;

    # Print( "#I  total length = ", tietze[TZ_TOTAL], "\n" );
end );


#############################################################################
##
#M  GeneratorsOfPresentation( <P> )
##
InstallGlobalFunction(GeneratorsOfPresentation,function(T)
  return ShallowCopy(T!.generators);
end);


#############################################################################
##
#M  TzInitGeneratorImages( T )  . . . . . . . initialize the generator images
#M                                               under Tietze transformations
##
InstallGlobalFunction( TzInitGeneratorImages, function ( T )
local numgens,gens;

    # check the argument to be a Tietze record.
    TzCheckRecord( T );

    # initialize the lists.
    gens:=GeneratorsOfPresentation(T);
    numgens := Length( gens );
    T!.oldGenerators := gens;
    T!.imagesOldGens := List( [ 1 .. numgens ], i -> [i] );
    T!.preImagesNewGens := List( [ 1 .. numgens ], i -> [i] );

end );


#############################################################################
##
#M  OldGeneratorsOfPresentation( <P> )
##
InstallGlobalFunction(OldGeneratorsOfPresentation,function(T)
  return ShallowCopy(T!.oldGenerators);
end);


#############################################################################
##
#M  TzImagesOldGens( <P> )
##
InstallGlobalFunction(TzImagesOldGens,function(T)
local g;
  g:=GeneratorsOfPresentation(T);
  if Length(g)>0 then
    return List(T!.imagesOldGens,i->AbstractWordTietzeWord(i,g));
  else
    return List(T!.imagesOldGens,i->One(T));
  fi;
end);


#############################################################################
##
#M  TzPreImagesNewGens( <P> )
##
InstallGlobalFunction(TzPreImagesNewGens,function(T)
local g;
  g:=OldGeneratorsOfPresentation(T);
  return List(T!.preImagesNewGens,i->AbstractWordTietzeWord(i,g));
end);


#############################################################################
##
#M  TzMostFrequentPairs( <Tietze record>, <n> ) . . . .  occurrences of pairs
##
##  `TzMostFrequentPairs'  returns a list  describing the  n  most frequently
##  occurruing relator subwords of the form  g1 * g2,  where  g1  and  g2 are
##  different generators or their inverses.
##
InstallGlobalFunction( TzMostFrequentPairs, function ( T, nmax )

    local gens, i, j, k, max, n, numgens, occlist, pairs, tietze;

    # check the first argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "argument must be a Presentation" );
    fi;

    # check the second argument.
    if not IsInt( nmax ) or nmax <= 0 then
        Error( "second argument must be a positive integer" );
    fi;

    # intialize some local variables.
    tietze := T!.tietze;
    gens := tietze[TZ_GENERATORS];
    numgens := tietze[TZ_NUMGENS];
    occlist := [ ]; occlist[4*numgens] := 0;
    pairs := [ ];
    n := 0;

    if nmax = 1 then
        max := 0;

        # find a pair [gen[i], gen[j]] of generators or inverse generators
        # such that the word gen[i] * gen[j] is a most often occurring
        # relator subword.
        for i in [ 1 .. numgens-1 ] do
            occlist := TzOccurrencesPairs( tietze, i, occlist );
            for j in [ i+1 .. numgens ] do
                for k in [ 1 .. 4 ] do
                    if occlist[(4-k)*numgens+j] >= max then
                        max := occlist[(4-k)*numgens+j];
                        pairs[1] := [ max, i, j, 4 - k ];
                        n := 1;
                    fi;
                od;
            od;
        od;

    else

        # compute a sorted list which for each word of the form
        # gen[i]^+-1 * gen[j]^+-1, with i  not equal to j, contains the
        # (negative) number of occurrences of that word as relator subword,
        # the (negative) two indices i and j, and a sign flag (the negative
        # values will make the list be sorted in reversed order).
        for i in [ 1 .. numgens-1] do
            occlist := TzOccurrencesPairs( tietze, i, occlist );
            for j in [ i+1 .. numgens ] do
                for k in [ 0 .. 3 ] do
                    if occlist[k*numgens+j] > 0 then
                        n := n + 1;
                        pairs[n] := [ - occlist[k*numgens+j], - i, - j, k ];
                    fi;
                od;
            od;
            if n > nmax then
                Sort( pairs );
                pairs := pairs{ [1..nmax] };
                n := nmax;
            fi;
        od;

        # sort the list, and then invert the negative entries.
        Sort( pairs );
        for i in [ 1 .. n ] do
            pairs[i][1] := - pairs[i][1];
            pairs[i][2] := - pairs[i][2];
            pairs[i][3] := - pairs[i][3];
        od;
    fi;

    return pairs;
end );


#############################################################################
##
#M  TzNewGenerator( <Tietze record> ) . . . . . . . . .  adds a new generator
##
##  defines a new abstract generator and adds it to the given presentation.
##
##  Let  i  be the smallest positive integer  which has not yet been used  as
##  a generator number  and for which no component  T!.i  exists so far in the
##  given  Tietze record  T,  say.  A new abstract generator  _xi  is defined
##  and then added as component  T!.i  to the given Tietze record.
##
##  Warning:  `TzNewGenerator'  is  an  internal  subroutine  of  the  Tietze
##  routines.  You should not call it.  Instead, you should call the function
##  `AddGenerator', if needed.
##
InstallGlobalFunction( TzNewGenerator, function ( T )

    local freegens, freenames, gen, gens, names, numgens, recnames, new,
          tietze;

    # get some local variables.
    tietze := T!.tietze;
    freegens := tietze[TZ_FREEGENS];
    gens := tietze[TZ_GENERATORS];
    numgens := tietze[TZ_NUMGENS];
    freenames := FamilyObj( One(T) )!.names;
    names := List( gens, g -> freenames[Position( freegens, g )] );

    # determine the next free generator number.
    new := T!.nextFree;
    recnames := REC_NAMES_COMOBJ( T );
    while String( new ) in recnames or freenames[new] in names do
        new := new + 1;
    od;
    T!.nextFree := new + 1;

    # define the new abstract generator.
    gen := freegens[new];
    T!.(String( new )) := gen;

    # add the new generator to the presentation.
    numgens := numgens + 1;
    gens[numgens] := gen;
    T!.components[numgens] := new;
    tietze[TZ_NUMGENS] := numgens;
    tietze[TZ_INVERSES] := Concatenation( [numgens], tietze[TZ_INVERSES],
        [-numgens] );

    return gen;
end );


#############################################################################
##
#M  TzPrint( <Tietze record> [,<list>] ) . print internal Tietze presentation
##
##  `TzPrint'  prints the current generators and relators of the given Tietze
##  record in their  internal representation.  The optional  second parameter
##  can be  used  to specify  the numbers  of the  relators  to  be  printed.
##  Default: all relators are printed.
##
InstallGlobalFunction( TzPrint, function ( arg )

    local gens, i, lengths, list, numrels, rels, T, tietze;

    # check the first argument to be a Tietze record.
    T := arg[1];
    TzCheckRecord( T );

    # initialize the local variables.
    tietze := T!.tietze;
    gens := tietze[TZ_GENERATORS];
    rels := tietze[TZ_RELATORS];
    numrels := tietze[TZ_NUMRELS];
    lengths := tietze[TZ_LENGTHS];

    # print the generators.
    if gens = [] then
        Print( "#I  there are no generators\n" );
    else
        Print( "#I  generators: ", gens, "\n" );
    fi;

    # if the relators list is empty, print an appropriate message.
    if numrels = 0 then
        Print( "#I  there are no relators\n" );
        return;
    fi;

    # else print the relators.
    Print( "#I  relators:\n" );
    if Length( arg ) = 1 then
        for i in [1 .. numrels] do
            Print( "#I  ", i, ".  ", lengths[i], "  ", rels[i], "\n" );
        od;
    else
        list := arg[2];
        for i in list do
            if 1 <= i and i <= numrels then
                Print( "#I  ", i, ".  ", lengths[i], "  ", rels[i], "\n" );
            fi;
        od;
    fi;
end );


#############################################################################
##
#M  TzPrintGeneratorImages( <Tietze record> ) . . . .  print generator images
##
##  `TzPrintGeneratorImages'  assumes that  <T>  is a presentation record for
##  which the generator images and preimages under the Tietze transformations
##  applied to <T> are being traced. It displays the preimages of the current
##  generators as  Tietze words in the old generators,  and the images of the
##  old generators as Tietze words in the the current generators.
##
InstallGlobalFunction( TzPrintGeneratorImages, function ( T )

    local i, images;

    # check T to be a Tietze record.
    TzCheckRecord( T );

    # check if generator images are available.
    if IsBound( T!.imagesOldGens ) then

        # display the preimages of the current generators.
        images := T!.preImagesNewGens;
        Print( "#I  preimages of current generators as Tietze words",
            " in the old ones:\n" );
        for i in [1 .. Length( images ) ] do
            Print( "#I  ", i, ". ", images[i], "\n" );
        od;

        # display the images of the old generators.
        images := T!.imagesOldGens;
        Print( "#I  images of old generators as Tietze words in the",
            " current ones:\n" );
        for i in [1 .. Length( images ) ] do
            Print( "#I  ", i, ". ", images[i], "\n" );
        od;

    else

        # if not, display an appropriate message.
        Print( "#I  generator images are not available\n" );

    fi;

end );


#############################################################################
##
#M  TzPrintGenerators( <Tietze record> [,<list>] ) . . . . . print generators
##
##  `TzPrintGenerators'  prints the generators of the given  Tietze presenta-
##  tion together with the  number of their occurrences.  The optional second
##  parameter  can be used to specify  the numbers  of the  generators  to be
##  printed.  Default: all generators are printed.
##
InstallGlobalFunction( TzPrintGenerators, function ( arg )

    local gens, i, invs, leng, list, max, min, num, numgens, occur, T,
          tietze;

    # check the first argument to be a Tietze record.
    T := arg[1];
    TzCheckRecord( T );

    # initailize some local variables.
    tietze := T!.tietze;
    gens := tietze[TZ_GENERATORS];
    invs := tietze[TZ_INVERSES];
    numgens := tietze[TZ_NUMGENS];

    # if the generators list is empty, print an appropriate message.
    if numgens = 0 then
        Print( "#I  there are no generators\n" );
        return;
    fi;

    # else determine the list of generators to be printed.
    if Length( arg ) = 1 then
        list := [ 1 .. numgens ];
        min := 1;
        max := numgens;
    else
        # check the second argument to be a list.
        list := arg[2];
        if not ( IsList( list ) ) then
            Error( "second argument must be a list" );
        fi;
        if list = [] then  list := [ 0 ];  fi;
        leng := Length( list );

        if IsRange( list ) then
            min := Maximum( list[1], 1 );
            max := Minimum( list[leng], numgens );
            list := [ min .. max ];
        else
            min := Maximum( Minimum( list ), 1 );
            max := Minimum( Maximum( list ), numgens );
        fi;
    fi;

    if min = max then

        # determine the number of occurrences of the specified generator.
        occur := TzOccurrences( tietze, max );

        # print the generator.
        num := occur[1][1];
        if num = 1 then
            Print( "#I  ",max,".  ",gens[max],"   ",num," occurrence " );
        else
            Print( "#I  ",max,".  ",gens[max],"   ",num," occurrences" );
        fi;
        if invs[numgens+1+max] > 0 then  Print( "   involution" );  fi;
        Print( "\n" );

    elif min < max then

        # determine the number of occurrences for all generators.
        occur := TzOccurrences( tietze );

       # print the generators.
        for i in list do
            if 1 <= i and i <= numgens then
                num := occur[1][i];
                if num = 1 then
                    Print( "#I  ",i,".  ",gens[i],"   ",num," occurrence " );
                else
                    Print( "#I  ",i,".  ",gens[i],"   ",num," occurrences" );
                fi;
                if invs[numgens+1+i] > 0 then  Print( "   involution" );  fi;
                Print( "\n" );
            fi;
        od;
    fi;
end );


#############################################################################
##
#M  TzPrintLengths( <Tietze record> )  . . . . . . . .  print relator lengths
##
##  `TzPrintLengths'  prints  a list  of all  relator  lengths  of the  given
##  presentation record.
##
InstallGlobalFunction( TzPrintLengths, function ( T )

    local tietze;

    # check the argument to be a Tietze record.
    TzCheckRecord( T );
    tietze := T!.tietze;

    # print the list of relator lengths;
    Print( tietze[TZ_LENGTHS], "\n" );
end );


############################################################################# 
##
#M  TzOptions(<P>)
##
InstallMethod(TzOptions,"set default values",true,[IsPresentation],0,
function(P)
  return rec(
    # initialize the Tietze options by their default values.
    eliminationsLimit := 100,
    expandLimit := 150,
    generatorsLimit := 0,
    lengthLimit := 2^31 - 1,
    loopLimit := infinity,
    printLevel := 0,
    saveLimit := 10,
    searchSimultaneous := 20,
    protected:=0
  );
end);



#############################################################################
##
#M  TzPrintOptions( <Tietze record> )  . . . . .  print Tietze record options
##
##  `TzPrintOptions'  prints the  components of a Tietze record,  suppressing
##  all those components  which are not options of the Tietze transformations
##  routines.
##
InstallGlobalFunction( TzPrintOptions, function ( T )

    local i, len, lst, nam;

    # check the argument to be a Tietze record.
    TzCheckRecord( T );

    # determine the maximal name length of the option compoents.
    len  := 0;
    for nam in RecNames( TzOptions(T) ) do
        if nam in TzOptionNames then
            if len < Length( nam ) then
                len := Length( nam );
            fi;
            lst := nam;
        fi;
    od;

    # now print all components of T which are options.
    for nam in TzOptionNames do
        if nam in RecNames( TzOptions(T) ) then
            Print( "#I  ", nam );
            for i  in [Length(nam)..len] do
                Print( " " );
            od;
            Print( "= ", TzOptions(T).(nam), "\n" );
        fi;
    od;

end );


#############################################################################
##
#M  TzPrintPairs( <Tietze record> [,<n>] ) . . . . print occurrences of pairs
##
##  `TzPrintPairs'  prints the n most often occurring relator subwords of the
##  form  a * b,  where a and b are  different generators  or their inverses,
##  together with their numbers of occurrences. The default value of n is 10.
##  If n has been specified to be zero, then it is interpreted as "infinity".
##
InstallGlobalFunction( TzPrintPairs, function ( arg )

    local geni, genj, gens, k, m, n, num, pairs, T, tietze;

    # check the first argument to be a Tietze record.
    T := arg[1];
    TzCheckRecord( T );

    # get the second argument.
    n := 10;
    if Length( arg ) > 1 then  n := arg[2];  fi;
    if not IsInt( n ) or n < 0 then
        Error( "second argument must be a positive integer" );
    fi;
    if n = 0 then  n := "infinity";  fi;

    # intialize the local variables.
    tietze := T!.tietze;
    gens := tietze[TZ_GENERATORS];

    # determine the n most frequently occurring pairs.
    pairs := TzMostFrequentPairs( T, n );

    # print them.
    n := Length( pairs );
    for m in [ 1 .. n ] do
        num := pairs[m][1];
        k := pairs[m][4];
        geni := gens[pairs[m][2]];
        if k > 1 then  geni := geni^-1;  fi;
        genj := gens[pairs[m][3]];
        if k mod 2 = 1 then  genj := genj^-1;  fi;
        if num = 1 then  Print(
            "#I  ",m,".  ",num,"  occurrence  of  ",geni," * ",genj,"\n" );
        elif num > 1 then  Print(
            "#I  ",m,".  ",num,"  occurrences of  ",geni," * ",genj,"\n" );
        fi;
    od;
end );


#############################################################################
##
#M  TzPrintPresentation( <Tietze record> ) . . . . . . . . print presentation
##
##  `TzPrintGenerators'  prints the  generators and the  relators of a Tietze
##  presentation.
##
InstallGlobalFunction( TzPrintPresentation, function ( T )

    # check the given argument to be a Tietze record.
    TzCheckRecord( T );

    # print the generators.
    Print( "#I  generators:\n" );
    TzPrintGenerators( T );

    # print the relators.
    Print( "#I  relators:\n" );
    TzPrintRelators( T );

    # print the status line.
    TzPrintStatus( T );
end );


#############################################################################
##
#M  TzPrintRelators( <Tietze record> [,<list>] ) . . . . . . . print relators
##
##  `TzPrintRelators'  prints the relators of the given  Tietze presentation.
##  The optional second parameter  can be used to specify the  numbers of the
##  relators to be printed.  Default: all relators are printed.
##
InstallGlobalFunction( TzPrintRelators, function ( arg )

    local gens, i, list, numrels, rels, T, tietze;

    # check the first argument to be a Tietze record.
    T := arg[1];
    TzCheckRecord( T );

    # initailize the local variables.
    tietze := T!.tietze;
    gens := tietze[TZ_GENERATORS];
    rels := tietze[TZ_RELATORS];
    numrels := tietze[TZ_NUMRELS];

    # if the relators list is empty, print an appropriate message.
    if numrels = 0 then
        Print( "#I  there are no relators\n" );
        return;
    fi;

    # else print the relators.
    if Length( arg ) = 1 then
        for i in [1 .. numrels] do
            Print( "#I  ", i, ". ",
                AbstractWordTietzeWord( rels[i], gens ), "\n" );
        od;
    else
        list := arg[2];
        for i in list do
            if 1 <= i and i <= numrels then
                Print( "#I  ", i, ". ",
                    AbstractWordTietzeWord( rels[i], gens ), "\n" );
            fi;
        od;
    fi;
end );


#############################################################################
##
#M  TzPrintStatus( <Tietze record> [, <norepeat> ] ) . . .  print status line
##
##  `TzPrintStatus'  prints the number of generators, the number of relators,
##  and the total length of all relators in the  Tietze  presentation  of the
##  given group.  If  "norepeat"  is specified as true,  then the printing is
##  suppressed if none of the three values has changed since the last call.
##
InstallGlobalFunction( TzPrintStatus, function ( arg )

    local norepeat, numgens, numrels, status, T, tietze, total;

    # get the arguments.
    T := arg[1];
    norepeat := Length( arg ) > 1 and IsBool( arg[2] ) and arg[2];

    # check the first argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "first argument must be a Presentation" );
    fi;
    tietze := T!.tietze;
    total := tietze[TZ_TOTAL];

    # get number of generators and number of relators.
    numgens := tietze[TZ_NUMGENS] - tietze[TZ_NUMREDUNDS];
    numrels := tietze[TZ_NUMRELS];

    status := [ numgens, numrels, total ];
    if not ( status = tietze[TZ_STATUS] and norepeat ) then

        # print the Tietze status line.
        if HasName( T ) then  Print( "#I  ", Name(T), " has " );
        else Print( "#I  there are " );  fi;
        if status[1] = 1 then  Print( status[1], " generator" );
        else  Print( status[1], " generators" );  fi;
        if status[2] = 1 then  Print( " and ", status[2], " relator" );
        else  Print( " and ", status[2], " relators" );  fi;
        Print( " of total length ", status[3], "\n" );

        # save the new status.
        tietze[TZ_STATUS] := status;
    fi;
end );


#############################################################################
##
#M  TzRelator( <Tietze record>, <word> ) . . . . . . convert an abstract word
#M                                                        to a Tietze relator
##
##  `TzRelator' assumes <word> to be an abstract word in the group generators
##  associated  to the  given  Tietze record,  and  converts it  to a  Tietze
##  relator, i.e. a free and cyclically reduced Tietze word.
##
InstallGlobalFunction( TzRelator, function ( T, word )
local gens, i, invs, j, length, numgens1, tietze;

    # get some local variables
    tietze := T!.tietze;
    gens := tietze[TZ_GENERATORS];
    invs := tietze[TZ_INVERSES];
    numgens1 := tietze[TZ_NUMGENS] + 1;

    # make a tietze word from the given abstract word
    word := ShallowCopy(TietzeWordAbstractWord( word, gens ));

    # adjust the occurring inverses of involutory generators and reduce
    # the word by squares of these generators
    length := Length( word );
    j := 0;
    for i in [ 1 .. length ] do
        if invs[numgens1+invs[numgens1+word[i]]] <> word[i] then
            word[i] := -word[i];
        fi;
        if j > 0 and word[j] = invs[numgens1+word[i]] then
            j := j - 1;
        else
            j := j + 1;
            word[j] := word[i];
        fi;
    od;

    # cyclically reduce the word
    i := 1;
    while i < j and word[i] = invs[numgens1+word[j]] do
        i := i + 1;
        j := j - 1;
    od;

    return word{ [ i .. j ] };
end );


#############################################################################
##
#M  TzRemoveGenerators( <Tietze record> ) . . . . Remove redundant generators
##
##  `TzRemoveGenerators'   deletes  the   redundant  Tietze  generators   and
##  renumbers  the non-redundant ones  accordingly.  The redundant generators
##  are  assumed   to  be   marked   in  the   inverses  list   by  an  entry
##  invs[numgens+1-i] <> i.
##
InstallGlobalFunction( TzRemoveGenerators, function ( T )

    local comps, gens, i, image, invs, j, newim, numgens, numgens1,
          pointers, preimages, redunds, tietze, tracingImages,
          tree, treelength, treeNums;

    if TzOptions(T).printLevel >= 3 then
        Print( "#I  renumbering the Tietze generators\n" );
    fi;

    # check the given argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "argument must be a Presentation" );
    fi;

    tietze := T!.tietze;
    redunds := tietze[TZ_NUMREDUNDS];
    if redunds = 0 then  return;  fi;

    tracingImages := IsBound( T!.imagesOldGens );
    if tracingImages then  preimages := T!.preImagesNewGens;  fi;
    comps := T!.components;
    gens := tietze[TZ_GENERATORS];
    invs := tietze[TZ_INVERSES];
    numgens := tietze[TZ_NUMGENS];
    numgens1 := numgens + 1;
    tree := 0;

    if IsBound( T!.tree ) then

        tree := T!.tree;
        treelength := tree[TR_TREELENGTH];
        treeNums := tree[TR_TREENUMS];
        pointers := tree[TR_TREEPOINTERS];

        # renumber the non-redundant generators in the relators.
        j := 0;
        for i in [ 1 .. numgens ] do
            if invs[numgens1-i] = i then
                j := j + 1;
                if j < i then
                    comps[j] := comps[i];
                    treeNums[j] := treeNums[i];
                    pointers[AbsInt(treeNums[j])] := treelength + j;
                    invs[numgens1-i] := j;
                    if invs[numgens1+i] > 0 then  invs[numgens1+i] := j;
                    else  invs[numgens1+i] := -j;  fi;
                fi;
            else
                Unbind( T!.(String(comps[i])) );
                invs[numgens1-i] := 0;
                invs[numgens1+i] := 0;
            fi;
        od;

    else

        # renumber the non-redundant generators in the relators.
        j := 0;
        for i in [ 1 .. numgens ] do
            if invs[numgens1-i] = i then
                j := j + 1;
                if j < i then
                    comps[j] := comps[i];
                    invs[numgens1-i] := j;
                    if invs[numgens1+i] > 0 then  invs[numgens1+i] := j;
                    else  invs[numgens1+i] := -j;  fi;
                fi;
            else
                Unbind( T!.(String(comps[i])) );
                invs[numgens1-i] := 0;
                invs[numgens1+i] := 0;
            fi;
        od;

    fi;

    if j <> numgens - redunds then
         Error( "This is a bug.  You should never get here.\n",
         "Please send a copy of your job to the GAP administrators.\n" );
    fi;
    TzRenumberGens( tietze );

    # update the generator images, if available.
    if tracingImages then
        for i in [ 1 .. Length( T!.imagesOldGens ) ] do
            image := T!.imagesOldGens[i];
            newim := [];
            for j in [ 1 .. Length( image ) ] do
                Add( newim, invs[numgens1-image[j]] );
            od;
            T!.imagesOldGens[i] := ReducedRrsWord( newim );
        od;
    fi;

    # update the other generators list and the lists related to it.
    for i in [ 1 .. numgens ] do
        j := invs[numgens1-i];
        if j < i and j > 0 then
            gens[j] := gens[i];
            invs[numgens1-j] := j;
            invs[numgens1+j] := invs[numgens1+i];
            if tracingImages then
                preimages[j] := preimages[i];
            fi;
        fi;
    od;
    j := numgens;
    numgens := numgens - redunds;
    tietze[TZ_INVERSES] := invs{ [numgens1-numgens..numgens1+numgens] };
    while j > numgens do
        Unbind( gens[j] );
        Unbind( comps[j] );
        if tree <> 0 then  Unbind( treeNums[j] );  fi;
        if tracingImages then  Unbind( preimages[j] );  fi;
        j := j - 1;
    od;

    tietze[TZ_NUMGENS] := numgens;
    tietze[TZ_NUMREDUNDS] := 0;
    tietze[TZ_OCCUR]:=false;
end );


#############################################################################
##
#M  TzSearch( <Tietze record> ) . . . . . . .  search subwords and substitute
##
##  `TzSearch'  searches for  relator subwords  which in some  relator have a
##  complement of shorter length  and which occur in other relators, too, and
##  uses them to reduce these other relators.
##
InstallGlobalFunction( TzSearch, function ( T )

    local altered, flags, i, flag, j, k, lastj, leng, lengths, lmax, loop,
          modified, numrels, oldtotal, rels, save, simultan,
          simultanlimit, tietze;

    if TzOptions(T).printLevel >= 3 then  Print( "#I  searching subwords\n" );  fi;

    # check the given argument to be a Tietze record.
    TzCheckRecord( T );
    TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
    tietze := T!.tietze;
    simultanlimit := TzOptions(T).searchSimultaneous;

    rels := tietze[TZ_RELATORS];
    lengths := tietze[TZ_LENGTHS];
    flags := tietze[TZ_FLAGS];
    tietze[TZ_MODIFIED] := false;
    save := TzOptions(T).saveLimit / 100;

    loop := tietze[TZ_TOTAL] > 0;  while loop do

        TzSort( T );
        numrels := tietze[TZ_NUMRELS];
        modified := false;
        oldtotal := tietze[TZ_TOTAL];

        # search subwords with shorter complements, and substitute.
        flag := 0;
        i := 1;
        while i < numrels do
            if flags[i] <= 1 and lengths[i] > 0 then
                leng := lengths[i];
                lmax := leng + (leng + 1) mod 2;
                if flag < flags[i] then  flag := flags[i];  fi;
                simultan := 1;
                j := i;
                lastj := 0;
                k := i + 1;
                while k <= numrels and lengths[k] <= lmax and
                    simultan < simultanlimit do
                    if flags[k] <= 1 and
                        ( lengths[k] = leng or lengths[k] = lmax ) then
                        lastj := j;
                        j := k;
                        simultan := simultan + 1;
                    fi;
                    k := k + 1;
                od;
                while k <= numrels and ( lengths[k] < leng or
                    flags[k] > 1 or flag = 0 and flags[k] = 0 ) do
                    k := k + 1;
                od;
                if k > numrels then  j := lastj;  fi;
                if i <= j then
                    altered := TzSearchC( tietze, i, j );
                    modified := modified or altered > 0;
                    i := j;
                fi;
            fi;
            i := i + 1;
        od;

        # reset the Tietze flags.
        for i in [ 1 .. numrels ] do
            if flags[i] = 1 or flags[i] = 2 then
                flags[i] := flags[i] - 1;
            fi;
        od;

        if modified then
            if tietze[TZ_TOTAL] < oldtotal then
                tietze[TZ_MODIFIED] := true;
                # handle relators of length 1 or 2.
                TzHandleLength1Or2Relators( T );
                # sort the relators and print the status line.
                TzSort( T );
                if TzOptions(T).printLevel >= 2 then  TzPrintStatus( T, true );  fi;
            fi;
        fi;

        loop := tietze[TZ_TOTAL] < oldtotal and tietze[TZ_TOTAL] > 0 and
                (oldtotal - tietze[TZ_TOTAL]) / oldtotal >= save;
    od;
end );


#############################################################################
##
#M  TzSearchEqual( <Tietze record> ) . . . .  search subwords of equal length
##
##  `TzSearchEqual'  searches  for  Tietze relator  subwords  which  in  some
##  relator  have a  complement of  equal length  and which  occur  in  other
##  relators, too, and uses them to modify these other relators.
##
InstallGlobalFunction( TzSearchEqual, function ( T )

    local altered, equal, i, j, k, lastj, leng, lengths, modified, numrels,
          oldtotal, rels, simultan, simultanlimit, tietze;

    if TzOptions(T).printLevel >= 3 then
        Print( "#I  searching subwords of equal length\n" );
    fi;

    # check the given argument to be a Tietze record.
    TzCheckRecord( T );
    TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
    tietze := T!.tietze;
    simultanlimit := TzOptions(T).searchSimultaneous;

    TzSort( T );

    rels := tietze[TZ_RELATORS];
    lengths := tietze[TZ_LENGTHS];
    numrels := tietze[TZ_NUMRELS];
    modified := false;
    oldtotal := tietze[TZ_TOTAL];
    equal := true;

    # substitute substrings by substrings of equal length.
    i := 1;
    while i < numrels do
        leng := lengths[i];
        if leng > 3 and leng mod 2 = 0 then
            simultan := 1;
            j := i;
            lastj := 0;
            k := i + 1;
            while k <= numrels and lengths[k] <= leng and
                simultan < simultanlimit do
                if lengths[k] = leng then
                    lastj := j;
                    j := k;
                    simultan := simultan + 1;
                fi;
                k := k + 1;
            od;
            while k <= numrels and lengths[k] < leng do
                k := k + 1;
            od;
            if k > numrels then  j := lastj;  fi;
            if i <= j then
                altered := TzSearchC( tietze, i, j, equal );
                modified := modified or altered > 0;
                i := j;
            fi;
        fi;
        i := i + 1;
    od;

    if modified then
	tietze[TZ_OCCUR]:=false;
        if tietze[TZ_TOTAL] < oldtotal then
            tietze[TZ_MODIFIED] := true;
            # handle relators of length 1 or 2.
            TzHandleLength1Or2Relators( T );
            # sort the relators and print the status line.
            TzSort( T );
            if TzOptions(T).printLevel >= 2 then  TzPrintStatus( T, true );  fi;
        fi;
    fi;
end );


#############################################################################
##
#M  TzSort( <Tietze record> ) . . . . . . . . . . . . . . . . . sort relators
##
##  sorts the relators list of the given presentation <P> and,
##  in parallel, the search flags list.  Note:  All relators  of length 0 are
##  removed from the list.
##
##  The sorting algorithm used is the same as in the GAP function Sort.
##
InstallGlobalFunction( TzSort, function ( T )

    if TzOptions(T).printLevel >= 3 then  Print( "#I  sorting the relators\n" );  fi;

    # check the given argument to be a Presentation.
    if not IsPresentation( T ) then
        Error( "argument must be a Presentation" );
    fi;

    if T!.tietze[TZ_NUMRELS] > 0 then  
      TzSortC( T!.tietze );  
      T!.tietze[TZ_OCCUR]:=false;
    fi;
end );


#############################################################################
##
#M  TzSubstitute( <Tietze record>, <word> ) . . . . . . . . . . .  substitute
#M  TzSubstitute( <Tietze record> [, <n> [,<elim> ] ] ) . . . a new generator
##
##  In   its   first   form,   `TzSubstitute'   just   calls   the   function
##  `TzSubstituteWord'.
##
##  In its second form, `TzSubstitute' first determines the n most frequently
##  occurring  relator  subwords  of the form  g1 * g2,  where g1 and g2  are
##  different generators  or  their inverses,  and sorts  them by  decreasing
##  numbers of occurrences.
##
##  Let  a * b  be the  last word  in that list,  and let  i  be the smallest
##  positive integer for which there is no component  T!.i so far in the given
##  Tietze record T, then `TzSubstitute' adds to the given presentation a new
##  generator  T!.i  and a new relator  T!.i^-1 * a * b,  and it  replaces  all
##  occurrences of  a * b  in the relators by  T!.i.  Finally,  if elim = 1 or
##  elim = 2, it eliminates the generator a or b, respectively.  Otherwise it
##  eliminates some generator  by just calling  subroutine `TzEliminateGen1'.
##
##  The two arguments are optional. If they are specified, then n is expected
##  to be a positive integer,  and  elim  is expected to be  0, 1, or 2.  The
##  default values are n = 1 and elim = 0.
##
InstallGlobalFunction( TzSubstitute, function ( arg )

    local elim, gen, gens, i, invs, j, k, n, narg, numgens, pair, pairs,
          printlevel, T, tietze, word;

    # just call `TzSubstituteWord' if the second argument is a word.
    narg := Length( arg );
    if ( narg > 1 ) and ( IsList( arg[2] ) or IsWord( arg[2] ) ) then
        TzSubstituteWord( arg[1], arg[2] );
        return;
    fi;

    # check the number of arguments.
    if narg < 1 or narg > 3 then  Error(
       "usage: TzSubstitute( <Tietze record> [, <n> [, <elim> ] ] )" );
    fi;

    # check the first argument to be a Tietze record.
    T := arg[1];
    TzCheckRecord( T );

    # get the second argument, and check it to be a positive integer.
    n := 1;
    if narg >= 2 then
        n := arg[2];
        if not IsInt( n ) or n < 1 then
            Error( "second argument must be a positive integer" );
        fi;
    fi;

    # get the third argument, and check it to be 0,  1, or 2.
    elim := 0;
    if narg = 3 then
        elim := arg[3];
        if not IsInt( elim ) or elim < 0 or elim > 2 then
            Error( "third argument must be 0, 1, or 2" );
        fi;
    fi;

    # check the number of generators to be at least 2.
    tietze := T!.tietze;
    numgens := tietze[TZ_NUMGENS];
    if numgens < 2 then  return;  fi;

    # initialize some local variables.
    gens := tietze[TZ_GENERATORS];
    invs := tietze[TZ_INVERSES];
    printlevel := TzOptions(T).printLevel;

    # determine the n most frequently occurring relator subwords of the form
    # g1 * g2, where g1 and g2 are different generators or their inverses,
    # and sort them  by decreasing numbers of occurrences.
    pairs := TzMostFrequentPairs( T, n );
    if Length( pairs ) < n then
        if narg > 1 and printlevel >= 1 then
            Print( "#I  TzSubstitute: second argument is out of range\n" );
        fi;
        return;
    fi;

    # get the nth pair [ a, b ], say, from the list.
    i := pairs[n][2];
    j := pairs[n][3];
    k := pairs[n][4];
    if k > 1 then  i := invs[numgens+1+i];  fi;
    if k mod 2 = 1 then  j := invs[numgens+1+j];  fi;
    pair := [i, j];

    # add the word a * b as a new generator.
    gen := TzNewGenerator( T );
    word := AbstractWordTietzeWord( pair, gens );
    if TzOptions(T).printLevel >= 1 then  Print(
        "#I  substituting new generator ",gen," defined by ",word,"\n" );
    fi;
    AddRelator( T, gen^-1 * word );

    # if there is a tree of generators, delete it.
    if IsBound( T!.tree ) then  Unbind( T!.tree );  fi;

    # update the generator preimages, if available.
    if IsBound( T!.imagesOldGens ) then
        TzUpdateGeneratorImages( T, 0, pair );
    fi;

    # replace all relator subwords of the form a * b by the new generator.
    TzOptions(T).printLevel := 0;
    TzSearch( T );
    TzOptions(T).printLevel := printlevel;

    #  eliminate a generator.
    if printlevel = 1 then  TzOptions(T).printLevel := 2;  fi;
    if elim > 0 then
        TzEliminateGen( T, AbsInt( pair[elim] ) );
    else
        TzEliminateGen1( T );
    fi;
    TzOptions(T).printLevel := printlevel;
    if tietze[TZ_MODIFIED] then  TzSearch( T );  fi;
    if tietze[TZ_NUMREDUNDS] > 0 then  TzRemoveGenerators( T );  fi;

    if TzOptions(T).printLevel >= 1 then  TzPrintStatus( T, true );  fi;
end );


#############################################################################
##
#M  TzSubstituteCyclicJoins( <Tietze record> ) . . common roots of generators
##
##  `TzSubstituteCyclicJoins'  tries to find pairs of  commuting generators a
##  and b, say, such that exponent(a) is prime to exponent(b).  For each such
##  pair, their product a * b is substituted as a new generator,  and a and b
##  are eliminated.
##
InstallGlobalFunction( TzSubstituteCyclicJoins, function ( T )

    local exp1, exp2, exponents, gen, gen2, gens, i, invs, lengths, 
          num1, num2, numgens, numrels, printlevel, rel, rels,
          tietze;

    # check the given argument to be a Tietze record.
    TzCheckRecord( T );
    TzTestInitialSetup(T); # run `1Or2Relators' if not yet done

    if TzOptions(T).printLevel >= 3 then
        Print( "#I  substituting cyclic joins\n" );
    fi;

    # Try to find exponents for the generators.
    exponents := TzGeneratorExponents( T );
    tietze := T!.tietze;
    tietze[TZ_MODIFIED] := false;

    if Sum( exponents ) = 0 then  return;  fi;

    # sort the relators by their lengths.
    TzSort( T );

    # initialize some local variables.
    gens := tietze[TZ_GENERATORS];
    numgens := tietze[TZ_NUMGENS];
    rels := tietze[TZ_RELATORS];
    numrels := tietze[TZ_NUMRELS];
    lengths := tietze[TZ_LENGTHS];
    invs := tietze[TZ_INVERSES];
    printlevel := TzOptions(T).printLevel;

    # Now work off all commutator relators of length 4.
    i := 1;
    while i <= numrels and lengths[i] <= 4 do

        rel := rels[i];
        if lengths[i] = 4 and rel[1] = invs[numgens+1+rel[3]] and
            rel[2] = invs[numgens+1+rel[4]] then

            # There is a commutator relator of the form [a,b]. Check if
            # there are also power relators of the form a^m or b^n.

            num1 := AbsInt( rel[1] );  exp1 := exponents[num1];
            num2 := AbsInt( rel[2] );  exp2 := exponents[num2];

            # If there are relators a^m and b^n with m prime to n, then
            # a = (a*b)^n,  b = (a*b)^m,  and  (a*b)^(m*n) = 1.  Hence we
            # may define a new generator g, say, by a*b together with the
            # two relations  a = g^n  and  b = g^m,  and then eliminate a
            # and b.  (Note that we can take a^-1 instead of a or b^-1
            # instead of b.)

            if exp1 > 0 and exp2 > 0 and GcdInt( exp1, exp2 ) = 1 then

                gen := TzNewGenerator( T );
                numgens := tietze[TZ_NUMGENS];
                invs := tietze[TZ_INVERSES];

                if printlevel >= 1 then
                    Print( "#I  substituting new generator ",gen,
                        " defined by ",gens[num1]*gens[num2],"\n" );
                fi;

                AddRelator( T, gens[num1] * gen^-exp2 );
                AddRelator( T, gens[num2] * gen^-exp1 );

                # if there is a tree of generators, delete it.
                if IsBound( T!.tree ) then  Unbind( T!.tree );  fi;

                # update the generator preimages, if available.
                if IsBound( T!.imagesOldGens ) then
                    TzUpdateGeneratorImages( T, 0, [ num1, num2 ] );
                fi;

                # save gens[num2] before eliminating gens[num1] because
                # its number may change.
                gen2 := gens[num2];
                if printlevel = 1 then  TzOptions(T).printLevel := 2;  fi;
                TzEliminate( T, gens[num1] );
                num2 := Position( gens, gen2 );
                TzEliminate( T, gens[num2] );
                TzOptions(T).printLevel := printlevel;
                numgens := tietze[TZ_NUMGENS];
                numrels := tietze[TZ_NUMRELS];
                invs := tietze[TZ_INVERSES];
                tietze[TZ_MODIFIED] := true;
                i := 0;
            fi;
        fi;
        i := i + 1;
    od;

    if tietze[TZ_MODIFIED] then
        # handle relators of length 1 or 2.
        TzHandleLength1Or2Relators( T );
        # sort the relators and print the status line.
        TzSort( T );
        if printlevel >= 1 then  TzPrintStatus( T, true );  fi;
    fi;
end );


#############################################################################
##
#M  TzSubstituteWord( <Tietze record>, <word> ) . . . substitute a given word
#M                                                         as a new generator
##
##  `TzSubstituteWord'  expects <T> to be a Tietze record  and <word> to be a
##  word in the generators of <T>.  It adds a new generator,  gen say,  and a
##  new relator of the form  gen^-1 * <Word>  to <T>.
##
##  The second argument, <word>, may be  either an abstract word  or a Tietze
##  word, i. e., a list of positive or negative generator numbers.
##
##  More precisely: The effect of a call
##
##     TzSubstituteWord( T, word );
##
##  is more or less equivalent to that of
##
##     AddGenerator( T );
##     gen := T!.generators[Length( T!.generators )];
##     AddRelator( T, gen^-1 * word );
##
##  The  essential  difference  is,  that  `TzSubstituteWord',  as  a  Tietze
##  transformation of T,  saves and updates the lists of generator images and
##  preimages, in case they are being traced under the Tietze transformations
##  applied to T,  whereas a call of the function `AddGenerator' (which  does
##  not perform a Tietze transformation)  will delete  these lists  and hence
##  terminate the tracing.
##
InstallGlobalFunction( TzSubstituteWord, function ( T, word )

    local aword, gen, gens, images, tzword;

    # check the first argument to be a Tietze record.
    TzCheckRecord( T );

    # check the second argument to be an abstract word or a Tietze word in
    # the generators.
    gens := T!.generators;
    if IsList( word ) then
        tzword := ReducedRrsWord( word );
        aword := AbstractWordTietzeWord( tzword, gens );
    else
        aword := word;
        tzword := TietzeWordAbstractWord( aword, gens );
    fi;

    # if generator images and preimages are being traced through the Tietze
    # transformations of T, save them from being deleted by `AddGenerator'.
    images := 0;
    if IsBound( T!.imagesOldGens ) then
        images := T!.imagesOldGens;
        Unbind( T!.imagesOldGens );
    fi;

    # add a new generator.
    AddGenerator( T );
    gen := T!.generators[Length( T!.generators )];

    # add the corresponding relator.
    if TzOptions(T).printLevel >= 1 then  Print(
        "#I  substituting new generator ",gen," defined by ",aword,"\n" );
    fi;
    AddRelator( T, gen^-1 * aword );

    # restore the generator images and update the generator preimages, if
    # available.
    if IsList( images ) then
        T!.imagesOldGens := images;
        TzUpdateGeneratorImages( T, 0, tzword );
    fi;

    if TzOptions(T).printLevel >= 1 then  TzPrintStatus( T, true );  fi;
end );


#############################################################################
##
#M  TzUpdateGeneratorImages( T, n, word ) . . . . update the generator images
#M                                              after a Tietze transformation
##
##  `TzUpdateGeneratorImages'  assumes  that it is called  by a function that
##  performs  Tietze transformations  to a presentation record  <T>  in which
##  images of the old generators  are being traced as Tietze words in the new
##  generators  as well as preimages of the new generators as Tietze words in
##  the old generators.
##
##  If  <n>  is zero,  it assumes that  a new generator defined by the Tietze
##  word <word> has just been added to the presentation.  It converts  <word>
##  from a  Tietze word  in the new generators  to a  Tietze word  in the old
##  generators and adds that word to the list of preimages.
##
##  If  <n>  is greater than zero,  it assumes that the  <n>-th generator has
##  just been eliminated from the presentation.  It updates the images of the
##  old generators  by replacing each occurrence of the  <n>-th  generator by
##  the given Tietze word <word>.
##
##  If <n> is less than zero,  it terminates the tracing of generator images,
##  i. e., it deletes the corresponding record components of <T>.
##
##  Note: `TzUpdateGeneratorImages' is considered to be an internal function.
##  Hence it does not check the arguments.
##
InstallGlobalFunction( TzUpdateGeneratorImages, function ( T, n, word )
local i, image, invword, j, newim, num, oldnumgens,replace,mn,oldi;

    if n = 0 then

        # update the preimages of the new generators.
        newim := [];
        for num in word do
            if num > 0 then
                Append( newim, T!.preImagesNewGens[num] );
            else
                Append( newim, -1 * Reversed( T!.preImagesNewGens[-num] ) );
            fi;
        od;
        Add( T!.preImagesNewGens, ReducedRrsWord( newim ) );

    elif n > 0 then

	mn:=-n;
        # update the images of the old generators:
        # run through all images and replace the n-th generator by word.
        invword := -1 * Reversed( word );
	oldi:=T!.imagesOldGens;
        oldnumgens := Length( oldi );
        for i in [ 1 .. oldnumgens ] do
            image := oldi[i];
	    if Length(image)=1 then
	      # the image is a single generator. This happens often.
	      if image[1]=n then
	        oldi[i]:=ReducedRrsWord(word);
	      elif image[1]=mn then
	        oldi[i]:=ReducedRrsWord(invword);
	      fi;
	    else
	      replace:=false;
	      j:=1;
	      while replace=false and j<=Length(image) do
		replace:=image[j]=n or image[j]=mn;
		j:=j+1;
	      od;
	      if replace then
		newim := [];
		replace:=false;
		for j in [ 1 .. Length( image ) ] do
		    if image[j] = n then
			Append( newim, word );
		    elif image[j] = mn then
			Append( newim, invword );
		    else
			Add( newim, image[j] );
		    fi;
		od;
		oldi[i] := ReducedRrsWord( newim );
	      fi;
	    fi;
        od;

    else

        # terminate the tracing of generator images.
        Unbind( T!.imagesOldGens );
        Unbind( T!.preImagesNewGens );
        if IsBound( T!.oldGenerators ) then
            Unbind( T!.oldGenerators );
        fi;
        if TzOptions(T).printLevel >= 1 then
            Print( "#I  terminated the tracing of generator images\n" );
        fi;

    fi;
end );


#############################################################################
##
#E  tietze.gi  . . . . . . . . . . . . . . . . . . . . . . . . . .. ends here