/usr/share/gap/lib/tietze.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 | #############################################################################
##
#W tietze.gi GAP library Volkmar Felsch
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for Tietze transformations of presentation
## records (i.e., of presentations of finitely presented groups (fp groups).
##
#############################################################################
##
#F TzTestInitialSetup(<Tietze object>)
##
## This function calls TzHandleLength1Or2Relators on a presentation for
## which is has not yet been called. (Needed because we cannot yet call it
## while the presentation is created, as it may remove generators.)
TzTestInitialSetup := function( T )
if not IsBound( T!.hasRun1Or2 ) then
TzHandleLength1Or2Relators( T );
T!.hasRun1Or2:=true;
TzSort( T );
fi;
end;
#############################################################################
##
#M AddGenerator( <Tietze record> ) . . . . . . . . . . . . add a generator
##
## extends the given Tietze presentation by a new generator.
##
## Let i be the smallest positive integer which has not yet been used as
## a generator number and for which no component T!.i exists so far in the
## given presentation T, say. `AddGenerator' defines a new abstract
## generator _xi and adds it, as component T!.i, to the given presentation.
##
InstallGlobalFunction( AddGenerator, function ( T )
local gen, numgens, tietze;
# check the given argument to be a Tietze record.
TzCheckRecord( T );
# define an abstract generator and add it to the set of generators.
gen := TzNewGenerator( T );
# display a message.
if TzOptions(T).printLevel >= 1 then
tietze := T!.tietze;
numgens := tietze[TZ_NUMGENS];
Print( "#I now the presentation has ", numgens,
" generators, the new generator is ", gen, "\n");
fi;
# if there is a tree of generators, delete it.
if IsBound( T!.tree ) then Unbind( T!.tree ); fi;
# if generator images and preimages are being traced through the
# Tietze transformations applied to T, delete them.
if IsBound( T!.imagesOldGens ) then
TzUpdateGeneratorImages( T, -1, 0 );
fi;
tietze[TZ_MODIFIED] := true;
tietze[TZ_OCCUR]:=false;
end );
#############################################################################
##
#M AddRelator( <Tietze record>, <word> ) . . . . . . . . . . add a relator
##
## adds the given relator to the given Tietze presentation.
##
InstallGlobalFunction( AddRelator, function ( T, word )
local flags, leng, lengths, numrels, rel, rels, tietze;
# check the first argument to be a Tietze record.
TzCheckRecord( T );
if TzOptions(T).printLevel >= 3 then
Print( "#I adding relator ",word,"\n" );
fi;
tietze := T!.tietze;
rels := tietze[TZ_RELATORS];
numrels := tietze[TZ_NUMRELS];
flags := tietze[TZ_FLAGS];
lengths := tietze[TZ_LENGTHS];
# add rel to the relators of T, and make the Tietze lists consistent.
rel := TzRelator( T, word );
leng := Length( rel );
if leng > 0 then
numrels := numrels + 1;
rels[numrels] := rel;
lengths[numrels] := leng;
flags[numrels] := 1;
tietze[TZ_NUMRELS] := numrels;
tietze[TZ_TOTAL] := tietze[TZ_TOTAL] + leng;
tietze[TZ_MODIFIED] := true;
tietze[TZ_OCCUR]:=false;
fi;
end );
#############################################################################
##
#M DecodeTree( <Tietze record> ) . . . . decode a subgroup generators tree
##
## `DecodeTree' applies the tree decoding method to a subgroup presentation
## provided by the Reduced Reidemeister-Schreier or by the Modified Todd-
## Coxeter method.
##
## rels is the set of relators.
## gens is the set of generators.
## total is the total length of all relators.
##
InstallGlobalFunction( DecodeTree, function ( T )
local count, decode, looplimit, primary, protected, tietze, trlast;
# check the given argument to be a Presentation.
if not IsPresentation( T ) then
Error( "argument must be a Presentation" );
fi;
tietze := T!.tietze;
protected := TzOptions(T).protected;
# check if there is a tree of generators.
if not IsBound( T!.tree ) then
Error( "there is not tree to decode it" );
fi;
decode := true;
TzOptions(T).protected := Maximum( protected, T!.tree[TR_PRIMARY] );
# if generator images are being traced, delete them.
if IsBound( T!.imagesOldGens ) then
Unbind( T!.imagesOldGens );
fi;
# substitute substrings by shorter ones.
TzSearch( T );
# now run our standard strategy and repeat it.
looplimit := TzOptions(T).loopLimit;
count := 0;
while count < looplimit and tietze[TZ_TOTAL] > 0 do
# replace substrings by substrings of equal length.
TzSearchEqual( T );
if tietze[TZ_MODIFIED] then TzSearch( T ); fi;
# eliminate generators.
TzEliminateGens( T, decode );
if tietze[TZ_MODIFIED] then
TzSearch( T );
if tietze[TZ_MODIFIED] then TzSearch( T ); fi;
if tietze[TZ_MODIFIED] then TzSearchEqual( T ); fi;
if tietze[TZ_MODIFIED] then TzSearch( T ); fi;
count := count + 1;
else
count := looplimit;
fi;
if TzOptions(T).printLevel = 1 then TzPrintStatus( T, true ); fi;
od;
# check if the tree decoding has been finished.
primary := T!.tree[TR_PRIMARY];
trlast := T!.tree[TR_TREELAST];
if trlast <= primary then
# if yes, delete the tree ...
Unbind( T!.tree );
# ... and reinitialize the tracing of generator images images if
# it had been initialized before.
if IsBound( T!.preImagesNewGens ) then
TzInitGeneratorImages( T );
if TzOptions(T).printLevel > 0 then
Print( "#I Warning: ",
"the generator images have been reinitialized\n" );
fi;
fi;
else
# if not, display a serious warning.
Print( "\n", "#I ********** WARNING: the tree decoding is",
" incomplete ! **********\n\n",
"#I hence the isomporphism type of the presented group may",
" have changed,\n",
"#I you should continue by first calling the `DecodeTree'",
" command again,\n",
"#I possibly after changing the Tietze option parameters",
" appropriately\n\n" );
fi;
TzOptions(T).protected := protected;
end );
#############################################################################
##
#M FpGroupPresentation( <Tietze record> ) . . . . converts the given Tietze
#M presentation to a fin. pres. group
##
## `FpGroupPresentation' constructs the group defined by the given Tietze
## presentation and returns the group record.
##
InstallGlobalFunction( FpGroupPresentation, function (arg)
local P,F, fgens, freegens, frels, G, gens, names, numgens, origin,
redunds, rels, T, tietze, tzword;
P:=arg[1];
if TzOptions(P).printLevel >= 3 then
Print( "#I converting the Tietze presentation to a group\n" );
fi;
# check the given argument to be a Tietze record.
TzCheckRecord( P );
# do not change the given presentation, so work on a copy.
T := ShallowCopy( P );
# get some local variables.
tietze := T!.tietze;
gens := tietze[TZ_GENERATORS];
numgens := tietze[TZ_NUMGENS];
rels := tietze[TZ_RELATORS];
redunds := tietze[TZ_NUMREDUNDS];
# tidy up the Tietze presentation.
if redunds > 0 then TzRemoveGenerators( T ); fi;
TzSort( T );
# create an appropriate free group.
freegens := tietze[TZ_FREEGENS];
names := List( gens, g ->
FamilyObj( gens[1] )!.names[Position( freegens, g )] );
if Length(arg)>1 then
F:=FreeGroup(Length(names),arg[2]);
else
F := FreeGroup( names );
fi;
fgens := GeneratorsOfGroup( F );
# convert the relators from Tietze words to words in the generators of F.
frels := [ ];
for tzword in rels do
if tzword <> [ ] then
Add( frels, AbstractWordTietzeWord( tzword, fgens ) );
fi;
od;
# get the resulting finitely presented group.
G := F / frels;
# save the generator images, if available.
origin := rec( );
if IsBound( T!.imagesOldGens ) then
origin!.imagesOldGens := Immutable( T!.imagesOldGens );
origin!.preImagesNewGens := Immutable( T!.preImagesNewGens );
fi;
SetTietzeOrigin( G, origin );
return G;
end );
#############################################################################
##
#M PresentationFpGroup( <G> [,<print level>] ) . . . create a Tietze record
##
## `PresentationFpGroup' creates a presentation, i.e. a Tietze record, for
## the given finitely presented group.
##
InstallGlobalFunction( PresentationFpGroup, function ( arg )
local F, G, fggens, freegens, frels, gens, grels, i, invs, lengths,
numgens, numrels, printlevel, rels, T, tietze, total;
# check the first argument to be a finitely presented group.
G := arg[1];
if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
Error( "<G> must be a finitely presented group" );
fi;
# check the second argument to be an integer.
printlevel := 1;
if Length( arg ) = 2 then printlevel := arg[2]; fi;
if not IsInt( printlevel ) then
Error( "second argument must be an integer" );
fi;
# Create the Presentation.
T := Objectify( NewType( PresentationsFamily,
IsPresentationDefaultRep
and IsPresentation
and IsMutable ),
rec() );
tietze := ListWithIdenticalEntries( TZ_LENGTHTIETZE, 0 );
tietze[TZ_OCCUR]:=false;
T!.tietze := tietze;
# initialize the Tietze stack.
fggens := FreeGeneratorsOfFpGroup( G );
grels := RelatorsOfFpGroup( G );
F := FreeGroup( IsLetterWordsFamily,infinity, "_x",
ElementsFamily( FamilyObj( FreeGroupOfFpGroup( G ) ) )!.names );
freegens := GeneratorsOfGroup( F );
tietze[TZ_FREEGENS] := freegens;
numgens := Length( fggens );
tietze[TZ_NUMGENS] := numgens;
gens := List( [ 1 .. numgens ], i -> freegens[i] );
tietze[TZ_GENERATORS] := gens;
invs := ShallowCopy( numgens - [ 0 .. 2 * numgens ] );
tietze[TZ_INVERSES] := invs;
frels := List( grels, rel -> MappedWord( rel, fggens, gens ) );
numrels := Length( frels );
rels := List( [ 1 .. numrels ], i -> TzRelator( T, frels[i] ) );
lengths := List( [ 1 .. numrels ], i -> Length( rels[i] ) );
total := Sum( lengths );
tietze[TZ_NUMRELS] := numrels;
tietze[TZ_RELATORS] := rels;
tietze[TZ_LENGTHS] := lengths;
tietze[TZ_FLAGS] := ListWithIdenticalEntries( numrels, 1 );
tietze[TZ_TOTAL] := total;
tietze[TZ_STATUS] := [ 0, 0, -1 ];
tietze[TZ_MODIFIED] := false;
T!.generators := tietze[TZ_GENERATORS];
T!.components := [ 1 .. numgens ];
for i in [ 1 .. numgens ] do
T!.(String( i )) := gens[i];
od;
T!.nextFree := numgens + 1;
SetOne(T,Identity( F ));
T!.identity:=Identity( F );
# initialize some Tietze options
TzOptions(T).protected := 0;
TzOptions(T).printLevel:=printlevel;
# print the status line.
if TzOptions(T).printLevel >= 2 then TzPrintStatus( T, true ); fi;
# return the Tietze record.
return T;
end );
#############################################################################
##
#M PrintObj( <T> ) . . . . . . . . . . . pretty print a presentation record
##
InstallMethod( PrintObj,
"for a presentation in default representation",
true,
[ IsPresentation and IsPresentationDefaultRep ], 0,
function( T )
local numgens, numrels, tietze, total;
# get number of generators, number of relators, and total length.
tietze := T!.tietze;
numgens := tietze[TZ_NUMGENS] - tietze[TZ_NUMREDUNDS];
numrels := tietze[TZ_NUMRELS];
total := tietze[TZ_TOTAL];
# print the Tietze status line.
Print( "<presentation with ", numgens, " gens and ", numrels,
" rels of total length ", total, ">" );
end );
#############################################################################
##
#M ShallowCopy( <T> )
##
InstallMethod( ShallowCopy,
"for a presentation in default representation", true,
[ IsPresentation and IsPresentationDefaultRep ], 0, StructuralCopy );
#############################################################################
##
#M PresentationRegularPermutationGroup(<G>) . . . construct a presentation
#M from a regular permutation group
##
## `PresentationRegularPermutationGroup' constructs a presentation from the
## given regular permutation group using John Cannon's relations finding
## algorithm.
##
InstallGlobalFunction( PresentationRegularPermutationGroup, function ( G )
# check G to be a regular permutation group.
if not ( IsPermGroup( G ) and IsRegular( G ) ) then
Error( "the given group must be a regular permutation group" );
fi;
return PresentationRegularPermutationGroupNC( G );
end );
#############################################################################
##
#M PresentationRegularPermutationGroupNC(<G>) . . construct a presentation
#M from a regular permutation group
##
## `PresentationRegularPermutationGroupNC' constructs a presentation from
## the given regular permutation group using John Cannon's relations finding
## algorithm.
##
## In this NC version it is assumed, but not checked that G is a regular
## permutation group.
##
InstallGlobalFunction( PresentationRegularPermutationGroupNC, function ( G )
local cosets, # right cosets of G by its trivial subgroup H
F, # given free group
R, # record containing an fp group isomorphic to G
P, # presentation to be consructed
ng1, # position number of identity element in G
idword, # identity element of F
table, # columns in the table for gens
rels, # representatives of the relators
relsGen, # relators sorted by start generator
subgroup, # rows for the subgroup gens
i, j, # loop variables
gen, # loop variables for generator
gen0, inv0, # loop variables for generator cols
g, g1, # loop variables for generator cols
c, # loop variable for coset
rel, # loop variables for relator
rels1, # list of relators
app, # arguments list for `MakeConsequences'
index, # index of the table
col, # generator col in auxiliary table
perm, # variable for permutations
fgens, # generators of F
gens2, # the above abstract gens and their inverses
perms, # permutation generators of G
moved, # list of points on which G acts,
ngens, # number of generators of G
ngens2, # twice the above number
order, # order of a generator
actcos, # part 1 of Schreier vector of G by H
actgen, # part 2 of Schreier vector of G by H
tab0, # auxiliary table in parallel to table <table>
cosRange, # range from 1 to index (= number of cosets)
genRange, # range of the odd integers from 1 to 2*ngens-1
geners, # order in which the table cols are worked off
next, # local coset number
n; # number of subgroup element
# initialize some local variables.
perms := GeneratorsOfGroup( G );
ngens := Length( perms );
ngens2 := ngens * 2;
ng1 := 1;
index := NrMovedPoints( perms );
tab0 := [];
table := [];
subgroup := [];
cosRange := [ 1 .. index ];
genRange := List( [ 1 .. ngens ], i -> 2*i-1 );
rels := [];
F := FreeGroup( ngens );
fgens := GeneratorsOfGroup( F );
gens2 := [];
idword := One( fgens[1] );
# ensure that the permutations act on the points 1 to index (note that
# index is the degree of G).
if LargestMovedPoint( perms ) > index then
moved := MovedPoints( perms );
perm := MappingPermListList( moved, [ 1 .. index ] );
perms := OnTuples( perms, perm );
fi;
# get a coset table from the permutations,
# and introduce appropriate relators for the involutory generators
for i in [ 1 .. ngens ] do
Add( gens2, fgens[i] );
Add( gens2, fgens[i]^-1 );
perm := perms[i];
col := OnTuples( cosRange, perm );
gen := ListWithIdenticalEntries( index, 0 );
Add( tab0, col );
Add( table, gen );
order := Order( perms[i] );
if order = 2 then
Add( rels, fgens[i]^2 );
else
col := OnTuples( cosRange, perm^-1 );
gen := ListWithIdenticalEntries( index, 0 );
fi;
Add( tab0, col );
Add( table, gen );
od;
# define an appropriate ordering of the cosets,
# enter the definitions in the table,
# and construct the Schreier vector,
cosets := ListWithIdenticalEntries( index, 0 );
actcos := ListWithIdenticalEntries( index, 0 );
actgen := ListWithIdenticalEntries( index, 0 );
cosets[1] := ng1;
actcos[ng1] := ng1;
j := 1;
i := 0;
while i < index do
i := i + 1;
c := cosets[i];
g := 0;
while g < ngens2 do
g := g + 1;
next := tab0[g][c];
if next > 0 and actcos[next] = 0 then
g1 := g + 2*(g mod 2) - 1;
table[g][c] := next;
table[g1][next] := c;
tab0[g][c] := 0;
tab0[g1][next] := 0;
actcos[next] := c;
actgen[next] := g;
j := j + 1;
cosets[j] := next;
if j = index then
g := ngens2;
i := index;
fi;
fi;
od;
od;
# compute the representatives for the relators
rels := RelatorRepresentatives( rels );
# make the structure that is passed to `MakeConsequences'
app := ListWithIdenticalEntries( 12, 0 );
# note: we have, in particular, set app[12] to zero as we do not want
# minimal gaps to be marked in the coset table
app[1] := table;
app[5] := subgroup;
# run through the coset table and find the next undefined entry
geners := [ 1 .. ngens2 ];
for i in cosets do
for j in geners do
if table[j][i] <= 0 then
# define the entry appropriately,
g := j + 2*(j mod 2) - 1;
c := tab0[j][i];
table[j][i] := c;
table[g][c] := i;
tab0[j][i] := 0;
tab0[g][c] := 0;
# construct the associated relator
rel := idword;
while c <> ng1 do
g := actgen[c];
rel := rel * gens2[g]^-1;
c := actcos[c];
od;
rel := rel^-1 * gens2[j]^-1;
c := i;
while c <> ng1 do
g := actgen[c];
rel := rel * gens2[g]^-1;
c := actcos[c];
od;
# compute its representative,
# and add it to the set of relators
rels1 := RelatorRepresentatives( [ rel ] );
if Length( rels1 ) > 0 then
rel := rels1[1];
if not rel in rels then
Add( rels, rel );
fi;
fi;
# make the rows for the relators and distribute over relsGen
relsGen := RelsSortedByStartGen( fgens, rels, table, true );
app[4] := relsGen;
# mark all already defined entries of table by a zero in
# tab0
for g in genRange do
gen := table[g];
gen0 := tab0[g];
inv0 := tab0[g+1];
for c in cosRange do
if gen[c] > 0 then
gen0[c] := 0;
inv0[gen[c]] := 0;
fi;
od;
od;
# continue the enumeration and find all consequences
for g in genRange do
gen0 := tab0[g];
for c in cosRange do
if gen0[c] = 0 then
app[10] := g;
app[11] := c;
n := MakeConsequences( app );
fi;
od;
od;
fi;
od;
od;
# construct a finitely presented group from the relations,
# add the Schreier vector to its components, and return it
P := PresentationFpGroup( F / rels, 0 );
TzOptions(P).protected := ngens;
TzGoGo( P );
TzOptions(P).protected := 0;
TzOptions(P).printLevel := 1;
# return the resulting presentation
return P;
end );
#############################################################################
##
#M PresentationViaCosetTable(<G>) . . . . . . . . construct a presentation
#M PresentationViaCosetTable(<G>,<F>,<words>) . . . . . for the given group
##
## `PresentationViaCosetTable' constructs a presentation for a given
## concrete group. It applies John Cannon's relations finding algorithm
## which has been described in
##
## John J. Cannon: Construction of defining relators for finte groups.
## Discrete Math. 5 (1973), 105-129, and in
##
## Joachim Neubueser: An elementary introduction to coset table methods in
## computational group theory. Groups-St Andrews 1981, edited by C. M.
## Campbell and E. F. Robertson, pp. 1-45. London Math. Soc. Lecture Note
## Series no. 71, Cambridge Univ. Press, Cambridge, 1982.
##
## If only a group <G> has been specified, the single stage algorithm is
## applied.
##
## If the two stage algorithm is to be used, `PresentationViaCosetTable'
## expects a subgroup <H> of <G> to be described by two additional arguments
## <F> and <words>, where <F> is a free group with the same number of
## generators as <G>, and <words> is a list of words in the generators of
## <F> which supply a list of generators of <H> if they are evaluated as
## words in the corresponding generators of <G>.
##
InstallGlobalFunction( PresentationViaCosetTable, function ( arg )
local G, # given group
F, # given or constructed free group
fgens, # generators of F
words, # words (in the generators of F) defing H
twords, # tidied up list of words
H, # subgroup
elts, # elements of G or H
cosets, # right cosets of G with respect to H
R1, # record containing an fp group isomorphic to H
R2, # record containing an fp group isomorphic to G
P, # resulting presentation
ggens, # concrete generators of G
hgens, # concrete generators of H
thgens, # tidied up list of generators of H
ngens, # number of generators of G
one, # identity element of G
size, # size of G
F1, # free group with same number of generators as H
FP2, # fp group isomorphic to G
i; # loop variable
# check the first argument to be a group
G := arg[1];
if not IsGroup( G ) then
Error( "first argument must be a group" );
fi;
ggens := GeneratorsOfGroup( G );
ngens := Length( ggens );
# check if a subgroup has been specified
if Length( arg ) = 1 then
# apply the single stage algorithm
Info( InfoFpGroup, 1,
"calling the single stage relations finding algorithm" );
# use a special method for regular permutation groups
if IsPermGroup( G ) then
# compute the size of G to speed up the regularity check
size := Size( G );
if IsRegular( G ) then
return PresentationRegularPermutationGroupNC( G );
fi;
fi;
# construct a presentation for G
elts := AsSSortedList( G );
F := FreeGroup( ngens );
R2 := RelsViaCosetTable( G, elts, F );
else
# check the second argument to be an fp group.
F := arg[2];
if not IsFreeGroup( F ) then
Error( "second argument must be a free group" );
fi;
# check F for having the same number of generators as G
fgens := GeneratorsOfGroup( F );
if Length( fgens ) <> ngens then
Error( "the given groups have different number of generators" );
fi;
# get the subgroup H
words := arg[3];
hgens := List( words, w -> MappedWord( w, fgens, ggens ) );
H := Subgroup( G, hgens );
if Size( H ) = 1 or Size( H ) = Size( G ) then
# apply the single stage algorithm
Info( InfoFpGroup, 1,
"calling the single stage relations finding algorithm" );
elts := AsSSortedList( G );
R2 := RelsViaCosetTable( G, elts, F );
else
# apply the two stage algorithm
Info( InfoFpGroup, 1,
"calling the two stage relations finding algorithm" );
Info( InfoFpGroup, 1,
"using a subgroup of size ", Size( H ), " and index ",
Size( G ) / Size( H ) );
# eliminate words which define the identity of G
one := One( ggens[1] );
thgens := [];
twords := [];
for i in [ 1 .. Length( hgens ) ] do
if hgens[i] <> one and not hgens[i] in thgens
and not hgens[i]^-1 in thgens then
Add( thgens, hgens[i] );
Add( twords, words[i] );
fi;
od;
hgens := thgens;
words := twords;
# construct a presentation for the subgroup H
elts := AsSSortedList( H );
F1 := FreeGroup( Length( hgens ) );
R1 := RelsViaCosetTable( H, elts, F1, hgens );
# construct a presentation for the group G
cosets := RightCosets( G, H );
R2 := RelsViaCosetTable( G, cosets, F, words, H, R1 );
fi;
fi;
# simplify the resulting presentation by Tietze transformations,
# but do not eliminate any generators
FP2 := R2.fpGroup;
P := PresentationFpGroup( FP2, 0 );
TzOptions(P).protected := ngens;
TzGoGo( P );
TzOptions(P).protected := 0;
TzOptions(P).printLevel := 1;
# return the resulting presentation
return P;
end );
#############################################################################
##
#M RelsViaCosetTable(<G>,<cosets>,<F>) . . . . . construct relators for the
#M RelsViaCosetTable(<G>,<cosets>,<F>,<ggens>) . . . . . . . given concrete
#M RelsViaCosetTable(<G>,<cosets>,<F>,<words>,<H>,<R1>) . . . . . . . group
##
## `RelsViaCosetTable' constructs a defining set of relators for the given
## concrete group using John Cannon's relations finding algorithm.
##
## It is a subroutine of function `PresentationViaCosetTable'. Hence its
## input and output are specifically designed only for this purpose, and it
## does not check the arguments.
##
InstallGlobalFunction( RelsViaCosetTable, function ( arg )
local G, # given group
cosets, # right cosets of G with respect to H
F, # given free group
words, # given words for the generators of H
H, # subgroup, if specified
F1, # free group associated to H
R1, # record containing an fp group isomorphic to H
R2, # record containing an fp group isomorphic to G
FP1, # fp group isomorphic to H
fhgens, # generators of F1
hrels, # relators of F1
helts, # list of elements of H
ng1, # position number of identity element in G
nh1, # position number of identity element in H
idword, # identity element of F
perms, # permutations induced by the gens on the cosets
stage, # 1 or 2
table, # columns in the table for gens
rels, # representatives of the relators
relsGen, # relators sorted by start generator
subgroup, # rows for the subgroup gens
i, j, # loop variables
gen, # loop variables for generator
gen0, inv0, # loop variables for generator cols
g, g1, # loop variables for generator cols
c, # loop variable for coset
rel, # loop variables for relator
rels1, # list of relators
app, # arguments list for `MakeConsequences'
index, # index of the table
col, # generator col in auxiliary table
perm, # permutations induced by a generator on the cosets
fgens, # generators of F
gens2, # the above abstract gens and their inverses
ggens, # concrete generators of G
ngens, # number of generators of G
ngens2, # twice the above number
order, # order of a generator
actcos, # part 1 of Schreier vector of G by H
actgen, # part 2 of Schreier vector of G by H
tab0, # auxiliary table in parallel to table <table>
cosRange, # range from 1 to index (= number of cosets)
genRange, # range of the odd integers from 1 to 2*ngens-1
geners, # order in which the table cols are worked off
next, # local coset number
left1, # part 1 of Schreier vector of H by trivial group
right1, # part 2 of Schreier vector of H by trivial group
n, # number of subgroup element
words2, # words for the generators of H and their inverses
h; # subgroup element
# get the arguments, and initialize some local variables
G := arg[1];
cosets := arg[2];
F := arg[3];
if Length( arg ) = 4 then
ggens := arg[4];
else
ggens := GeneratorsOfGroup( G );
fi;
ngens := Length( ggens );
ngens2 := ngens * 2;
if cosets[1] in G then
ng1 := PositionSorted( cosets, cosets[1]^0 );
else
ng1 := 1;
fi;
index := Length( cosets );
tab0 := [];
table := [];
subgroup := [];
cosRange := [ 1 .. index ];
genRange := List( [ 1 .. ngens ], i -> 2*i-1 );
if Length( arg ) < 5 then
stage := 1;
rels := [];
else
stage := 2;
words := arg[4];
H := arg[5];
helts := AsSSortedList( H );
nh1 := PositionSorted( helts, helts[1]^0 );
R1 := arg[6];
FP1 := R1.fpGroup;
F1 := FreeGroupOfFpGroup( FP1 );
fhgens := GeneratorsOfGroup( F1 );
hrels := RelatorsOfFpGroup( FP1 );
# initialize the relators of F2 by the rewritten relators of F1
rels := List( hrels, rel -> MappedWord( rel, fhgens, words ) );
# get the Schreier vector for the elements of H
left1 := R1.actcos;
right1 := R1.actgen;
# extend the list of the generators of F1 as words in the abstract
# generators of F2 by their inverses
words2 := [];
for i in [ 1 .. Length( words ) ] do
Add( words2, words[i] );
Add( words2, words[i]^-1 );
od;
fi;
fgens := GeneratorsOfGroup( F );
gens2 := [];
idword := One( fgens[1] );
# get the permutations induced by the generators of G on the given
# cosets
perms := List( ggens, gen -> Permutation( gen, cosets, OnRight ) );
# get a coset table from the permutations,
# and introduce appropriate relators for the involutory generators
for i in [ 1 .. ngens ] do
Add( gens2, fgens[i] );
Add( gens2, fgens[i]^-1 );
perm := perms[i];
col := OnTuples( cosRange, perm );
gen := ListWithIdenticalEntries( index, 0 );
Add( tab0, col );
Add( table, gen );
order := Order( ggens[i] );
if order = 2 then
Add( rels, fgens[i]^2 );
else
col := OnTuples( cosRange, perm^-1 );
gen := ListWithIdenticalEntries( index, 0 );
fi;
Add( tab0, col );
Add( table, gen );
od;
# define an appropriate ordering of the cosets,
# enter the definitions in the table,
# and construct the Schreier vector,
cosets := ListWithIdenticalEntries( index, 0 );
actcos := ListWithIdenticalEntries( index, 0 );
actgen := ListWithIdenticalEntries( index, 0 );
cosets[1] := ng1;
actcos[ng1] := ng1;
j := 1;
i := 0;
while i < index do
i := i + 1;
c := cosets[i];
g := 0;
while g < ngens2 do
g := g + 1;
next := tab0[g][c];
if next > 0 and actcos[next] = 0 then
g1 := g + 2*(g mod 2) - 1;
table[g][c] := next;
table[g1][next] := c;
tab0[g][c] := 0;
tab0[g1][next] := 0;
actcos[next] := c;
actgen[next] := g;
j := j + 1;
cosets[j] := next;
if j = index then
g := ngens2;
i := index;
fi;
fi;
od;
od;
# compute the representatives for the relators
rels := RelatorRepresentatives( rels );
# make the structure that is passed to `MakeConsequences'
app := ListWithIdenticalEntries( 12, 0 );
# note: we have, in particular, set app[12] to zero as we do not want
# minimal gaps to be marked in the coset table
app[1] := table;
app[5] := subgroup;
# in case stage = 2 we have to handle subgroup relators
if stage = 2 then
# make the rows for the relators and distribute over relsGen
relsGen := RelsSortedByStartGen( fgens, rels, table, true );
app[4] := relsGen;
# start the enumeration and find all consequences
for g in genRange do
gen0 := tab0[g];
for c in cosRange do
if gen0[c] = 0 then
app[10] := g;
app[11] := c;
n := MakeConsequences( app );
fi;
od;
od;
fi;
# run through the coset table and find the next undefined entry
geners := [ 1 .. ngens2 ];
for i in cosets do
for j in geners do
if table[j][i] <= 0 then
# define the entry appropriately,
g := j + 2*(j mod 2) - 1;
c := tab0[j][i];
table[j][i] := c;
table[g][c] := i;
tab0[j][i] := 0;
tab0[g][c] := 0;
# construct the associated relator
rel := idword;
while c <> ng1 do
g := actgen[c];
rel := rel * gens2[g]^-1;
c := actcos[c];
od;
rel := rel^-1 * gens2[j]^-1;
c := i;
while c <> ng1 do
g := actgen[c];
rel := rel * gens2[g]^-1;
c := actcos[c];
od;
if stage = 2 then
h := MappedWord( rel, fgens, ggens );
n := PositionSorted( helts, h );
while n <> nh1 do
g := right1[n];
rel := rel * words2[g]^-1;
n := left1[n];
od;
fi;
# compute its representative,
# and add it to the set of relators
rels1 := RelatorRepresentatives( [ rel ] );
if Length( rels1 ) > 0 then
rel := rels1[1];
if not rel in rels then
Add( rels, rel );
fi;
fi;
# make the rows for the relators and distribute over relsGen
relsGen := RelsSortedByStartGen( fgens, rels, table, true );
app[4] := relsGen;
# mark all already defined entries of table by a zero in
# tab0
for g in genRange do
gen := table[g];
gen0 := tab0[g];
inv0 := tab0[g+1];
for c in cosRange do
if gen[c] > 0 then
gen0[c] := 0;
inv0[gen[c]] := 0;
fi;
od;
od;
# continue the enumeration and find all consequences
for g in genRange do
gen0 := tab0[g];
for c in cosRange do
if gen0[c] = 0 then
app[10] := g;
app[11] := c;
n := MakeConsequences( app );
fi;
od;
od;
fi;
od;
od;
# construct a finitely presented group from the relations,
# add the Schreier vector to its components, and return it
R2 := rec( );
R2.fpGroup := F / rels;
R2.actcos := actcos;
R2.actgen := actgen;
return R2;
end );
#############################################################################
##
#M RemoveRelator( <Tietze record>, <n> ) . . . . . . . . . remove a relator
#M from a presentation
##
## removes the <n>-th relator from the given Tietze presentation.
##
InstallGlobalFunction( RemoveRelator, function ( T, n )
local invs, leng, lengths, num, numgens1, numrels, rels, tietze;
# check the first argument to be a Tietze record.
TzCheckRecord( T );
# get some local variables.
tietze := T!.tietze;
rels := tietze[TZ_RELATORS];
numrels := tietze[TZ_NUMRELS];
lengths := tietze[TZ_LENGTHS];
invs := tietze[TZ_INVERSES];
numgens1 := tietze[TZ_NUMGENS] + 1;
# check the second argument to be in range.
if ( n < 1 or n > numrels ) then
Error( "relator number out of range" );
fi;
# print a message.
if TzOptions(T).printLevel >= 3 then
Print( "#I removing the ", n, "th relator\n" );
fi;
# check if the nth relator has defined an involution.
leng := lengths[n];
if leng = 2 and rels[n][1] = rels[n][2] then
num := rels[n][1];
if num < 0 then num := -num; fi;
if invs[numgens1+num] = num then invs[numgens1+num] := -num; fi;
fi;
# remove the nth relator, and make the Tietze lists consistent.
rels[n] := [ ];
lengths[n] := 0;
tietze[TZ_TOTAL] := tietze[TZ_TOTAL] - leng;
TzSort( T );
if TzOptions(T).printLevel >= 2 then TzPrintStatus( T, true ); fi;
end );
#############################################################################
##
#M SimplifiedFpGroup( <FpGroup> ) . . . . . . . . . sinplify the FpGroup by
#M Tietze transformations
##
## `SimplifiedFpGroup' returns a group isomorphic to the given one with a
## presentation which has been tried to simplify via Tietze transformations.
##
InstallGlobalFunction( SimplifiedFpGroup, function ( G )
local H, T;
# check the given argument to be a finitely presented group.
if not ( IsSubgroupFpGroup( G ) and IsGroupOfFamily( G ) ) then
Error( "argument must be a finitely presented group" );
fi;
# convert the given group presentation to a Tietze presentation.
T := PresentationFpGroup( G, 0 );
# perform Tietze transformations.
TzGo( T );
# reconvert the Tietze presentation to a group presentation.
H := FpGroupPresentation( T );
# return the resulting group record.
return H;
end );
#############################################################################
##
#M AbstractWordTietzeWord( <word>, <fgens> ) . . . . convert a Tietze word
#M to an abstract word
##
InstallGlobalFunction( AbstractWordTietzeWord,
function(w,gens)
return AssocWordByLetterRep(FamilyObj(gens[1]),w,gens);
end);
#############################################################################
##
#M TzCheckRecord( <Tietze record> ) . . . . check Tietze record components
##
## `TzCheckRecord' checks some components of the given Tietze record to be
## consistent.
##
InstallGlobalFunction( TzCheckRecord, function ( T )
local tietze;
# check the given argument to be a Presentation.
if not IsPresentation( T ) then
Error( "argument must be a Presentation" );
fi;
# check the generator lists to be consistent.
tietze := T!.tietze;
if not ( IsIdenticalObj( T!.generators, tietze[TZ_GENERATORS] ) ) or
Length( tietze[TZ_GENERATORS] ) <> tietze[TZ_NUMGENS] then
Error( "inconsistent generator lists" );
fi;
# check the inverses list.
if Length( tietze[TZ_INVERSES] ) <> 2 * tietze[TZ_NUMGENS] + 1 then
Error( "inconsistent generator inverses" );
fi;
# check the relator list.
if Length( tietze[TZ_RELATORS] ) <> tietze[TZ_NUMRELS] or
Length( tietze[TZ_LENGTHS] ) <> tietze[TZ_NUMRELS] or
Length( tietze[TZ_FLAGS] ) <> tietze[TZ_NUMRELS] then
Error( "inconsistent relators" );
fi;
end );
#############################################################################
##
#M TzEliminate( <Tietze record> ) . . . . . . . . . . eliminates a generator
#M TzEliminate( <Tietze record>, <gen> ) . . . . . eliminates generator gen
#M TzEliminate( <Tietze record>, <n> ) . . . . . . . eliminates n generators
##
## If a generator has been specified, then `TzEliminate' eliminates it if
## possible, i. e. if it can be isolated in some appropriate relator. If no
## generator has been specified , then `TzEliminate' eliminates some
## appropriate generator if possible and if the resulting total length of
## the relators will not exceed the parameter TzOptions(T).lengthLimit or
## the value 2^31-1.
##
InstallGlobalFunction( TzEliminate, function ( arg )
local eliminations, gennum, n, numgens, numgenslimit, T, tietze;
# check the number of arguments.
if Length( arg ) > 2 or Length( arg ) < 1 then
Error( "usage: TzEliminate( <Tietze record> [, <generator> ] )" );
fi;
# check the first argument to be a Tietze record.
T := arg[1];
TzCheckRecord( T );
TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
tietze := T!.tietze;
# get the arguments.
gennum := 0;
n := 1;
if Length( arg ) = 2 then
if IsInt( arg[2] ) then
n := arg[2];
else
gennum := Position( tietze[TZ_GENERATORS], arg[2] );
if gennum = fail then Error(
"usage: TzEliminate( <Tietze record> [, <generator> ] )" );
fi;
fi;
fi;
if n = 1 then
# call the appropriate routine to eliminate one generator.
if gennum = 0 then TzEliminateGen1( T );
else TzEliminateGen( T, gennum ); fi;
if tietze[TZ_NUMREDUNDS] > 0 then TzRemoveGenerators( T ); fi;
# handle relators of length 1 or 2.
TzHandleLength1Or2Relators( T );
# sort the relators and print the status line.
TzSort( T );
if TzOptions(T).printLevel >= 1 then TzPrintStatus( T, true ); fi;
else
# eliminate n generators.
numgens := tietze[TZ_NUMGENS];
eliminations := TzOptions(T).eliminationsLimit;
numgenslimit := TzOptions(T).generatorsLimit;
TzOptions(T).eliminationsLimit := n;
TzOptions(T).generatorsLimit := numgens - n;
TzEliminateGens( T );
TzOptions(T).eliminationsLimit := eliminations;
TzOptions(T).generatorsLimit := numgenslimit;
fi;
end );
#############################################################################
##
#M TzEliminateFromTree( <Tietze record> ) . . eliminates the last generator
#M from the tree
##
## `TzEliminateFromTree' eliminates the last Tietze generator. If that
## generator cannot be isolated in any Tietze relator, then it's definition
## is taken from the tree and added as an additional Tietze relator,
## extending the set of Tietze generators appropriately, if necessary.
## However, the elimination will not be performed if the resulting total
## length of the relators cannot be guaranteed to not exceed the parameter
## TzOptions(T).lengthLimit or the value 2^31-1.
##
InstallGlobalFunction( TzEliminateFromTree, function ( T )
local exp, factor, flags, gen, gens, i, invnum, invs, leng, length,
lengths, num, numgens, numrels, occRelNum, occur, occTotal, pair,
pair1, pointers, pos, primary, ptr, rel, rels, space,
spacelimit, tietze, tree, treelength, treeNums, trlast, word;
# check the first argument to be a Presentation.
if not IsPresentation( T ) then
Error( "argument must be a Presentation" );
fi;
TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
# get some local variables.
tietze := T!.tietze;
gens := tietze[TZ_GENERATORS];
numgens := tietze[TZ_NUMGENS];
invs := tietze[TZ_INVERSES];
rels := tietze[TZ_RELATORS];
numrels := tietze[TZ_NUMRELS];
flags := tietze[TZ_FLAGS];
lengths := tietze[TZ_LENGTHS];
# get some more local variables.
tree := T!.tree;
treelength := tree[TR_TREELENGTH];
primary := tree[TR_PRIMARY];
trlast := tree[TR_TREELAST];
treeNums := tree[TR_TREENUMS];
pointers := tree[TR_TREEPOINTERS];
spacelimit := Minimum( TzOptions(T).lengthLimit, 2^31 - 1 );
tietze[TZ_MODIFIED] := false;
occTotal := 0;
# get the number of the last occurring generator.
while occTotal = 0 do
# get the number of the last generator.
while trlast > primary and pointers[trlast] <= treelength do
trlast := trlast - 1;
od;
tree[TR_TREELAST] := trlast;
if trlast <= primary then return; fi;
# determine the number of occurrences of the last generator.
num := pointers[trlast] - treelength;
occur := TzOccurrences( tietze, num );
occTotal := occur[1][1];
# if the last generator does not occur in the relators, mark it to
# be redundant.
if occTotal = 0 then
invs[numgens+1-num] := 0;
tietze[TZ_NUMREDUNDS] := tietze[TZ_NUMREDUNDS] + 1;
trlast := trlast - 1;
fi;
od;
if occur[3][1] > 1 then
# print a message.
if TzOptions(T).printLevel >= 2 then
Print( "#I adding relator from tree position ", trlast, "\n" );
fi;
# get the defining word from the tree.
pair := [ 0, 0 ];
for i in [ 1 .. 2 ] do
exp := 1;
ptr := tree[i][trlast];
if ptr < 0 then
exp := - exp;
ptr := - ptr;
fi;
if pointers[ptr] = ptr then
# add this tree generator to the list of generators.
gen := TzNewGenerator( T );
numgens := tietze[TZ_NUMGENS];
gens := tietze[TZ_GENERATORS];
invs := tietze[TZ_INVERSES];
treeNums[numgens] := ptr;
pointers[ptr] := treelength + numgens;
if TzOptions(T).printLevel >= 2 then
Print( "#I adding generator ", gens[numgens],
" from tree position ", ptr, "\n" );
fi;
else
# find this tree generator in the list of generators.
while ptr > 0 and pointers[ptr] <= treelength do
ptr := pointers[ptr];
if ptr < 0 then
exp := - exp;
ptr := - ptr;
fi;
od;
fi;
# now get the generator number of the current factor.
if ptr = 0 then
factor := 0;
else
factor := pointers[ptr] - treelength;
if treeNums[factor] < 0 then exp := - exp; fi;
if exp < 0 then factor := invs[numgens+1+factor]; fi;
fi;
pair[i] := factor;
od;
# invert the defining word, if necessary.
if treeNums[num] < 0 then
pair1 := pair[1];
pair[1] := invs[numgens+1+pair[2]];
pair[2] := invs[numgens+1+pair1];
fi;
# add the corresponding relator to the set of relators.
invnum := invs[numgens+1+num];
if pair[1] = invs[numgens+1+pair[2]] then
rel := [ invnum ]; leng := 1;
elif pair[1] = 0 then
rel := [ invnum, pair[2] ]; leng := 2;
elif pair[2] = 0 then
rel := [ invnum, pair[1] ]; leng := 2;
else
rel := [ invnum, pair[1], pair[2] ]; leng := 3;
fi;
numrels := numrels + 1;
rels[numrels] := rel;
lengths[numrels] := leng;
flags[numrels] := 1;
tietze[TZ_NUMRELS] := numrels;
tietze[TZ_TOTAL] := tietze[TZ_TOTAL] + leng;
tietze[TZ_MODIFIED] := true;
tietze[TZ_OCCUR]:=false;
# if the new relator has length at most 2, handle it by calling the
# appropriate subroutine, and then return.
if leng <= 2 then
TzHandleLength1Or2Relators( T );
trlast := trlast - 1;
while trlast > primary and pointers[trlast] <= treelength do
trlast := trlast - 1;
od;
tree[TR_TREELAST] := trlast;
return;
fi;
# else update the number of occurrences of the last generator, and
# continue.
occTotal := occTotal + 1;
occur[1][1] := occTotal;
occur[2][1] := numrels;
occur[3][1] := 1;
fi;
occRelNum := occur[2][1];
length := lengths[occRelNum];
space := (occTotal - 1) * (length - 1) - length;
if tietze[TZ_TOTAL] + space <= spacelimit then
# find the substituting word.
gen := num;
rel := rels[occRelNum];
length := lengths[occRelNum];
pos := Position( rel, gen );
if pos = fail then
gen := -gen;
pos := Position( rel, gen );
fi;
word := Concatenation( rel{ [pos+1..length] }, rel{ [1..pos-1] } );
# replace all occurrences of gen by word^-1.
if TzOptions(T).printLevel >= 2 then
Print( "#I eliminating ", gens[num], " = " );
if gen > 0 then
Print( AbstractWordTietzeWord( word, gens )^-1, "\n");
else
Print( AbstractWordTietzeWord( word, gens ), "\n" );
fi;
fi;
TzSubstituteGen( tietze, -gen, word );
# mark gen to be redundant.
invs[numgens+1-num] := 0;
tietze[TZ_NUMREDUNDS] := tietze[TZ_NUMREDUNDS] + 1;
tietze[TZ_MODIFIED] := true;
tietze[TZ_OCCUR]:=false;
trlast := trlast - 1;
while trlast > primary and pointers[trlast] <= treelength do
trlast := trlast - 1;
od;
tree[TR_TREELAST] := trlast;
elif TzOptions(T).printLevel >= 1 then
Print( "#I replacement of generators stopped by length limit\n" );
fi;
end );
#############################################################################
##
#M TzEliminateGen( <Tietze record>, <n> ) . . . eliminates the nth generator
##
## `TzEliminateGen' eliminates the Tietze generator tietze[TZ_GENERATORS][n]
## if possible, i. e. if that generator can be isolated in some appropriate
## Tietze relator. However, the elimination will not be performed if the
## resulting total length of the relators cannot be guaranteed to not exceed
## the parameter TzOptions(T).lengthLimit or the value 2^31-1.
##
InstallGlobalFunction( TzEliminateGen, function ( T, num )
local gen, gens, invs, length, lengths, numgens, numrels, occRelNum,
occur, occTotal, pos, rel, rels, space, spacelimit, tietze, word;
# check the first argument to be a Presentation.
if not IsPresentation( T ) then
Error( "argument must be a Presentation" );
fi;
TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
tietze := T!.tietze;
spacelimit := Minimum( TzOptions(T).lengthLimit, 2^31 - 1 );
tietze[TZ_MODIFIED] := false;
gens := tietze[TZ_GENERATORS];
numgens := tietze[TZ_NUMGENS];
invs := tietze[TZ_INVERSES];
rels := tietze[TZ_RELATORS];
numrels := tietze[TZ_NUMRELS];
lengths := tietze[TZ_LENGTHS];
# check the second argument to be a generator number in range.
if not IsInt( num ) or num <= 0 or num > numgens then Error(
"TzEliminateGen: second argument is not a valid generator number" );
fi;
# determine the number of occurrences of the given generator.
occur := TzOccurrences( tietze, num );
occTotal := occur[1][1];
if occTotal > 0 and occur[3][1] = 1 then
occRelNum := occur[2][1];
length := lengths[occRelNum];
space := (occTotal - 1) * (length - 1) - length;
if tietze[TZ_TOTAL] + space <= spacelimit then
# if there is a tree of generators and if the generator to be
# deleted is not the last generator, then delete the tree.
if num < numgens and IsBound( T!.tree ) then
Unbind( T!.tree );
fi;
# find the substituting word.
gen := num;
rel := rels[occRelNum];
length := lengths[occRelNum];
pos := Position( rel, gen );
if pos = fail then
gen := -gen;
pos := Position( rel, gen );
fi;
word := Concatenation( rel{ [pos+1..length] },
rel{ [1..pos-1] } );
# replace all occurrences of gen by word^-1.
if TzOptions(T).printLevel >= 2 then
Print( "#I eliminating ", gens[num], " = " );
if gen > 0 then
Print( AbstractWordTietzeWord( word, gens )^-1, "\n" );
else
Print( AbstractWordTietzeWord( word, gens ), "\n" );
fi;
fi;
TzSubstituteGen( tietze, -gen, word );
# update the generator images, if available.
if IsBound( T!.imagesOldGens ) then
if gen > 0 then word := -1 * Reversed( word ); fi;
TzUpdateGeneratorImages( T, num, word );
fi;
# mark gen to be redundant.
invs[numgens+1-num] := 0;
tietze[TZ_NUMREDUNDS] := tietze[TZ_NUMREDUNDS] + 1;
tietze[TZ_MODIFIED] := true;
tietze[TZ_OCCUR]:=false;
elif TzOptions(T).printLevel >= 1 then
Print( "#I replacement of generators stopped by length limit\n" );
fi;
fi;
end );
#############################################################################
##
#M TzEliminateGen1( <Tietze record> ) . . . . . . . eliminates a generator
##
## `TzEliminateGen1' tries to eliminate a Tietze generator: If there are
## Tietze generators which occur just once in certain Tietze relators, then
## one of them is chosen for which the product of the length of its minimal
## defining word and the number of its occurrences is minimal. However,
## the elimination will not be performed if the resulting total length of
## the relators cannot be guaranteed to not exceed the parameter
## TzOptions(T).lengthLimit or the value 2^31-1.
##
InstallGlobalFunction( TzEliminateGen1, function ( T )
local gen, gens, i,j, invs, ispace, length, lengths, modified, num,
numgens, numrels, occur, occMultiplicities, occRelNum, occRelNums,
occTotals, pos, protected, rel, rels, space, spacelimit, tietze,
total, word,k,max,oldlen,bestlen,stoplen,oldrels,changed,olen;
# check the given argument to be a Presentation.
if not IsPresentation( T ) then
Error( "argument must be a Presentation" );
fi;
TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
tietze := T!.tietze;
protected := TzOptions(T).protected;
spacelimit := Minimum( TzOptions(T).lengthLimit, 2^31 - 1 );
gens := tietze[TZ_GENERATORS];
numgens := tietze[TZ_NUMGENS];
invs := tietze[TZ_INVERSES];
rels := tietze[TZ_RELATORS];
oldrels:=ShallowCopy(rels);
#oldrels1:=List(rels,ShallowCopy);
numrels := tietze[TZ_NUMRELS];
lengths := tietze[TZ_LENGTHS];
if not IsList(tietze[TZ_OCCUR]) then
occur := TzOccurrences( tietze );
else
occur :=tietze[TZ_OCCUR];
#Print("used\n");
fi;
#OLD_OCCUR:=List(occur,ShallowCopy);
occTotals := occur[1];
occRelNums := occur[2];
occMultiplicities := occur[3];
oldlen:=ShallowCopy(tietze[TZ_LENGTHS]);
#NEW_OCCUR:=TzOccurrences(tietze);
#if occTotals<>false and occTotals <> NEW_OCCUR[1] then
#Error("cla1");
#elif occTotals<>false and occRelNums <> NEW_OCCUR[2] then
#Error("cla2");
#elif occTotals<>false and occMultiplicities <> NEW_OCCUR[3] then
# Error("cla3"); fi;
modified := false;
num := 0;
space := 0;
for i in [ protected + 1 .. numgens ] do
if IsBound( occMultiplicities[i] ) and occMultiplicities[i] = 1 then
total := occTotals[i];
length := lengths[occRelNums[i]];
ispace := (total - 1) * (length - 1) - length;
if num = 0 or ispace <= space then
num := i;
space := ispace;
fi;
fi;
od;
if num > 0 then
if tietze[TZ_TOTAL] + space <= spacelimit then
# if there is a tree of generators and if the generator to be deleted
# is not the last generator, then delete the tree.
if num < numgens and IsBound( T!.tree ) then
Unbind( T!.tree );
fi;
# find the substituting word.
gen := num;
occRelNum := occRelNums[num];
rel := rels[occRelNum];
length := lengths[occRelNum];
pos := Position( rel, gen );
if pos = fail then
gen := -gen;
pos := Position( rel, gen );
fi;
word := Concatenation( rel{ [pos+1..length] }, rel{ [1..pos-1] } );
# replace all occurrences of gen by word^-1.
if TzOptions(T).printLevel >= 2 then
Print( "#I eliminating ", gens[num], " = " );
if gen > 0 then
Print( AbstractWordTietzeWord( word, gens )^-1, "\n" );
else
Print( AbstractWordTietzeWord( word, gens ), "\n" );
fi;
fi;
changed:=TzSubstituteGen( tietze, -gen, word );
#if Length(changed)>100 then Error("longchanged!!"); fi;
#if oldrels1<>oldrels then Error("differ!"); fi;
# update the generator images, if available.
if IsBound( T!.imagesOldGens ) then
if gen > 0 then word := -1 * Reversed( word ); fi;
TzUpdateGeneratorImages( T, num, word );
fi;
# mark gen to be redundant.
invs[numgens+1-num] := 0;
tietze[TZ_NUMREDUNDS] := tietze[TZ_NUMREDUNDS] + 1;
#update occurrence numbers
gen:=AbsInt(gen);
Unbind(occRelNums[num]);
Unbind(occMultiplicities[num]);
occTotals[gen]:=0;
# now check whether the data for the other generators is still OK
# and correct if necessary
rels:=tietze[TZ_RELATORS];
for i in [1..numgens] do
if IsBound(occRelNums[i]) then
# verify that the relator we store for the shortest
#length is still OK.
num:=occMultiplicities[i];
olen:=oldlen[occRelNums[i]];
#What can happen is two things:
#a) A changed relator now is shorter and better. If so we take it
#b) The best relator got changed and now is not best any more.
# first check the changed relators, whether they give any
# improvement
for j in changed do
total:=0;
for k in rels[j] do
if AbsInt(k)=i then total:=total+1;fi;
od;
#if total>0 then Print(j,":",i,":",total,"\n");fi;
if total>0 and
(total<num or
(total=num and Length(rels[j])<olen) or
(total=num and Length(rels[j])=olen and j<occRelNums[i])
) then
# found a better one
pos:=j;
num:=total;
olen:=Length(rels[j]);
occMultiplicities[i]:=false; # force change
fi;
#update occurrence numbers
# because of cancellation, we need to check with the changed
# relators vs. their old selves
for k in oldrels[j] do
if AbsInt(k)=i then total:=total-1;fi;
od;
occTotals[i]:=occTotals[i]+total;
od;
if num<>occMultiplicities[i] or
olen<>oldlen[occRelNums[i]] then
occMultiplicities[i]:=num;
occRelNums[i]:=pos;
else
# the changed relators did not give any improvement. We thus
# need to check whether the best stored got worse
if occRelNums[i] in changed then
total:=0;
for k in rels[occRelNums[i]] do
if AbsInt(k)=i then total:=total+1;fi;
od;
if total=0 or total>num or
Length(rels[occRelNums[i]])>oldlen[occRelNums[i]] then
#Print("fixin' ",i,"\n");
# the relator changed and might not be good anymore. We
# need to find another one.
#TODO: Be more clever in checking the later relators first
num:=infinity;
olen:=infinity;
pos:=fail;
for j in [1..Length(rels)] do
total:=0;
for k in rels[j] do
if AbsInt(k)=i then total:=total+1;fi;
od;
if total>0 and
(total<num or (total=num and Length(rels[j])<olen)) then
# found a better one
pos:=j;
num:=total;
olen:=Length(rels[j]);
fi;
od;
#Print("fixing ",i," from ",num,"\n");
if pos=fail then
Unbind(occRelNums[i]);
Unbind(occMultiplicities[i]);
else
occRelNums[i]:=pos;
occMultiplicities[i]:=num;
fi;
fi;
fi;
fi;
fi;
od;
modified := true;
elif TzOptions(T).printLevel >= 1 then
Print( "#I replacement of generators stopped by length limit\n" );
fi;
#NEW_OCCUR:=TzOccurrences(tietze);
#if occTotals<>false and occTotals <> NEW_OCCUR[1] then
#Error("bla1");
# elif occTotals<>false and occRelNums <> NEW_OCCUR[2] then
#Error("bla2");
# elif occTotals<>false and occMultiplicities <> NEW_OCCUR[3] then
# Error("bla3"); fi;
fi;
tietze[TZ_MODIFIED] := modified;
if 0 in occTotals then
# code might not work if generators vanish.
tietze[TZ_OCCUR]:=false;
else
tietze[TZ_OCCUR]:=[occTotals,occRelNums,occMultiplicities];
fi;
#if tietze[TZ_OCCUR]<>TzOccurrences(tietze) then Error("occur!"); fi;
end );
#############################################################################
##
#M TzEliminateGens( <Tietze record> [, <decode>] ) . Eliminates generators
##
## `TzEliminateGens' repeatedly eliminates generators from the presentation
## of the given group until at least one of the following conditions is
## violated:
##
## (1) The current number of generators is greater than the parameter
## TzOptions(T).generatorsLimit.
## (2) The number of generators eliminated so far is less than
## the parameter TzOptions(T).eliminationsLimit.
## (3) The total length of the relators has not yet grown to a percentage
## greater than the parameter TzOptions(T).expandLimit.
## (4) The next elimination will not extend the total length to a value
## greater than the parameter TzOptions(T).lengthLimit or the value
## 2^31-1.
##
## If a second argument has been specified, then it is assumed that we
## are in the process of decoding a tree.
##
## If not, then the function will not eliminate any protected generators.
##
InstallGlobalFunction( TzEliminateGens, function ( arg )
local bound, decode, maxnum, modified, num, redundantsLimit, T, tietze;
# check the number of arguments.
if Length( arg ) > 2 or Length( arg ) < 1 then
Error( "usage: TzEliminateGens( <Tietze record> [, <decode> ] )" );
fi;
# check the first argument to be a Tietze record.
T := arg[1];
TzCheckRecord( T );
TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
if TzOptions(T).printLevel >= 3 then
Print( "#I eliminating generators\n" );
fi;
# get the second argument.
decode := Length( arg ) = 2;
tietze := T!.tietze;
redundantsLimit := 5;
maxnum := TzOptions(T).eliminationsLimit;
bound := tietze[TZ_TOTAL] * (TzOptions(T).expandLimit / 100);
modified := false;
tietze[TZ_MODIFIED] := true;
num := 0;
while tietze[TZ_MODIFIED] and num < maxnum and
tietze[TZ_TOTAL] <= bound and
tietze[TZ_NUMGENS] - tietze[TZ_NUMREDUNDS] > TzOptions(T).generatorsLimit do
if decode then
TzEliminateFromTree( T );
else
TzEliminateGen1( T );
fi;
if tietze[TZ_NUMREDUNDS] = redundantsLimit then
TzRemoveGenerators( T );
fi;
modified := modified or tietze[TZ_MODIFIED];
num := num + 1;
od;
tietze[TZ_MODIFIED] := modified;
if tietze[TZ_NUMREDUNDS] > 0 then TzRemoveGenerators( T ); fi;
if modified then
# handle relators of length 1 or 2.
TzHandleLength1Or2Relators( T );
# sort the relators and print the status line.
TzSort( T );
if TzOptions(T).printLevel >= 2 then TzPrintStatus( T, true ); fi;
fi;
end );
#############################################################################
##
#M TzFindCyclicJoins( <Tietze record> ) . . . . . . handle cyclic subgroups
##
## `TzFindCyclicJoins' searches for power and commutator relators in order
## to find pairs of generators which generate a common cyclic subgroup.
## It uses these pairs to introduce new relators, but it does not introduce
## any new generators as is done by `TzSubstituteCyclicJoins'.
##
InstallGlobalFunction( TzFindCyclicJoins, function ( T )
local e, exp, exponents, fac, flags, gen, gens, ggt, i, invs, j, k, l,
length, lengths, n, newstart, next, num, numgens, numrels, prev,
powers, rel, rels, tietze, word;
if TzOptions(T).printLevel >= 3 then
Print( "#I searching for cyclic joins\n" );
fi;
# check the given argument to be a Tietze record.
TzCheckRecord( T );
TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
tietze := T!.tietze;
tietze[TZ_MODIFIED] := false;
# start the routine and repeat it whenever a generator has been
# eliminated.
newstart := true;
while newstart do
# try to find exponents for the generators.
exponents := TzGeneratorExponents( T );
if Sum( exponents ) = 0 then return; fi;
# initialize some local variables.
newstart := false;
gens := tietze[TZ_GENERATORS];
numgens := tietze[TZ_NUMGENS];
rels := tietze[TZ_RELATORS];
numrels := tietze[TZ_NUMRELS];
lengths := tietze[TZ_LENGTHS];
invs := tietze[TZ_INVERSES];
flags := tietze[TZ_FLAGS];
# now work off all commutator relators of length 4.
i := 0;
while i < numrels do
# find the next commutator.
i := i + 1;
rel := rels[i];
if lengths[i] = 4 and rel[1] = invs[numgens+1+rel[3]] and
rel[2] = invs[numgens+1+rel[4]] then
# There is a commutator relator of the form [a,b]. Check if
# there are also power relators of the form a^m or b^n.
num := [ AbsInt( rel[1] ), AbsInt( rel[2] ) ];
exp := [ exponents[num[1]], exponents[num[2]] ];
fac := [ 0, 0 ];
e := [ 0, 0 ];
# If there is at least one relator of the form a^m or b^n, then
# search for a relator of the form a^s * b^t (modulo [a,b])
# with s prime to m or t prime to n, respectively. For, if s is
# prime to m, then we can use the Euclidean algorithm to
# express a as a power of b and then eliminate a.
if exp[1] > 0 or exp[2] > 0 then
j := 0;
while j < numrels do
# get the next relator.
j := j + 1;
if lengths[j] > 0 and j <> i then
rel := rels[j];
# check whether rel is a word in a and b.
length := lengths[j];
e[1] := 0;
e[2] := 0;
powers := 0;
prev := 0;
l := 0;
while l < length do
l := l + 1;
next := rel[l];
if next <> prev then
powers := powers + 1;
prev := next;
fi;
if next = num[1] then e[1] := e[1] + 1;
elif next = num[2] then e[2] := e[2] + 1;
elif next = -num[1] then e[1] := e[1] - 1;
elif next = -num[2] then e[2] := e[2] - 1;
else l := length + 1;
fi;
od;
if l = length and powers > 1 then
# reduce exponents, if possible.
for k in [ 1, 2 ] do
fac[k] := num[k];
if exp[k] > 0 then
e[k] := e[k] mod exp[k];
if e[k] > exp[k]/2 then
e[k] := exp[k] - e[k];
fac[k] := - fac[k];
fi;
elif e[k] < 0 then
e[k] := - e[k];
fac[k] := - fac[k];
fi;
if fac[k] < 0 then
fac[k] := invs[numgens+1-fac[k]];
fi;
od;
# now the e[k] are non-negative.
for k in [ 1, 2 ] do
if e[k] > 0 and e[3-k] = 0 then
exp[k] := GcdInt( e[k], exp[k] );
if exp[k] <> exponents[num[k]] then
exponents[num[k]] := exp[k];
e[k] := exp[k];
fi;
fi;
od;
# reduce the current relator, if possible.
if e[1] + e[2] < length or powers > 2 then
rel := [ ];
if e[1] > 0 then rel := Concatenation(
rel, ListWithIdenticalEntries( e[1], fac[1] ) );
fi;
if e[2] > 0 then rel := Concatenation(
rel, ListWithIdenticalEntries( e[2], fac[2] ) );
fi;
rels[j] := rel;
lengths[j] := e[1] + e[2];
tietze[TZ_TOTAL] := tietze[TZ_TOTAL] - length
+ lengths[j];
flags[j] := 1;
tietze[TZ_MODIFIED] := true;
if TzOptions(T).printLevel >= 3 then Print(
"#I rels[",j,"] reduced to ",rels[j],"\n" );
fi;
fi;
# try to find a generator that can be deleted.
if e[1] = 1 then n := num[1];
elif e[2] = 1 then n := num[2];
else n := 0;
for k in [ 1, 2 ] do
if n = 0 and e[k] > 1 and
GcdInt( e[k], exp[k] ) = 1 then
ggt := Gcdex( e[k], exp[k] );
gen := [gens[num[1]], gens[num[2]]];
if fac[1] < 0 then gen[1] := gen[1]^-1; fi;
if fac[2] < 0 then gen[2] := gen[2]^-1; fi;
word := gen[k] * gen[3-k]^(e[3-k]*ggt.coeff1);
AddRelator( T, word );
numrels := tietze[TZ_NUMRELS];
n := num[k];
fi;
od;
fi;
# eliminate a generator if it is possible and allowed.
if n <> 0 and TzOptions(T).generatorsLimit < numgens then
TzEliminate( T );
tietze[TZ_MODIFIED] := true;
j := numrels;
i := numrels;
if tietze[TZ_NUMGENS] < numgens then
newstart := true;
fi;
fi;
fi;
fi;
od;
fi;
fi;
od;
od;
if tietze[TZ_MODIFIED] then
tietze[TZ_OCCUR]:=false;
# handle relators of length 1 or 2.
TzHandleLength1Or2Relators( T );
# sort the relators and print the status line.
TzSort( T );
if TzOptions(T).printLevel >= 1 then TzPrintStatus( T, true ); fi;
fi;
end );
#############################################################################
##
#M TzGeneratorExponents( <Tietze record> ) . . . list of generator exponents
##
## `TzGeneratorExponents' tries to find exponents for the Tietze generators
## and return them in a list parallel to the list of the generators.
##
InstallGlobalFunction( TzGeneratorExponents, function ( T )
local exp, exponents, flags, i, invs, j, length, lengths, num, num1,
numgens, numrels, rel, rels, tietze;
# check the given argument to be a Presentation.
if not IsPresentation( T ) then
Error( "argument must be a Presentation" );
fi;
if TzOptions(T).printLevel >= 3 then
Print( "#I trying to find generator exponents\n" );
fi;
TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
tietze := T!.tietze;
numgens := tietze[TZ_NUMGENS];
rels := tietze[TZ_RELATORS];
numrels := tietze[TZ_NUMRELS];
lengths := tietze[TZ_LENGTHS];
invs := tietze[TZ_INVERSES];
flags := tietze[TZ_FLAGS];
# Initialize the exponents list.
exponents := ListWithIdenticalEntries( numgens, 0 );
# Find all relators which are powers of a single generator.
for i in [ 1 .. numrels ] do
if lengths[i] > 0 then
rel := rels[i];
length := lengths[i];
num1 := rel[1];
j := 2;
while j <= length and rel[j] = num1 do j := j + 1; od;
if j > length then
num := AbsInt( num1 );
if exponents[num] = 0 then exp := length;
else exp := GcdInt( exponents[num], length ); fi;
exponents[num] := exp;
if exp < length then
rels[i] := ListWithIdenticalEntries( exp, num );
lengths[i] := exp;
tietze[TZ_TOTAL] := tietze[TZ_TOTAL] - length + exp;
flags[i] := 1;
tietze[TZ_MODIFIED] := true;
tietze[TZ_OCCUR]:=false;
elif num1 < 0 then
rels[i] := List( rel, num -> -num );
fi;
fi;
fi;
od;
return exponents;
end );
#############################################################################
##
#M TzGo( <Tietze record> [, <silent> ) . . . . . run Tietze transformations
##
## `TzGo' automatically performs suitable Tietze transformations of the
## presentation in the given Tietze record.
##
## If "silent" is specified as true, then the printing of the status line
## by `TzGo' is suppressed if the Tietze option `printLevel' (see "Tietze
## Options") has a value less than 2.
##
## rels is the set of relators.
## gens is the set of generators.
## total is the total length of all relators.
##
InstallGlobalFunction( TzGo, function ( arg )
local count, looplimit, printstatus, T, tietze;
# get the arguments.
T := arg[1];
printstatus := TzOptions(T).printLevel = 1 and
not ( Length( arg ) > 1 and IsBool( arg[2] ) and arg[2] );
# check the first argument to be a Presentation.
if not IsPresentation( T ) then
Error( "argument must be a Presentation" );
fi;
TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
tietze := T!.tietze;
# substitute substrings by shorter ones.
TzSearch( T );
# now run our standard strategy and repeat it.
looplimit := TzOptions(T).loopLimit;
count := 0;
while count < looplimit and tietze[TZ_TOTAL] > 0 do
# replace substrings by substrings of equal length.
TzSearchEqual( T );
if tietze[TZ_MODIFIED] then TzSearch( T ); fi;
# eliminate generators.
TzEliminateGens( T );
if tietze[TZ_MODIFIED] then
TzSearch( T );
count := count + 1;
else
count := looplimit;
fi;
if printstatus then TzPrintStatus( T, true ); fi;
od;
# try to find cyclic subgroups by looking at power and commutator
# relators.
if tietze[TZ_TOTAL] > 0 then
TzFindCyclicJoins( T );
if tietze[TZ_MODIFIED] then TzSearch( T ); fi;
if printstatus then TzPrintStatus( T, true ); fi;
fi;
end );
#############################################################################
##
#M TzGoGo( <Tietze record> ) . . . . . run the Tietze go command repeatedly
##
## `TzGoGo' calls the `TzGo' command again and again until it does not
## reduce the presentation any more. `TzGo' automatically performs suitable
## Tietze transformations of the presentation in the given Tietze record.
##
## rels is the set of relators.
## gens is the set of generators.
## total is the total length of all relators.
##
InstallGlobalFunction( TzGoGo, function ( T )
local count, numgens, numrels, silentGo, tietze, total;
# check the given argument to be a Presentation.
if not IsPresentation( T ) then
Error( "argument must be a Presentation" );
fi;
TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
# initialize the local variables.
tietze := T!.tietze;
numgens := tietze[TZ_NUMGENS];
numrels := tietze[TZ_NUMRELS];
total := tietze[TZ_TOTAL];
silentGo := TzOptions(T).printLevel = 1;
count := 0;
#loop over the Tietze transformations.
while count < 5 do
TzGo( T, silentGo );
count := count + 1;
if silentGo and ( tietze[TZ_NUMGENS] < numgens or
tietze[TZ_NUMRELS] < numrels ) then
TzPrintStatus( T, true );
fi;
if tietze[TZ_NUMGENS] < numgens or tietze[TZ_NUMRELS] < numrels or
tietze[TZ_TOTAL] < total then
numgens := tietze[TZ_NUMGENS];
numrels := tietze[TZ_NUMRELS];
total := tietze[TZ_TOTAL];
count := 0;
fi;
od;
if silentGo then TzPrintStatus( T, true ); fi;
end );
#############################################################################
##
#M TzHandleLength1Or2Relators( <Tietze record> ) . . . handle short relators
##
## `TzHandleLength1Or2Relators' searches for relators of length 1 or 2 and
## performs suitable Tietze transformations for each of them:
##
## Generators occurring in relators of length 1 are eliminated.
##
## Generators occurring in square relators of length 2 are marked to be
## involutions.
##
## If a relator of length 2 involves two different generators, then the
## generator with the larger number is substituted by the other one in all
## relators and finally eliminated from the set of generators.
##
InstallGlobalFunction( TzHandleLength1Or2Relators, function ( T )
local absrep2, done, flags, gens, i, idword, invs, length, lengths,
numgens, numgens1, numrels, pointers, protected, ptr, ptr1, ptr2,
redunds, rels, rep, rep1, rep2, tietze, tracingImages, tree,
treelength, treeNums,topl;
topl:=TzOptions(T).printLevel;
if topl >= 3 then Print( "#I handling short relators\n" ); fi;
# check the given argument to be a Presentation.
if not IsPresentation( T ) then
Error( "argument must be a Presentation" );
fi;
tietze := T!.tietze;
protected := TzOptions(T).protected;
tracingImages := IsBound( T!.imagesOldGens );
gens := tietze[TZ_GENERATORS];
invs := tietze[TZ_INVERSES];
rels := tietze[TZ_RELATORS];
lengths := tietze[TZ_LENGTHS];
flags := tietze[TZ_FLAGS];
numgens := tietze[TZ_NUMGENS];
numrels := tietze[TZ_NUMRELS];
redunds := tietze[TZ_NUMREDUNDS];
numgens1 := numgens + 1;
done := false;
idword := One(T);
tree := 0;
if IsBound( T!.tree ) then
tree := T!.tree;
treelength := tree[TR_TREELENGTH];
pointers := tree[TR_TREEPOINTERS];
treeNums := tree[TR_TREENUMS];
fi;
while not done do
done := true;
# loop over all relators and find those of length 1 or 2.
i := 0;
while i < numrels do
i := i + 1;
length := lengths[i];
if length <= 2 and length > 0 and flags[i] <= 2 then
# find the current representative of the first factor.
rep1 := rels[i][1];
while invs[numgens1-rep1] <> rep1 do
rep1 := invs[numgens1-rep1];
od;
if length = 1 then
# handle a relator of length 1.
rep1 := AbsInt( rep1 );
if rep1 > protected then
# eliminate generator rep1.
invs[numgens1-rep1] := 0;
invs[numgens1+rep1] := 0;
if tree <> 0 then
ptr1 := AbsInt( treeNums[rep1] );
pointers[ptr1] := 0;
treeNums[rep1] := 0;
fi;
if topl >= 2 then
Print( "#I eliminating ", gens[rep1],
" = idword\n" );
fi;
# update the generator images, if available.
if tracingImages then
TzUpdateGeneratorImages( T, rep1, [] );
fi;
redunds := redunds + 1;
done := false;
fi;
else
# find the current representative of the second factor.
rep2 := rels[i][2];
while invs[numgens1-rep2] <> rep2 do
rep2 := invs[numgens1-rep2];
od;
# handle a relator of length 2.
if AbsInt( rep2 ) < AbsInt( rep1 ) then
rep := rep1; rep1 := rep2; rep2 := rep;
fi;
if rep1 < 0 then rep1 := - rep1; rep2 := - rep2; fi;
if rep1 = 0 then
# the relator is in fact of length at most 1.
rep2 := AbsInt( rep2 );
if rep2 > protected then
# eliminate generator rep1.
invs[numgens1-rep2] := 0;
invs[numgens1+rep2] := 0;
if tree <> 0 then
ptr2 := AbsInt( treeNums[rep2] );
pointers[ptr2] := 0;
treeNums[rep2] := 0;
fi;
if topl >= 2 then
Print( "#I eliminating ", gens[rep2],
" = idword\n" );
fi;
# update the generator images, if available.
if tracingImages then
TzUpdateGeneratorImages( T, rep2, [] );
fi;
redunds := redunds + 1;
done := false;
fi;
elif rep1 <> - rep2 then
if rep1 <> rep2 then
# handle a non-square relator of length 2.
if invs[numgens1-rep2] = invs[numgens1+rep2]
and invs[numgens1+rep1] < 0 then
# add a new square relator for rep1.
numrels := numrels + 1;
rels[numrels] := [ rep1, rep1 ];
lengths[numrels] := 2;
flags[numrels] := 1;
tietze[TZ_NUMRELS] := numrels;
tietze[TZ_TOTAL] := tietze[TZ_TOTAL] + 2;
fi;
absrep2 := AbsInt( rep2 );
if absrep2 > protected then
invs[numgens1-rep2] := invs[numgens1+rep1];
invs[numgens1+rep2] := rep1;
if tree <> 0 then
ptr1 := AbsInt( treeNums[rep1] );
ptr2 := AbsInt( treeNums[absrep2] );
if ptr2 < ptr1 then
ptr := ptr2;
if treeNums[rep1] * treeNums[absrep2]
* rep2 > 0 then
ptr := - ptr;
treeNums[rep1] := ptr;
pointers[ptr2] := treelength + rep1;
fi;
ptr2 := ptr1;
ptr1 := AbsInt( ptr );
fi;
if rep2 > 0 then
ptr1 := - ptr1;
fi;
pointers[ptr2] := ptr1;
treeNums[absrep2] := 0;
fi;
if tracingImages or topl >= 2 then
if rep2 > 0 then
rep1 := invs[numgens1+rep1];
fi;
if topl >= 2 then
Print( "#I eliminating ", gens[absrep2],
" = ", AbstractWordTietzeWord(
[ rep1 ], gens ), "\n");
fi;
# update the generator images, if available.
if tracingImages then
TzUpdateGeneratorImages( T, absrep2,
[ rep1 ] );
fi;
fi;
redunds := redunds + 1;
done := false;
fi;
else
# handle a square relator.
if invs[numgens1+rep1] < 0 then
# make the relator a square relator, ...
rels[i][1] := rep1;
rels[i][2] := rep1;
# ... mark it appropriately, ...
flags[i] := 3;
# ... and mark rep1 to be an involution.
invs[numgens1+rep1] := rep1;
done := false;
fi;
fi;
fi;
fi;
fi;
od;
if not done then
# for each generator determine its current representative.
for i in [ 1 .. numgens ] do
if invs[numgens1-i] <> i then
rep := invs[numgens1-i];
invs[numgens1-i] := invs[numgens1-rep];
invs[numgens1+i] := invs[numgens1+rep];
fi;
od;
# perform the replacements.
TzReplaceGens( tietze );
fi;
od;
# tidy up the Tietze generators.
tietze[TZ_NUMREDUNDS] := redunds;
if redunds > 0 then TzRemoveGenerators( T ); fi;
# Print( "#I total length = ", tietze[TZ_TOTAL], "\n" );
end );
#############################################################################
##
#M GeneratorsOfPresentation( <P> )
##
InstallGlobalFunction(GeneratorsOfPresentation,function(T)
return ShallowCopy(T!.generators);
end);
#############################################################################
##
#M TzInitGeneratorImages( T ) . . . . . . . initialize the generator images
#M under Tietze transformations
##
InstallGlobalFunction( TzInitGeneratorImages, function ( T )
local numgens,gens;
# check the argument to be a Tietze record.
TzCheckRecord( T );
# initialize the lists.
gens:=GeneratorsOfPresentation(T);
numgens := Length( gens );
T!.oldGenerators := gens;
T!.imagesOldGens := List( [ 1 .. numgens ], i -> [i] );
T!.preImagesNewGens := List( [ 1 .. numgens ], i -> [i] );
end );
#############################################################################
##
#M OldGeneratorsOfPresentation( <P> )
##
InstallGlobalFunction(OldGeneratorsOfPresentation,function(T)
return ShallowCopy(T!.oldGenerators);
end);
#############################################################################
##
#M TzImagesOldGens( <P> )
##
InstallGlobalFunction(TzImagesOldGens,function(T)
local g;
g:=GeneratorsOfPresentation(T);
if Length(g)>0 then
return List(T!.imagesOldGens,i->AbstractWordTietzeWord(i,g));
else
return List(T!.imagesOldGens,i->One(T));
fi;
end);
#############################################################################
##
#M TzPreImagesNewGens( <P> )
##
InstallGlobalFunction(TzPreImagesNewGens,function(T)
local g;
g:=OldGeneratorsOfPresentation(T);
return List(T!.preImagesNewGens,i->AbstractWordTietzeWord(i,g));
end);
#############################################################################
##
#M TzMostFrequentPairs( <Tietze record>, <n> ) . . . . occurrences of pairs
##
## `TzMostFrequentPairs' returns a list describing the n most frequently
## occurruing relator subwords of the form g1 * g2, where g1 and g2 are
## different generators or their inverses.
##
InstallGlobalFunction( TzMostFrequentPairs, function ( T, nmax )
local gens, i, j, k, max, n, numgens, occlist, pairs, tietze;
# check the first argument to be a Presentation.
if not IsPresentation( T ) then
Error( "argument must be a Presentation" );
fi;
# check the second argument.
if not IsInt( nmax ) or nmax <= 0 then
Error( "second argument must be a positive integer" );
fi;
# intialize some local variables.
tietze := T!.tietze;
gens := tietze[TZ_GENERATORS];
numgens := tietze[TZ_NUMGENS];
occlist := [ ]; occlist[4*numgens] := 0;
pairs := [ ];
n := 0;
if nmax = 1 then
max := 0;
# find a pair [gen[i], gen[j]] of generators or inverse generators
# such that the word gen[i] * gen[j] is a most often occurring
# relator subword.
for i in [ 1 .. numgens-1 ] do
occlist := TzOccurrencesPairs( tietze, i, occlist );
for j in [ i+1 .. numgens ] do
for k in [ 1 .. 4 ] do
if occlist[(4-k)*numgens+j] >= max then
max := occlist[(4-k)*numgens+j];
pairs[1] := [ max, i, j, 4 - k ];
n := 1;
fi;
od;
od;
od;
else
# compute a sorted list which for each word of the form
# gen[i]^+-1 * gen[j]^+-1, with i not equal to j, contains the
# (negative) number of occurrences of that word as relator subword,
# the (negative) two indices i and j, and a sign flag (the negative
# values will make the list be sorted in reversed order).
for i in [ 1 .. numgens-1] do
occlist := TzOccurrencesPairs( tietze, i, occlist );
for j in [ i+1 .. numgens ] do
for k in [ 0 .. 3 ] do
if occlist[k*numgens+j] > 0 then
n := n + 1;
pairs[n] := [ - occlist[k*numgens+j], - i, - j, k ];
fi;
od;
od;
if n > nmax then
Sort( pairs );
pairs := pairs{ [1..nmax] };
n := nmax;
fi;
od;
# sort the list, and then invert the negative entries.
Sort( pairs );
for i in [ 1 .. n ] do
pairs[i][1] := - pairs[i][1];
pairs[i][2] := - pairs[i][2];
pairs[i][3] := - pairs[i][3];
od;
fi;
return pairs;
end );
#############################################################################
##
#M TzNewGenerator( <Tietze record> ) . . . . . . . . . adds a new generator
##
## defines a new abstract generator and adds it to the given presentation.
##
## Let i be the smallest positive integer which has not yet been used as
## a generator number and for which no component T!.i exists so far in the
## given Tietze record T, say. A new abstract generator _xi is defined
## and then added as component T!.i to the given Tietze record.
##
## Warning: `TzNewGenerator' is an internal subroutine of the Tietze
## routines. You should not call it. Instead, you should call the function
## `AddGenerator', if needed.
##
InstallGlobalFunction( TzNewGenerator, function ( T )
local freegens, freenames, gen, gens, names, numgens, recnames, new,
tietze;
# get some local variables.
tietze := T!.tietze;
freegens := tietze[TZ_FREEGENS];
gens := tietze[TZ_GENERATORS];
numgens := tietze[TZ_NUMGENS];
freenames := FamilyObj( One(T) )!.names;
names := List( gens, g -> freenames[Position( freegens, g )] );
# determine the next free generator number.
new := T!.nextFree;
recnames := REC_NAMES_COMOBJ( T );
while String( new ) in recnames or freenames[new] in names do
new := new + 1;
od;
T!.nextFree := new + 1;
# define the new abstract generator.
gen := freegens[new];
T!.(String( new )) := gen;
# add the new generator to the presentation.
numgens := numgens + 1;
gens[numgens] := gen;
T!.components[numgens] := new;
tietze[TZ_NUMGENS] := numgens;
tietze[TZ_INVERSES] := Concatenation( [numgens], tietze[TZ_INVERSES],
[-numgens] );
return gen;
end );
#############################################################################
##
#M TzPrint( <Tietze record> [,<list>] ) . print internal Tietze presentation
##
## `TzPrint' prints the current generators and relators of the given Tietze
## record in their internal representation. The optional second parameter
## can be used to specify the numbers of the relators to be printed.
## Default: all relators are printed.
##
InstallGlobalFunction( TzPrint, function ( arg )
local gens, i, lengths, list, numrels, rels, T, tietze;
# check the first argument to be a Tietze record.
T := arg[1];
TzCheckRecord( T );
# initialize the local variables.
tietze := T!.tietze;
gens := tietze[TZ_GENERATORS];
rels := tietze[TZ_RELATORS];
numrels := tietze[TZ_NUMRELS];
lengths := tietze[TZ_LENGTHS];
# print the generators.
if gens = [] then
Print( "#I there are no generators\n" );
else
Print( "#I generators: ", gens, "\n" );
fi;
# if the relators list is empty, print an appropriate message.
if numrels = 0 then
Print( "#I there are no relators\n" );
return;
fi;
# else print the relators.
Print( "#I relators:\n" );
if Length( arg ) = 1 then
for i in [1 .. numrels] do
Print( "#I ", i, ". ", lengths[i], " ", rels[i], "\n" );
od;
else
list := arg[2];
for i in list do
if 1 <= i and i <= numrels then
Print( "#I ", i, ". ", lengths[i], " ", rels[i], "\n" );
fi;
od;
fi;
end );
#############################################################################
##
#M TzPrintGeneratorImages( <Tietze record> ) . . . . print generator images
##
## `TzPrintGeneratorImages' assumes that <T> is a presentation record for
## which the generator images and preimages under the Tietze transformations
## applied to <T> are being traced. It displays the preimages of the current
## generators as Tietze words in the old generators, and the images of the
## old generators as Tietze words in the the current generators.
##
InstallGlobalFunction( TzPrintGeneratorImages, function ( T )
local i, images;
# check T to be a Tietze record.
TzCheckRecord( T );
# check if generator images are available.
if IsBound( T!.imagesOldGens ) then
# display the preimages of the current generators.
images := T!.preImagesNewGens;
Print( "#I preimages of current generators as Tietze words",
" in the old ones:\n" );
for i in [1 .. Length( images ) ] do
Print( "#I ", i, ". ", images[i], "\n" );
od;
# display the images of the old generators.
images := T!.imagesOldGens;
Print( "#I images of old generators as Tietze words in the",
" current ones:\n" );
for i in [1 .. Length( images ) ] do
Print( "#I ", i, ". ", images[i], "\n" );
od;
else
# if not, display an appropriate message.
Print( "#I generator images are not available\n" );
fi;
end );
#############################################################################
##
#M TzPrintGenerators( <Tietze record> [,<list>] ) . . . . . print generators
##
## `TzPrintGenerators' prints the generators of the given Tietze presenta-
## tion together with the number of their occurrences. The optional second
## parameter can be used to specify the numbers of the generators to be
## printed. Default: all generators are printed.
##
InstallGlobalFunction( TzPrintGenerators, function ( arg )
local gens, i, invs, leng, list, max, min, num, numgens, occur, T,
tietze;
# check the first argument to be a Tietze record.
T := arg[1];
TzCheckRecord( T );
# initailize some local variables.
tietze := T!.tietze;
gens := tietze[TZ_GENERATORS];
invs := tietze[TZ_INVERSES];
numgens := tietze[TZ_NUMGENS];
# if the generators list is empty, print an appropriate message.
if numgens = 0 then
Print( "#I there are no generators\n" );
return;
fi;
# else determine the list of generators to be printed.
if Length( arg ) = 1 then
list := [ 1 .. numgens ];
min := 1;
max := numgens;
else
# check the second argument to be a list.
list := arg[2];
if not ( IsList( list ) ) then
Error( "second argument must be a list" );
fi;
if list = [] then list := [ 0 ]; fi;
leng := Length( list );
if IsRange( list ) then
min := Maximum( list[1], 1 );
max := Minimum( list[leng], numgens );
list := [ min .. max ];
else
min := Maximum( Minimum( list ), 1 );
max := Minimum( Maximum( list ), numgens );
fi;
fi;
if min = max then
# determine the number of occurrences of the specified generator.
occur := TzOccurrences( tietze, max );
# print the generator.
num := occur[1][1];
if num = 1 then
Print( "#I ",max,". ",gens[max]," ",num," occurrence " );
else
Print( "#I ",max,". ",gens[max]," ",num," occurrences" );
fi;
if invs[numgens+1+max] > 0 then Print( " involution" ); fi;
Print( "\n" );
elif min < max then
# determine the number of occurrences for all generators.
occur := TzOccurrences( tietze );
# print the generators.
for i in list do
if 1 <= i and i <= numgens then
num := occur[1][i];
if num = 1 then
Print( "#I ",i,". ",gens[i]," ",num," occurrence " );
else
Print( "#I ",i,". ",gens[i]," ",num," occurrences" );
fi;
if invs[numgens+1+i] > 0 then Print( " involution" ); fi;
Print( "\n" );
fi;
od;
fi;
end );
#############################################################################
##
#M TzPrintLengths( <Tietze record> ) . . . . . . . . print relator lengths
##
## `TzPrintLengths' prints a list of all relator lengths of the given
## presentation record.
##
InstallGlobalFunction( TzPrintLengths, function ( T )
local tietze;
# check the argument to be a Tietze record.
TzCheckRecord( T );
tietze := T!.tietze;
# print the list of relator lengths;
Print( tietze[TZ_LENGTHS], "\n" );
end );
#############################################################################
##
#M TzOptions(<P>)
##
InstallMethod(TzOptions,"set default values",true,[IsPresentation],0,
function(P)
return rec(
# initialize the Tietze options by their default values.
eliminationsLimit := 100,
expandLimit := 150,
generatorsLimit := 0,
lengthLimit := 2^31 - 1,
loopLimit := infinity,
printLevel := 0,
saveLimit := 10,
searchSimultaneous := 20,
protected:=0
);
end);
#############################################################################
##
#M TzPrintOptions( <Tietze record> ) . . . . . print Tietze record options
##
## `TzPrintOptions' prints the components of a Tietze record, suppressing
## all those components which are not options of the Tietze transformations
## routines.
##
InstallGlobalFunction( TzPrintOptions, function ( T )
local i, len, lst, nam;
# check the argument to be a Tietze record.
TzCheckRecord( T );
# determine the maximal name length of the option compoents.
len := 0;
for nam in RecNames( TzOptions(T) ) do
if nam in TzOptionNames then
if len < Length( nam ) then
len := Length( nam );
fi;
lst := nam;
fi;
od;
# now print all components of T which are options.
for nam in TzOptionNames do
if nam in RecNames( TzOptions(T) ) then
Print( "#I ", nam );
for i in [Length(nam)..len] do
Print( " " );
od;
Print( "= ", TzOptions(T).(nam), "\n" );
fi;
od;
end );
#############################################################################
##
#M TzPrintPairs( <Tietze record> [,<n>] ) . . . . print occurrences of pairs
##
## `TzPrintPairs' prints the n most often occurring relator subwords of the
## form a * b, where a and b are different generators or their inverses,
## together with their numbers of occurrences. The default value of n is 10.
## If n has been specified to be zero, then it is interpreted as "infinity".
##
InstallGlobalFunction( TzPrintPairs, function ( arg )
local geni, genj, gens, k, m, n, num, pairs, T, tietze;
# check the first argument to be a Tietze record.
T := arg[1];
TzCheckRecord( T );
# get the second argument.
n := 10;
if Length( arg ) > 1 then n := arg[2]; fi;
if not IsInt( n ) or n < 0 then
Error( "second argument must be a positive integer" );
fi;
if n = 0 then n := "infinity"; fi;
# intialize the local variables.
tietze := T!.tietze;
gens := tietze[TZ_GENERATORS];
# determine the n most frequently occurring pairs.
pairs := TzMostFrequentPairs( T, n );
# print them.
n := Length( pairs );
for m in [ 1 .. n ] do
num := pairs[m][1];
k := pairs[m][4];
geni := gens[pairs[m][2]];
if k > 1 then geni := geni^-1; fi;
genj := gens[pairs[m][3]];
if k mod 2 = 1 then genj := genj^-1; fi;
if num = 1 then Print(
"#I ",m,". ",num," occurrence of ",geni," * ",genj,"\n" );
elif num > 1 then Print(
"#I ",m,". ",num," occurrences of ",geni," * ",genj,"\n" );
fi;
od;
end );
#############################################################################
##
#M TzPrintPresentation( <Tietze record> ) . . . . . . . . print presentation
##
## `TzPrintGenerators' prints the generators and the relators of a Tietze
## presentation.
##
InstallGlobalFunction( TzPrintPresentation, function ( T )
# check the given argument to be a Tietze record.
TzCheckRecord( T );
# print the generators.
Print( "#I generators:\n" );
TzPrintGenerators( T );
# print the relators.
Print( "#I relators:\n" );
TzPrintRelators( T );
# print the status line.
TzPrintStatus( T );
end );
#############################################################################
##
#M TzPrintRelators( <Tietze record> [,<list>] ) . . . . . . . print relators
##
## `TzPrintRelators' prints the relators of the given Tietze presentation.
## The optional second parameter can be used to specify the numbers of the
## relators to be printed. Default: all relators are printed.
##
InstallGlobalFunction( TzPrintRelators, function ( arg )
local gens, i, list, numrels, rels, T, tietze;
# check the first argument to be a Tietze record.
T := arg[1];
TzCheckRecord( T );
# initailize the local variables.
tietze := T!.tietze;
gens := tietze[TZ_GENERATORS];
rels := tietze[TZ_RELATORS];
numrels := tietze[TZ_NUMRELS];
# if the relators list is empty, print an appropriate message.
if numrels = 0 then
Print( "#I there are no relators\n" );
return;
fi;
# else print the relators.
if Length( arg ) = 1 then
for i in [1 .. numrels] do
Print( "#I ", i, ". ",
AbstractWordTietzeWord( rels[i], gens ), "\n" );
od;
else
list := arg[2];
for i in list do
if 1 <= i and i <= numrels then
Print( "#I ", i, ". ",
AbstractWordTietzeWord( rels[i], gens ), "\n" );
fi;
od;
fi;
end );
#############################################################################
##
#M TzPrintStatus( <Tietze record> [, <norepeat> ] ) . . . print status line
##
## `TzPrintStatus' prints the number of generators, the number of relators,
## and the total length of all relators in the Tietze presentation of the
## given group. If "norepeat" is specified as true, then the printing is
## suppressed if none of the three values has changed since the last call.
##
InstallGlobalFunction( TzPrintStatus, function ( arg )
local norepeat, numgens, numrels, status, T, tietze, total;
# get the arguments.
T := arg[1];
norepeat := Length( arg ) > 1 and IsBool( arg[2] ) and arg[2];
# check the first argument to be a Presentation.
if not IsPresentation( T ) then
Error( "first argument must be a Presentation" );
fi;
tietze := T!.tietze;
total := tietze[TZ_TOTAL];
# get number of generators and number of relators.
numgens := tietze[TZ_NUMGENS] - tietze[TZ_NUMREDUNDS];
numrels := tietze[TZ_NUMRELS];
status := [ numgens, numrels, total ];
if not ( status = tietze[TZ_STATUS] and norepeat ) then
# print the Tietze status line.
if HasName( T ) then Print( "#I ", Name(T), " has " );
else Print( "#I there are " ); fi;
if status[1] = 1 then Print( status[1], " generator" );
else Print( status[1], " generators" ); fi;
if status[2] = 1 then Print( " and ", status[2], " relator" );
else Print( " and ", status[2], " relators" ); fi;
Print( " of total length ", status[3], "\n" );
# save the new status.
tietze[TZ_STATUS] := status;
fi;
end );
#############################################################################
##
#M TzRelator( <Tietze record>, <word> ) . . . . . . convert an abstract word
#M to a Tietze relator
##
## `TzRelator' assumes <word> to be an abstract word in the group generators
## associated to the given Tietze record, and converts it to a Tietze
## relator, i.e. a free and cyclically reduced Tietze word.
##
InstallGlobalFunction( TzRelator, function ( T, word )
local gens, i, invs, j, length, numgens1, tietze;
# get some local variables
tietze := T!.tietze;
gens := tietze[TZ_GENERATORS];
invs := tietze[TZ_INVERSES];
numgens1 := tietze[TZ_NUMGENS] + 1;
# make a tietze word from the given abstract word
word := ShallowCopy(TietzeWordAbstractWord( word, gens ));
# adjust the occurring inverses of involutory generators and reduce
# the word by squares of these generators
length := Length( word );
j := 0;
for i in [ 1 .. length ] do
if invs[numgens1+invs[numgens1+word[i]]] <> word[i] then
word[i] := -word[i];
fi;
if j > 0 and word[j] = invs[numgens1+word[i]] then
j := j - 1;
else
j := j + 1;
word[j] := word[i];
fi;
od;
# cyclically reduce the word
i := 1;
while i < j and word[i] = invs[numgens1+word[j]] do
i := i + 1;
j := j - 1;
od;
return word{ [ i .. j ] };
end );
#############################################################################
##
#M TzRemoveGenerators( <Tietze record> ) . . . . Remove redundant generators
##
## `TzRemoveGenerators' deletes the redundant Tietze generators and
## renumbers the non-redundant ones accordingly. The redundant generators
## are assumed to be marked in the inverses list by an entry
## invs[numgens+1-i] <> i.
##
InstallGlobalFunction( TzRemoveGenerators, function ( T )
local comps, gens, i, image, invs, j, newim, numgens, numgens1,
pointers, preimages, redunds, tietze, tracingImages,
tree, treelength, treeNums;
if TzOptions(T).printLevel >= 3 then
Print( "#I renumbering the Tietze generators\n" );
fi;
# check the given argument to be a Presentation.
if not IsPresentation( T ) then
Error( "argument must be a Presentation" );
fi;
tietze := T!.tietze;
redunds := tietze[TZ_NUMREDUNDS];
if redunds = 0 then return; fi;
tracingImages := IsBound( T!.imagesOldGens );
if tracingImages then preimages := T!.preImagesNewGens; fi;
comps := T!.components;
gens := tietze[TZ_GENERATORS];
invs := tietze[TZ_INVERSES];
numgens := tietze[TZ_NUMGENS];
numgens1 := numgens + 1;
tree := 0;
if IsBound( T!.tree ) then
tree := T!.tree;
treelength := tree[TR_TREELENGTH];
treeNums := tree[TR_TREENUMS];
pointers := tree[TR_TREEPOINTERS];
# renumber the non-redundant generators in the relators.
j := 0;
for i in [ 1 .. numgens ] do
if invs[numgens1-i] = i then
j := j + 1;
if j < i then
comps[j] := comps[i];
treeNums[j] := treeNums[i];
pointers[AbsInt(treeNums[j])] := treelength + j;
invs[numgens1-i] := j;
if invs[numgens1+i] > 0 then invs[numgens1+i] := j;
else invs[numgens1+i] := -j; fi;
fi;
else
Unbind( T!.(String(comps[i])) );
invs[numgens1-i] := 0;
invs[numgens1+i] := 0;
fi;
od;
else
# renumber the non-redundant generators in the relators.
j := 0;
for i in [ 1 .. numgens ] do
if invs[numgens1-i] = i then
j := j + 1;
if j < i then
comps[j] := comps[i];
invs[numgens1-i] := j;
if invs[numgens1+i] > 0 then invs[numgens1+i] := j;
else invs[numgens1+i] := -j; fi;
fi;
else
Unbind( T!.(String(comps[i])) );
invs[numgens1-i] := 0;
invs[numgens1+i] := 0;
fi;
od;
fi;
if j <> numgens - redunds then
Error( "This is a bug. You should never get here.\n",
"Please send a copy of your job to the GAP administrators.\n" );
fi;
TzRenumberGens( tietze );
# update the generator images, if available.
if tracingImages then
for i in [ 1 .. Length( T!.imagesOldGens ) ] do
image := T!.imagesOldGens[i];
newim := [];
for j in [ 1 .. Length( image ) ] do
Add( newim, invs[numgens1-image[j]] );
od;
T!.imagesOldGens[i] := ReducedRrsWord( newim );
od;
fi;
# update the other generators list and the lists related to it.
for i in [ 1 .. numgens ] do
j := invs[numgens1-i];
if j < i and j > 0 then
gens[j] := gens[i];
invs[numgens1-j] := j;
invs[numgens1+j] := invs[numgens1+i];
if tracingImages then
preimages[j] := preimages[i];
fi;
fi;
od;
j := numgens;
numgens := numgens - redunds;
tietze[TZ_INVERSES] := invs{ [numgens1-numgens..numgens1+numgens] };
while j > numgens do
Unbind( gens[j] );
Unbind( comps[j] );
if tree <> 0 then Unbind( treeNums[j] ); fi;
if tracingImages then Unbind( preimages[j] ); fi;
j := j - 1;
od;
tietze[TZ_NUMGENS] := numgens;
tietze[TZ_NUMREDUNDS] := 0;
tietze[TZ_OCCUR]:=false;
end );
#############################################################################
##
#M TzSearch( <Tietze record> ) . . . . . . . search subwords and substitute
##
## `TzSearch' searches for relator subwords which in some relator have a
## complement of shorter length and which occur in other relators, too, and
## uses them to reduce these other relators.
##
InstallGlobalFunction( TzSearch, function ( T )
local altered, flags, i, flag, j, k, lastj, leng, lengths, lmax, loop,
modified, numrels, oldtotal, rels, save, simultan,
simultanlimit, tietze;
if TzOptions(T).printLevel >= 3 then Print( "#I searching subwords\n" ); fi;
# check the given argument to be a Tietze record.
TzCheckRecord( T );
TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
tietze := T!.tietze;
simultanlimit := TzOptions(T).searchSimultaneous;
rels := tietze[TZ_RELATORS];
lengths := tietze[TZ_LENGTHS];
flags := tietze[TZ_FLAGS];
tietze[TZ_MODIFIED] := false;
save := TzOptions(T).saveLimit / 100;
loop := tietze[TZ_TOTAL] > 0; while loop do
TzSort( T );
numrels := tietze[TZ_NUMRELS];
modified := false;
oldtotal := tietze[TZ_TOTAL];
# search subwords with shorter complements, and substitute.
flag := 0;
i := 1;
while i < numrels do
if flags[i] <= 1 and lengths[i] > 0 then
leng := lengths[i];
lmax := leng + (leng + 1) mod 2;
if flag < flags[i] then flag := flags[i]; fi;
simultan := 1;
j := i;
lastj := 0;
k := i + 1;
while k <= numrels and lengths[k] <= lmax and
simultan < simultanlimit do
if flags[k] <= 1 and
( lengths[k] = leng or lengths[k] = lmax ) then
lastj := j;
j := k;
simultan := simultan + 1;
fi;
k := k + 1;
od;
while k <= numrels and ( lengths[k] < leng or
flags[k] > 1 or flag = 0 and flags[k] = 0 ) do
k := k + 1;
od;
if k > numrels then j := lastj; fi;
if i <= j then
altered := TzSearchC( tietze, i, j );
modified := modified or altered > 0;
i := j;
fi;
fi;
i := i + 1;
od;
# reset the Tietze flags.
for i in [ 1 .. numrels ] do
if flags[i] = 1 or flags[i] = 2 then
flags[i] := flags[i] - 1;
fi;
od;
if modified then
if tietze[TZ_TOTAL] < oldtotal then
tietze[TZ_MODIFIED] := true;
# handle relators of length 1 or 2.
TzHandleLength1Or2Relators( T );
# sort the relators and print the status line.
TzSort( T );
if TzOptions(T).printLevel >= 2 then TzPrintStatus( T, true ); fi;
fi;
fi;
loop := tietze[TZ_TOTAL] < oldtotal and tietze[TZ_TOTAL] > 0 and
(oldtotal - tietze[TZ_TOTAL]) / oldtotal >= save;
od;
end );
#############################################################################
##
#M TzSearchEqual( <Tietze record> ) . . . . search subwords of equal length
##
## `TzSearchEqual' searches for Tietze relator subwords which in some
## relator have a complement of equal length and which occur in other
## relators, too, and uses them to modify these other relators.
##
InstallGlobalFunction( TzSearchEqual, function ( T )
local altered, equal, i, j, k, lastj, leng, lengths, modified, numrels,
oldtotal, rels, simultan, simultanlimit, tietze;
if TzOptions(T).printLevel >= 3 then
Print( "#I searching subwords of equal length\n" );
fi;
# check the given argument to be a Tietze record.
TzCheckRecord( T );
TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
tietze := T!.tietze;
simultanlimit := TzOptions(T).searchSimultaneous;
TzSort( T );
rels := tietze[TZ_RELATORS];
lengths := tietze[TZ_LENGTHS];
numrels := tietze[TZ_NUMRELS];
modified := false;
oldtotal := tietze[TZ_TOTAL];
equal := true;
# substitute substrings by substrings of equal length.
i := 1;
while i < numrels do
leng := lengths[i];
if leng > 3 and leng mod 2 = 0 then
simultan := 1;
j := i;
lastj := 0;
k := i + 1;
while k <= numrels and lengths[k] <= leng and
simultan < simultanlimit do
if lengths[k] = leng then
lastj := j;
j := k;
simultan := simultan + 1;
fi;
k := k + 1;
od;
while k <= numrels and lengths[k] < leng do
k := k + 1;
od;
if k > numrels then j := lastj; fi;
if i <= j then
altered := TzSearchC( tietze, i, j, equal );
modified := modified or altered > 0;
i := j;
fi;
fi;
i := i + 1;
od;
if modified then
tietze[TZ_OCCUR]:=false;
if tietze[TZ_TOTAL] < oldtotal then
tietze[TZ_MODIFIED] := true;
# handle relators of length 1 or 2.
TzHandleLength1Or2Relators( T );
# sort the relators and print the status line.
TzSort( T );
if TzOptions(T).printLevel >= 2 then TzPrintStatus( T, true ); fi;
fi;
fi;
end );
#############################################################################
##
#M TzSort( <Tietze record> ) . . . . . . . . . . . . . . . . . sort relators
##
## sorts the relators list of the given presentation <P> and,
## in parallel, the search flags list. Note: All relators of length 0 are
## removed from the list.
##
## The sorting algorithm used is the same as in the GAP function Sort.
##
InstallGlobalFunction( TzSort, function ( T )
if TzOptions(T).printLevel >= 3 then Print( "#I sorting the relators\n" ); fi;
# check the given argument to be a Presentation.
if not IsPresentation( T ) then
Error( "argument must be a Presentation" );
fi;
if T!.tietze[TZ_NUMRELS] > 0 then
TzSortC( T!.tietze );
T!.tietze[TZ_OCCUR]:=false;
fi;
end );
#############################################################################
##
#M TzSubstitute( <Tietze record>, <word> ) . . . . . . . . . . . substitute
#M TzSubstitute( <Tietze record> [, <n> [,<elim> ] ] ) . . . a new generator
##
## In its first form, `TzSubstitute' just calls the function
## `TzSubstituteWord'.
##
## In its second form, `TzSubstitute' first determines the n most frequently
## occurring relator subwords of the form g1 * g2, where g1 and g2 are
## different generators or their inverses, and sorts them by decreasing
## numbers of occurrences.
##
## Let a * b be the last word in that list, and let i be the smallest
## positive integer for which there is no component T!.i so far in the given
## Tietze record T, then `TzSubstitute' adds to the given presentation a new
## generator T!.i and a new relator T!.i^-1 * a * b, and it replaces all
## occurrences of a * b in the relators by T!.i. Finally, if elim = 1 or
## elim = 2, it eliminates the generator a or b, respectively. Otherwise it
## eliminates some generator by just calling subroutine `TzEliminateGen1'.
##
## The two arguments are optional. If they are specified, then n is expected
## to be a positive integer, and elim is expected to be 0, 1, or 2. The
## default values are n = 1 and elim = 0.
##
InstallGlobalFunction( TzSubstitute, function ( arg )
local elim, gen, gens, i, invs, j, k, n, narg, numgens, pair, pairs,
printlevel, T, tietze, word;
# just call `TzSubstituteWord' if the second argument is a word.
narg := Length( arg );
if ( narg > 1 ) and ( IsList( arg[2] ) or IsWord( arg[2] ) ) then
TzSubstituteWord( arg[1], arg[2] );
return;
fi;
# check the number of arguments.
if narg < 1 or narg > 3 then Error(
"usage: TzSubstitute( <Tietze record> [, <n> [, <elim> ] ] )" );
fi;
# check the first argument to be a Tietze record.
T := arg[1];
TzCheckRecord( T );
# get the second argument, and check it to be a positive integer.
n := 1;
if narg >= 2 then
n := arg[2];
if not IsInt( n ) or n < 1 then
Error( "second argument must be a positive integer" );
fi;
fi;
# get the third argument, and check it to be 0, 1, or 2.
elim := 0;
if narg = 3 then
elim := arg[3];
if not IsInt( elim ) or elim < 0 or elim > 2 then
Error( "third argument must be 0, 1, or 2" );
fi;
fi;
# check the number of generators to be at least 2.
tietze := T!.tietze;
numgens := tietze[TZ_NUMGENS];
if numgens < 2 then return; fi;
# initialize some local variables.
gens := tietze[TZ_GENERATORS];
invs := tietze[TZ_INVERSES];
printlevel := TzOptions(T).printLevel;
# determine the n most frequently occurring relator subwords of the form
# g1 * g2, where g1 and g2 are different generators or their inverses,
# and sort them by decreasing numbers of occurrences.
pairs := TzMostFrequentPairs( T, n );
if Length( pairs ) < n then
if narg > 1 and printlevel >= 1 then
Print( "#I TzSubstitute: second argument is out of range\n" );
fi;
return;
fi;
# get the nth pair [ a, b ], say, from the list.
i := pairs[n][2];
j := pairs[n][3];
k := pairs[n][4];
if k > 1 then i := invs[numgens+1+i]; fi;
if k mod 2 = 1 then j := invs[numgens+1+j]; fi;
pair := [i, j];
# add the word a * b as a new generator.
gen := TzNewGenerator( T );
word := AbstractWordTietzeWord( pair, gens );
if TzOptions(T).printLevel >= 1 then Print(
"#I substituting new generator ",gen," defined by ",word,"\n" );
fi;
AddRelator( T, gen^-1 * word );
# if there is a tree of generators, delete it.
if IsBound( T!.tree ) then Unbind( T!.tree ); fi;
# update the generator preimages, if available.
if IsBound( T!.imagesOldGens ) then
TzUpdateGeneratorImages( T, 0, pair );
fi;
# replace all relator subwords of the form a * b by the new generator.
TzOptions(T).printLevel := 0;
TzSearch( T );
TzOptions(T).printLevel := printlevel;
# eliminate a generator.
if printlevel = 1 then TzOptions(T).printLevel := 2; fi;
if elim > 0 then
TzEliminateGen( T, AbsInt( pair[elim] ) );
else
TzEliminateGen1( T );
fi;
TzOptions(T).printLevel := printlevel;
if tietze[TZ_MODIFIED] then TzSearch( T ); fi;
if tietze[TZ_NUMREDUNDS] > 0 then TzRemoveGenerators( T ); fi;
if TzOptions(T).printLevel >= 1 then TzPrintStatus( T, true ); fi;
end );
#############################################################################
##
#M TzSubstituteCyclicJoins( <Tietze record> ) . . common roots of generators
##
## `TzSubstituteCyclicJoins' tries to find pairs of commuting generators a
## and b, say, such that exponent(a) is prime to exponent(b). For each such
## pair, their product a * b is substituted as a new generator, and a and b
## are eliminated.
##
InstallGlobalFunction( TzSubstituteCyclicJoins, function ( T )
local exp1, exp2, exponents, gen, gen2, gens, i, invs, lengths,
num1, num2, numgens, numrels, printlevel, rel, rels,
tietze;
# check the given argument to be a Tietze record.
TzCheckRecord( T );
TzTestInitialSetup(T); # run `1Or2Relators' if not yet done
if TzOptions(T).printLevel >= 3 then
Print( "#I substituting cyclic joins\n" );
fi;
# Try to find exponents for the generators.
exponents := TzGeneratorExponents( T );
tietze := T!.tietze;
tietze[TZ_MODIFIED] := false;
if Sum( exponents ) = 0 then return; fi;
# sort the relators by their lengths.
TzSort( T );
# initialize some local variables.
gens := tietze[TZ_GENERATORS];
numgens := tietze[TZ_NUMGENS];
rels := tietze[TZ_RELATORS];
numrels := tietze[TZ_NUMRELS];
lengths := tietze[TZ_LENGTHS];
invs := tietze[TZ_INVERSES];
printlevel := TzOptions(T).printLevel;
# Now work off all commutator relators of length 4.
i := 1;
while i <= numrels and lengths[i] <= 4 do
rel := rels[i];
if lengths[i] = 4 and rel[1] = invs[numgens+1+rel[3]] and
rel[2] = invs[numgens+1+rel[4]] then
# There is a commutator relator of the form [a,b]. Check if
# there are also power relators of the form a^m or b^n.
num1 := AbsInt( rel[1] ); exp1 := exponents[num1];
num2 := AbsInt( rel[2] ); exp2 := exponents[num2];
# If there are relators a^m and b^n with m prime to n, then
# a = (a*b)^n, b = (a*b)^m, and (a*b)^(m*n) = 1. Hence we
# may define a new generator g, say, by a*b together with the
# two relations a = g^n and b = g^m, and then eliminate a
# and b. (Note that we can take a^-1 instead of a or b^-1
# instead of b.)
if exp1 > 0 and exp2 > 0 and GcdInt( exp1, exp2 ) = 1 then
gen := TzNewGenerator( T );
numgens := tietze[TZ_NUMGENS];
invs := tietze[TZ_INVERSES];
if printlevel >= 1 then
Print( "#I substituting new generator ",gen,
" defined by ",gens[num1]*gens[num2],"\n" );
fi;
AddRelator( T, gens[num1] * gen^-exp2 );
AddRelator( T, gens[num2] * gen^-exp1 );
# if there is a tree of generators, delete it.
if IsBound( T!.tree ) then Unbind( T!.tree ); fi;
# update the generator preimages, if available.
if IsBound( T!.imagesOldGens ) then
TzUpdateGeneratorImages( T, 0, [ num1, num2 ] );
fi;
# save gens[num2] before eliminating gens[num1] because
# its number may change.
gen2 := gens[num2];
if printlevel = 1 then TzOptions(T).printLevel := 2; fi;
TzEliminate( T, gens[num1] );
num2 := Position( gens, gen2 );
TzEliminate( T, gens[num2] );
TzOptions(T).printLevel := printlevel;
numgens := tietze[TZ_NUMGENS];
numrels := tietze[TZ_NUMRELS];
invs := tietze[TZ_INVERSES];
tietze[TZ_MODIFIED] := true;
i := 0;
fi;
fi;
i := i + 1;
od;
if tietze[TZ_MODIFIED] then
# handle relators of length 1 or 2.
TzHandleLength1Or2Relators( T );
# sort the relators and print the status line.
TzSort( T );
if printlevel >= 1 then TzPrintStatus( T, true ); fi;
fi;
end );
#############################################################################
##
#M TzSubstituteWord( <Tietze record>, <word> ) . . . substitute a given word
#M as a new generator
##
## `TzSubstituteWord' expects <T> to be a Tietze record and <word> to be a
## word in the generators of <T>. It adds a new generator, gen say, and a
## new relator of the form gen^-1 * <Word> to <T>.
##
## The second argument, <word>, may be either an abstract word or a Tietze
## word, i. e., a list of positive or negative generator numbers.
##
## More precisely: The effect of a call
##
## TzSubstituteWord( T, word );
##
## is more or less equivalent to that of
##
## AddGenerator( T );
## gen := T!.generators[Length( T!.generators )];
## AddRelator( T, gen^-1 * word );
##
## The essential difference is, that `TzSubstituteWord', as a Tietze
## transformation of T, saves and updates the lists of generator images and
## preimages, in case they are being traced under the Tietze transformations
## applied to T, whereas a call of the function `AddGenerator' (which does
## not perform a Tietze transformation) will delete these lists and hence
## terminate the tracing.
##
InstallGlobalFunction( TzSubstituteWord, function ( T, word )
local aword, gen, gens, images, tzword;
# check the first argument to be a Tietze record.
TzCheckRecord( T );
# check the second argument to be an abstract word or a Tietze word in
# the generators.
gens := T!.generators;
if IsList( word ) then
tzword := ReducedRrsWord( word );
aword := AbstractWordTietzeWord( tzword, gens );
else
aword := word;
tzword := TietzeWordAbstractWord( aword, gens );
fi;
# if generator images and preimages are being traced through the Tietze
# transformations of T, save them from being deleted by `AddGenerator'.
images := 0;
if IsBound( T!.imagesOldGens ) then
images := T!.imagesOldGens;
Unbind( T!.imagesOldGens );
fi;
# add a new generator.
AddGenerator( T );
gen := T!.generators[Length( T!.generators )];
# add the corresponding relator.
if TzOptions(T).printLevel >= 1 then Print(
"#I substituting new generator ",gen," defined by ",aword,"\n" );
fi;
AddRelator( T, gen^-1 * aword );
# restore the generator images and update the generator preimages, if
# available.
if IsList( images ) then
T!.imagesOldGens := images;
TzUpdateGeneratorImages( T, 0, tzword );
fi;
if TzOptions(T).printLevel >= 1 then TzPrintStatus( T, true ); fi;
end );
#############################################################################
##
#M TzUpdateGeneratorImages( T, n, word ) . . . . update the generator images
#M after a Tietze transformation
##
## `TzUpdateGeneratorImages' assumes that it is called by a function that
## performs Tietze transformations to a presentation record <T> in which
## images of the old generators are being traced as Tietze words in the new
## generators as well as preimages of the new generators as Tietze words in
## the old generators.
##
## If <n> is zero, it assumes that a new generator defined by the Tietze
## word <word> has just been added to the presentation. It converts <word>
## from a Tietze word in the new generators to a Tietze word in the old
## generators and adds that word to the list of preimages.
##
## If <n> is greater than zero, it assumes that the <n>-th generator has
## just been eliminated from the presentation. It updates the images of the
## old generators by replacing each occurrence of the <n>-th generator by
## the given Tietze word <word>.
##
## If <n> is less than zero, it terminates the tracing of generator images,
## i. e., it deletes the corresponding record components of <T>.
##
## Note: `TzUpdateGeneratorImages' is considered to be an internal function.
## Hence it does not check the arguments.
##
InstallGlobalFunction( TzUpdateGeneratorImages, function ( T, n, word )
local i, image, invword, j, newim, num, oldnumgens,replace,mn,oldi;
if n = 0 then
# update the preimages of the new generators.
newim := [];
for num in word do
if num > 0 then
Append( newim, T!.preImagesNewGens[num] );
else
Append( newim, -1 * Reversed( T!.preImagesNewGens[-num] ) );
fi;
od;
Add( T!.preImagesNewGens, ReducedRrsWord( newim ) );
elif n > 0 then
mn:=-n;
# update the images of the old generators:
# run through all images and replace the n-th generator by word.
invword := -1 * Reversed( word );
oldi:=T!.imagesOldGens;
oldnumgens := Length( oldi );
for i in [ 1 .. oldnumgens ] do
image := oldi[i];
if Length(image)=1 then
# the image is a single generator. This happens often.
if image[1]=n then
oldi[i]:=ReducedRrsWord(word);
elif image[1]=mn then
oldi[i]:=ReducedRrsWord(invword);
fi;
else
replace:=false;
j:=1;
while replace=false and j<=Length(image) do
replace:=image[j]=n or image[j]=mn;
j:=j+1;
od;
if replace then
newim := [];
replace:=false;
for j in [ 1 .. Length( image ) ] do
if image[j] = n then
Append( newim, word );
elif image[j] = mn then
Append( newim, invword );
else
Add( newim, image[j] );
fi;
od;
oldi[i] := ReducedRrsWord( newim );
fi;
fi;
od;
else
# terminate the tracing of generator images.
Unbind( T!.imagesOldGens );
Unbind( T!.preImagesNewGens );
if IsBound( T!.oldGenerators ) then
Unbind( T!.oldGenerators );
fi;
if TzOptions(T).printLevel >= 1 then
Print( "#I terminated the tracing of generator images\n" );
fi;
fi;
end );
#############################################################################
##
#E tietze.gi . . . . . . . . . . . . . . . . . . . . . . . . . .. ends here
|