/usr/share/gap/lib/tuples.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | #############################################################################
##
#W tuples.gi GAP library Steve Linton
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for direct product elements.
##
#############################################################################
##
#V DIRECT_PRODUCT_ELEMENT_FAMILIES . . . list of all direct product elements
#V families
##
EmptyDirectProductElementsFamily!.defaultTupleType:= NewType(
EmptyDirectProductElementsFamily, IsDefaultDirectProductElementRep );
SetComponentsOfDirectProductElementsFamily( EmptyDirectProductElementsFamily,
[] );
InstallValue( DIRECT_PRODUCT_ELEMENT_FAMILIES,
[ [ EmptyDirectProductElementsFamily ] ] );
#############################################################################
##
#M DirectProductElementsFamily( <famlist> ) . . . family of direct product
#M elements
##
InstallMethod( DirectProductElementsFamily,
"for a collection (of families)",
fam -> fam = CollectionsFamily(FamilyOfFamilies),
[ IsCollection ],
function( famlist )
local n, tupfams, freepos, len, i, fam, tuplespos,
tuplesfam,filter,filter2;
n := Length(famlist);
if not IsBound(DIRECT_PRODUCT_ELEMENT_FAMILIES[n+1]) then
tupfams:= WeakPointerObj( [] );
DIRECT_PRODUCT_ELEMENT_FAMILIES[n+1]:= tupfams;
freepos:= 1;
else
tupfams:= DIRECT_PRODUCT_ELEMENT_FAMILIES[n+1];
len:= LengthWPObj( tupfams );
for i in [ 1 .. len+1 ] do
fam:= ElmWPObj( tupfams, i );
if fam = fail then
if not IsBound( freepos ) then
freepos:= i;
fi;
elif ComponentsOfDirectProductElementsFamily( fam ) = famlist then
tuplespos:= i;
break;
fi;
od;
fi;
if IsBound( tuplespos ) then
Info( InfoDirectProductElements, 2,
"Reused direct product elements family, length ", n );
tuplesfam:= tupfams[ tuplespos ];
else
Info( InfoDirectProductElements, 1,
"Created new direct product elements family, length ", n );
filter:=IsDirectProductElement;
filter2:=IsDirectProductElementFamily;
# inherit positive element comparison from the families but do not
# trigger the computation.
if ForAll(famlist,i->HasCanEasilySortElements(i) and
CanEasilySortElements(i)) then
filter:=filter and CanEasilySortElements;
filter2:=filter2 and CanEasilySortElements;
elif ForAll(famlist,i->HasCanEasilyCompareElements(i) and
CanEasilyCompareElements(i)) then
filter:=filter and CanEasilyCompareElements;
filter2:=filter2 and CanEasilyCompareElements;
fi;
tuplesfam:= NewFamily( "DirectProductElementsFamily( <<famlist>> )",
IsDirectProductElement, filter, filter2 );
SetComponentsOfDirectProductElementsFamily( tuplesfam,
Immutable( famlist ) );
SetElmWPObj( tupfams, freepos, tuplesfam );
tuplesfam!.defaultTupleType:= NewType( tuplesfam,
IsDefaultDirectProductElementRep );
fi;
return tuplesfam;
end );
#############################################################################
##
#M DirectProductElementsFamily( [] ) . . . . family of empty direct product
#M element(s)
##
InstallOtherMethod( DirectProductElementsFamily,
"for an empty list",
[ IsList and IsEmpty ],
function( empty )
Info( InfoDirectProductElements, 2,
"Reused direct product elements family, length 0 ");
return DIRECT_PRODUCT_ELEMENT_FAMILIES[1][1];
end );
#############################################################################
##
#M DirectProductElement( <objlist> ) . . . . . make a direct product element
##
InstallMethod( DirectProductElement,
"for a list",
[ IsList ],
function( objlist )
local fam;
fam := DirectProductElementsFamily( List(objlist, FamilyObj) );
return DirectProductElementNC( fam, objlist );
end );
#############################################################################
##
#M DirectProductElement( <fam>, <objlist> ) . make a direct product element
##
InstallOtherMethod( DirectProductElement,
"for a direct product elements family, and a list",
[ IsDirectProductElementFamily, IsList ],
function( fam, objlist )
while ComponentsOfDirectProductElementsFamily( fam )
<> List( objlist, FamilyObj ) do
objlist:=
Error( "objects not of proper families for direct product ",
"elements family supplied, you may supply replacements" );
od;
return DirectProductElementNC( fam, objlist );
end );
#############################################################################
##
#M PrintObj( <dpelm> ) . . . . . . . . . . . print a direct product element
##
InstallMethod( PrintObj,
"for a direct product element",
[ IsDirectProductElement ],
function( dpelm )
local i;
Print( "DirectProductElement( [ " );
for i in [ 1 .. Length( dpelm )-1 ] do
Print( dpelm[i], ", " );
od;
if Length( dpelm ) <> 0 then
Print( dpelm[ Length( dpelm ) ] );
fi;
Print(" ] )");
end );
#############################################################################
##
#M ViewObj( <dpelm> ) . . . . . . . . . . . . view a direct product element
##
InstallMethod( ViewObj,
"for a direct product element",
[ IsDirectProductElement ],
function( dpelm )
local i;
Print( "DirectProductElement( " );
Print( ViewString( AsList( (dpelm) ) ) );
Print(" )");
end );
#############################################################################
##
#M <dpelm1> < <dpelm2> . . . . . . . . . . . . . . . . . . . . . comparison
##
InstallMethod( \<,
"for two direct product elements",
IsIdenticalObj,
[ IsDirectProductElement, IsDirectProductElement ],
function( dpelm1, dpelm2 )
local i;
for i in [1..Length(dpelm1)] do
if dpelm1[i] < dpelm2[i] then
return true;
elif dpelm1[i] > dpelm2[i] then
return false;
fi;
od;
return false;
end );
#############################################################################
##
#M <dpelm1> = <dpelm2> . . . . . . . . . . . . . . . . . . . . . comparison
##
InstallMethod( \=,
"for two direct product elements",
IsIdenticalObj,
[ IsDirectProductElement, IsDirectProductElement ],
function( dpelm1, dpelm2 )
local i;
for i in [1..Length(dpelm1)] do
if dpelm1[i] <> dpelm2[i] then
return false;
fi;
od;
return true;
end );
#############################################################################
##
#M CanEasilyCompareElements( <dpelm> )
##
InstallMethod( CanEasilyCompareElements,
"for direct product element",
[ IsDirectProductElement ],
function( dpelm )
local i;
for i in dpelm do
if not CanEasilyCompareElements( i ) then
return false;
fi;
od;
return true;
end );
#############################################################################
##
#M DirectProductElementNC( <dpelmfam>, <objlist> ) . make a direct product
#M element
##
## Note that we really have to copy the list passed, even if it is immutable
## as we are going to call `Objectify'.
##
InstallMethod( DirectProductElementNC,
"for a direct product elements family, and a list",
[ IsDirectProductElementFamily, IsList ],
function( fam, objlist )
local t;
Assert( 2, ComponentsOfDirectProductElementsFamily( fam )
= List( objlist, FamilyObj ) );
t:= Objectify( fam!.defaultTupleType,
PlainListCopy( List( objlist, Immutable ) ) );
Info( InfoDirectProductElements, 3,
"Created a new DirectProductElement ", t );
return t;
end );
#############################################################################
##
#M <dpelm>[ <index> ] . . . . . . . . . . . . . . . . . . . component access
##
InstallMethod( \[\],
"for a direct product element in default repres., and a pos. integer",
[ IsDefaultDirectProductElementRep, IsPosInt ],
function( dpelm, index )
while index > Length( dpelm ) do
index:= Error( "<index> too large for <dpelm>, ",
"you may return another index" );
od;
return dpelm![index];
end );
#############################################################################
##
#M Length( <dpelm> ) . . . . . . . . . . . . . . . . . number of components
##
InstallMethod( Length,
"for a direct product element in default representation",
[ IsDefaultDirectProductElementRep ],
function( dpelm )
return Length( ComponentsOfDirectProductElementsFamily(
FamilyObj( dpelm ) ) );
end );
#############################################################################
##
#M InverseOp( <dpelm> )
##
InstallMethod( InverseOp,
"for a direct product element",
[ IsDirectProductElement ],
function( dpelm )
return DirectProductElement( List( dpelm, Inverse ) );
end );
#############################################################################
##
#M OneOp( <dpelm> )
##
InstallMethod( OneOp,
"for a direct product element",
[ IsDirectProductElement ],
function( dpelm )
return DirectProductElement( List( dpelm, One ) );
end );
#############################################################################
##
#M \*( <dpelm>, <dpelm> )
##
InstallMethod( \*,
"for two direct product elements",
[ IsDirectProductElement, IsDirectProductElement ],
function( elm1, elm2 )
local n;
n := Length( elm1 );
return DirectProductElement( List( [1..n], x -> elm1[x]*elm2[x] ) );
end );
#############################################################################
##
#M IsGeneratorsOfMagmaWithInverses( <list> )
##
InstallMethod( IsGeneratorsOfMagmaWithInverses,
"for list of direct product elements",
[ IsDirectProductElementCollection ],
function( l )
local n;
if IsEmpty (l) then
return true;
fi;
n := Length (l[1]);
if ForAny (l, x -> Length (x) <> n) then
return false;
fi;
return ForAll( [ 1 .. n ],
i -> IsGeneratorsOfMagmaWithInverses (l{[1..Length(l)]}[i]));
end );
#############################################################################
##
#M \^( <dpelm>, <integer> )
##
InstallMethod( \^,
"for direct product element, and integer",
[ IsDirectProductElement, IsInt ],
function( dpelm, x )
return DirectProductElement( List( dpelm, y -> y^x ) );
end );
#############################################################################
##
#M AdditiveInverseOp( <dpelm> )
##
InstallMethod( AdditiveInverseOp,
"for a direct product element",
[ IsDirectProductElement ],
function( dpelm )
return DirectProductElement( List( dpelm, AdditiveInverse ) );
end );
#############################################################################
##
#M ZeroOp( <dpelm> )
##
InstallMethod( ZeroOp,
"for a direct product element",
[ IsDirectProductElement ],
function( dpelm )
return DirectProductElement( List( dpelm, Zero ) );
end );
#############################################################################
##
#M \+( <dpelm1>, <dpelm2> )
##
InstallMethod( \+,
"for two direct product elements",
[ IsDirectProductElement, IsDirectProductElement ],
function( dpelm1, dpelm2 )
local n;
n := Length( dpelm1 );
return DirectProductElement( List( [1..n], x -> dpelm1[x]+dpelm2[x] ) );
end );
#############################################################################
##
#M \+( <dpelm>, <defaultlist> )
#M \+( <defaultlist>, <dpelm> )
#M \*( <dpelm>, <defaultlist> )
#M \*( <defaultlist>, <dpelm> )
#M \+( <dpelm>, <nonlist> )
#M \+( <nonlist>, <dpelm> )
#M \*( <dpelm>, <nonlist> )
#M \*( <nonlist>, <dpelm> )
##
## Direct product elements do *not* lie in `IsGeneralizedRowVector',
## since they shall behave as scalars;
## for example we want the sum of a direct product element and a list of
## diect product elements to be the list of sums.
## (It would also be possible to make them generalized row vectors with
## additive and multiplicative nesting depth zero, but then the nesting
## depths would have to be calculated whenever they are needed.
## In fact I think this approach would be equivalent.)
##
## Because direct product elements are lists, there are no default methods
## for adding or multiplying a direct product element and a default list.
## So we install such methods where direct product elements act as scalars.
## Analogously,
## we define the sum and the product of a direct product element
## with a non-list as the direct product element of componentwise sums and
## products, respectively.
##
#T As soon as IsListDefault implies IsAdditiveElement and
#T IsMultiplicativeElement, the InstallOtherMethod in the first four
#T of the following methods can be replaced by InstallMethod!
InstallOtherMethod( \+,
"for a direct product element, and a default list",
[ IsDirectProductElement, IsListDefault ],
SUM_SCL_LIST_DEFAULT );
InstallOtherMethod( \+,
"for a default list, and a direct product element",
[ IsListDefault, IsDirectProductElement ],
SUM_LIST_SCL_DEFAULT );
InstallOtherMethod( \*,
"for a direct product element, and a default list",
[ IsDirectProductElement, IsListDefault ],
PROD_SCL_LIST_DEFAULT );
InstallOtherMethod( \*,
"for a default list, and a direct product element",
[ IsListDefault, IsDirectProductElement ],
PROD_LIST_SCL_DEFAULT );
InstallOtherMethod( \+,
"for a direct product element, and a non-list",
[ IsDirectProductElement, IsObject ],
function( dpelm, nonlist )
if IsList( nonlist ) then
TryNextMethod();
fi;
return DirectProductElement( List( dpelm, entry -> entry + nonlist ) );
end );
InstallOtherMethod( \+,
"for a non-list, and a direct product element",
[ IsObject, IsDirectProductElement ],
function( nonlist, dpelm )
if IsList( nonlist ) then
TryNextMethod();
fi;
return DirectProductElement( List( dpelm, entry -> nonlist + entry ) );
end );
InstallOtherMethod( \*,
"for a direct product element, and a non-list",
[ IsDirectProductElement, IsObject ],
function( dpelm, nonlist )
if IsList( nonlist ) then
TryNextMethod();
fi;
return DirectProductElement( List( dpelm, entry -> entry * nonlist ) );
end );
InstallOtherMethod( \*,
"for a non-list, and a direct product element",
[ IsObject, IsDirectProductElement ],
function( nonlist, dpelm )
if IsList( nonlist ) then
TryNextMethod();
fi;
return DirectProductElement( List( dpelm, entry -> nonlist * entry ) );
end );
#############################################################################
##
#E
|