/usr/share/gap/lib/twocohom.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | #############################################################################
##
#W twocohom.gd GAP library Bettina Eick
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#F CollectedWordSQ( <C>, <u>, <v> )
##
## <ManSection>
## <Func Name="CollectedWordSQ" Arg='C, u, v'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CollectedWordSQ" );
#############################################################################
##
#F CollectorSQ( <G>, <M>, <isSplit> )
##
## <ManSection>
## <Func Name="CollectorSQ" Arg='G, M, isSplit'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CollectorSQ" );
#############################################################################
##
#F AddEquationsSQ( <eq>, <t1>, <t2> )
##
## <ManSection>
## <Func Name="AddEquationsSQ" Arg='eq, t1, t2'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "AddEquationsSQ" );
#############################################################################
##
#F SolutionSQ( <C>, <eq> )
##
## <ManSection>
## <Func Name="SolutionSQ" Arg='C, eq'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "SolutionSQ" );
#############################################################################
##
#F TwoCocyclesSQ( <C>, <G>, <M> )
##
## <ManSection>
## <Func Name="TwoCocyclesSQ" Arg='C, G, M'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "TwoCocyclesSQ" );
#############################################################################
##
#F TwoCoboundariesSQ( <C>, <G>, <M> )
##
## <ManSection>
## <Func Name="TwoCoboundariesSQ" Arg='C, G, M'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "TwoCoboundariesSQ" );
#############################################################################
##
#F TwoCohomologySQ( <C>, <G>, <M> )
##
## <ManSection>
## <Func Name="TwoCohomologySQ" Arg='C, G, M'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "TwoCohomologySQ" );
#############################################################################
##
#O TwoCocycles( <G>, <M> )
##
## <#GAPDoc Label="TwoCocycles">
## <ManSection>
## <Oper Name="TwoCocycles" Arg='G, M'/>
##
## <Description>
## returns the <M>2</M>-cocycles of a pc group <A>G</A> by the
## <A>G</A>-module <A>M</A>.
## The generators of <A>M</A> must correspond to the <Ref Func="Pcgs"/>
## value of <A>G</A>. The operation
## returns a list of vectors over the field underlying <A>M</A> and the
## additive group generated by these vectors is the group of
## <M>2</M>-cocyles.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TwoCocycles", [ IsPcGroup, IsObject ] );
#############################################################################
##
#O TwoCoboundaries( <G>, <M> )
##
## <#GAPDoc Label="TwoCoboundaries">
## <ManSection>
## <Oper Name="TwoCoboundaries" Arg='G, M'/>
##
## <Description>
## returns the group of <M>2</M>-coboundaries of a pc group <A>G</A> by the
## <A>G</A>-module <A>M</A>.
## The generators of <A>M</A> must correspond to the <Ref Func="Pcgs"/>
## value of <A>G</A>.
## The group of coboundaries is given as vector space over the field
## underlying <A>M</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TwoCoboundaries", [ IsPcGroup, IsObject ] );
#############################################################################
##
#O TwoCohomology( <G>, <M> )
##
## <#GAPDoc Label="TwoCohomology">
## <ManSection>
## <Oper Name="TwoCohomology" Arg='G, M'/>
##
## <Description>
## returns a record defining the second cohomology group as factor space of
## the space of cocycles by the space of coboundaries.
## <A>G</A> must be a pc group and the generators of <A>M</A> must
## correspond to the pcgs of <A>G</A>.
## <Example><![CDATA[
## gap> G := SmallGroup( 4, 2 );
## <pc group of size 4 with 2 generators>
## gap> mats := List( Pcgs( G ), x -> IdentityMat( 1, GF(2) ) );
## [ <a 1x1 matrix over GF2>, <a 1x1 matrix over GF2> ]
## gap> M := GModuleByMats( mats, GF(2) );
## rec( IsOverFiniteField := true, dimension := 1, field := GF(2),
## generators := [ <an immutable 1x1 matrix over GF2>,
## <an immutable 1x1 matrix over GF2> ], isMTXModule := true )
## gap> TwoCoboundaries( G, M );
## [ ]
## gap> TwoCocycles( G, M );
## [ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2) ],
## [ 0*Z(2), 0*Z(2), Z(2)^0 ] ]
## gap> cc := TwoCohomology( G, M );;
## gap> cc.cohom;
## <linear mapping by matrix, <vector space of dimension 3 over GF(
## 2)> -> ( GF(2)^3 )>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TwoCohomology", [ IsPcGroup, IsObject ] );
#############################################################################
##
#E
|