This file is indexed.

/usr/share/gap/lib/upoly.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#############################################################################
##
#W  upoly.gd                 GAP Library                     Alexander Hulpke
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains attributes, properties and operations for univariate
##  polynomials
##

#############################################################################
##
#A  SplittingField(<f>)
##
##  <#GAPDoc Label="SplittingField">
##  <ManSection>
##  <Attr Name="SplittingField" Arg='f'/>
##
##  <Description>
##  returns the smallest field which contains the coefficients of <A>f</A> and
##  the roots of <A>f</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("SplittingField",IsPolynomial);

#############################################################################
##
#A  IrrFacsPol( <f> ) . . . lists of irreducible factors of polynomial over
##                        diverse rings
##
##  <ManSection>
##  <Attr Name="IrrFacsPol" Arg='f'/>
##
##  <Description>
##  is used to store irreducible factorizations of the polynomial <A>f</A>.
##  The values of this attribute are lists of the form
##  <C>[ [ <A>R</A>, <A>factors</A> ], ... ]</C> where <A>factors</A> is
##  a list of the irreducible factors of <A>f</A> over the coefficients ring <A>R</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute("IrrFacsPol",IsPolynomial,"mutable");

#############################################################################
##
#F  StoreFactorsPol( <pring>, <upol>, <factlist> ) . . . . store factors list
##
##  <ManSection>
##  <Func Name="StoreFactorsPol" Arg='pring, upol, factlist'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("StoreFactorsPol");


#############################################################################
##
#O  FactorsSquarefree( <pring>, <upol>, <opt> )
##
##  <#GAPDoc Label="FactorsSquarefree">
##  <ManSection>
##  <Oper Name="FactorsSquarefree" Arg='pring, upol, opt'/>
##
##  <Description>
##  returns a factorization of the squarefree, monic, univariate polynomial
##  <A>upol</A> in the polynomial ring <A>pring</A>;
##  <A>opt</A> must be a (possibly empty) record of options.
##  <A>upol</A> must not have zero as a root.
##  This function is used by the factoring algorithms.
##  <P/>
##  The current method for multivariate factorization reduces to univariate
##  factorization by use of a reduction homomorphism of the form
##  <M>f(x_1,x_2,x_3) \mapsto f(x,x^p,x^{{p^2}})</M>.
##  It can be very time intensive for larger degrees.
##  <P/>
##  <Example><![CDATA[
##  gap> Factors(x^10-y^10);
##  [ x-y, x+y, x^4-x^3*y+x^2*y^2-x*y^3+y^4, x^4+x^3*y+x^2*y^2+x*y^3+y^4 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("FactorsSquarefree",[IsPolynomialRing,
                                       IsUnivariatePolynomial, IsRecord ]);

#############################################################################
##
#F  RootsOfUPol( [<field>, ]<upol>)
##
##  <#GAPDoc Label="RootsOfUPol">
##  <ManSection>
##  <Func Name="RootsOfUPol" Arg='[field, ]upol'/>
##
##  <Description>
##  This function returns a list of all roots of the univariate polynomial
##  <A>upol</A> in its default domain.
##  If the optional argument <A>field</A> is a field then the roots in this
##  field are computed.
##  If <A>field</A> is the string <C>"split"</C> then the splitting field of
##  the polynomial is taken.
##  <Example><![CDATA[
##  gap> RootsOfUPol(50-45*x-6*x^2+x^3);
##  [ 10, 1, -5 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("RootsOfUPol");

#############################################################################
##
#V  CYCLOTOMICPOLYNOMIALS . . . . . . . . . .  list of cyclotomic polynomials
##
##  <ManSection>
##  <Var Name="CYCLOTOMICPOLYNOMIALS"/>
##
##  <Description>
##  global list encoding cyclotomic polynomials by their coefficients lists
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable( "CYCLOTOMICPOLYNOMIALS",
    "list, at position n the coefficient list of the n-th cycl. pol." );
InstallFlushableValue( CYCLOTOMICPOLYNOMIALS, [] );


#############################################################################
##
#F  CyclotomicPol( <n> )  . . .  coefficients of <n>-th cyclotomic polynomial
##
##  <ManSection>
##  <Func Name="CyclotomicPol" Arg='n'/>
##
##  <Description>
##  is the coefficients list of the <A>n</A>-th cyclotomic polynomial over
##  the rationals.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CyclotomicPol" );


#############################################################################
##
#F  CyclotomicPolynomial( <F>, <n> )  . . . . . .  <n>-th cycl. pol. over <F>
##
##  <#GAPDoc Label="CyclotomicPolynomial">
##  <ManSection>
##  <Func Name="CyclotomicPolynomial" Arg='F, n'/>
##
##  <Description>
##  is the <A>n</A>-th cyclotomic polynomial over the ring <A>F</A>.
##  <Example><![CDATA[
##  gap> CyclotomicPolynomial(Rationals,5);
##  x^4+x^3+x^2+x+1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CyclotomicPolynomial" );


#############################################################################
##
#O  IsPrimitivePolynomial( <F>, <pol> )
##
##  <#GAPDoc Label="IsPrimitivePolynomial">
##  <ManSection>
##  <Oper Name="IsPrimitivePolynomial" Arg='F, pol'/>
##
##  <Description>
##  For a univariate polynomial <A>pol</A> of degree <M>d</M> in the
##  indeterminate <M>X</M>,
##  with coefficients in a finite field <A>F</A> with <M>q</M> elements, say,
##  <Ref Func="IsPrimitivePolynomial"/> returns <K>true</K> if
##  <Enum>
##  <Item>
##      <A>pol</A> divides <M>X^{{q^d-1}} - 1</M>, and
##  </Item>
##  <Item>
##      for each prime divisor <M>p</M> of <M>q^d - 1</M>,
##      <A>pol</A> does not divide <M>X^{{(q^d-1)/p}} - 1</M>,
##  </Item>
##  </Enum>
##  and <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsPrimitivePolynomial", [ IsField, IsRationalFunction ] );


#############################################################################
##
#F  CompanionMat( <poly> )
##
##  <#GAPDoc Label="CompanionMat">
##  <ManSection>
##  <Func Name="CompanionMat" Arg='poly'/>
##
##  <Description>
##  computes a companion matrix of the polynomial <A>poly</A>. This matrix has
##  <A>poly</A> as its minimal polynomial.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CompanionMat" );

#############################################################################
##
#F  AllIrreducibleMonicPolynomials( <degree>, <field> )
##
##  <ManSection>
##  <Func Name="AllIrreducibleMonicPolynomials" Arg='degree, field'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "AllIrreducibleMonicPolynomials" );

#############################################################################
##
#E