This file is indexed.

/usr/share/gap/lib/utils.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
#############################################################################
##
#W  utils.gi			GAP Library		       Gene Cooperman
#W							     and Scott Murray
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This is a temporary file containing utilities for group chains.
##


#############################################################################
#############################################################################
##
##  General 
##
#############################################################################
#############################################################################

#############################################################################
##
#F  UseSubsetRelationNC( <super>, <sub> )
##
InstallGlobalFunction( UseSubsetRelationNC, function ( super, sub )
    local  entry;
    for entry  in SUBSET_MAINTAINED_INFO[1]  do
        if entry[1]( super ) and entry[2]( sub ) and not entry[4]( sub )  then
            entry[5]( sub, entry[3]( super ) );
        fi;
    od;
    return true;
end );

#############################################################################
##
#M  ImageUnderWord( <basicIm>, <word>, <orbitGenerators>, <homFromFree> )
##
InstallMethod( ImageUnderWord, "for basic images", true,
    [ IsList, IsWordWithInverse, IsList, IsGroupHomomorphism ], 0,
    function( basicIm, word, orbitGenerators, homFromFree )
	local newIm, i, freeGens, term, oGen;

	newIm := ShallowCopy( basicIm );
	freeGens := GeneratorsOfGroup( Source( homFromFree ) );
	for i in [1..Length( word )] do
	    term := Subword( word, i, i );
	    if term in freeGens then
		oGen := orbitGenerators[ Position( freeGens, term ) ];
	    else
		oGen := orbitGenerators[ Position( freeGens, term^(-1) ) ]^(-1);
	    fi;
	    newIm := List( newIm, b -> b^oGen );
	od;
	return newIm;
    end );

#############################################################################
##
#M  ImageUnderWord( <basicIm>, <word>, <orbitGenerators>, <homFromFree> )
##
InstallMethod( ImageUnderWord, "for integers", true,
    [ IsInt, IsWordWithInverse, IsList, IsGroupHomomorphism ], 0,
    function( pnt, word, orbitGenerators, homFromFree )
	local newIm, i, freeGens, term, oGen;

	freeGens := GeneratorsOfGroup( Source( homFromFree ) );
	for i in [1..Length( word )] do
	    term := Subword( word, i, i );
	    if term in freeGens then
		oGen := orbitGenerators[ Position( freeGens, term ) ];
	    else
		oGen := orbitGenerators[ Position( freeGens, term^(-1) ) ]^(-1);
	    fi;
	    pnt := pnt^oGen;
	od;
	return pnt;
    end );


#############################################################################
#############################################################################
##
##  Matrices and vectors
##
#############################################################################
#############################################################################

#############################################################################
##
#M  UnderlyingField( <V> )
##
InstallMethod( UnderlyingField, "for vector space", true,
    [ IsVectorSpace ], 0,
    V -> LeftActingDomain( V ) );

#############################################################################
##
#M  UnderlyingField( <A> )
##
InstallMethod( UnderlyingField, "for matrix algebra", true,
    [ IsAlgebra ], 0,
    A -> LeftActingDomain( A ) );

#############################################################################
##
#M  UnderlyingField( <G> )
##
InstallMethod( UnderlyingField, "for matrix group", true,
    [ IsFFEMatrixGroup ], 0,
    G -> FieldOfMatrixGroup( G ) );

#############################################################################
##
#M  MatrixDimension( <A> )
##
InstallMethod( MatrixDimension, "for matrix algebra", true,
    [ IsAlgebra ], 0,
    A -> Length( One( A ) ) );

#############################################################################
##
#M  MatrixDimension( <G> )
##
InstallMethod( MatrixDimension, "for matrix group", true,
    [ IsFFEMatrixGroup ], 0, DimensionOfMatrixGroup );

#############################################################################
##
#M  UnderlyingVectorSpace( <A> )
##
InstallMethod( UnderlyingVectorSpace, "for matrix algebra", true,
    [ IsAlgebra ], 0,
    A -> FullRowSpace( UnderlyingField(A), MatrixDimension(A) ) );

#############################################################################
##
#M  UnderlyingVectorSpace( <G )
##
InstallMethod( UnderlyingVectorSpace, "for matrix group", true,
    [ IsFFEMatrixGroup ], 0,
    G -> FullRowSpace( UnderlyingField(G), MatrixDimension(G) ) );

#############################################################################
##
#M  UnderlyingVectorSpace( <M> )
##
InstallMethod( UnderlyingVectorSpace, "for matrix", true,
    [ IsMatrix ], 0,
    M -> FullRowSpace( DefaultFieldOfMatrix(M), Length(M) ) );

#############################################################################
##
#M  FixedPointSpace( <matrix> )
##
InstallMethod( FixedPointSpace, "for matrix", true,
    [ IsMatrix ], 0,matrix ->
    Subspace( UnderlyingVectorSpace(matrix),
              NullspaceMat( matrix - One(matrix) ),
              "basis" ) ); # Tells GAP not to check if it's a basis.

#############################################################################
##
#M  PermMatrixGroup( <G> )
##
InstallMethod( PermMatrixGroup, "for perm group", true,
    [ IsPermGroup ], 0, 
    G -> Group( List( GeneratorsOfGroup( G ),
        elt -> PermutationMat( elt, Maximum( 1, NrMovedPoints(G) ),
                               GF(2) ) ) ) );

#############################################################################
##
#M  EnvelopingAlgebra( <G> )
##
InstallMethod( EnvelopingAlgebra, "for matrix group", true,
    [ IsFFEMatrixGroup ], 0, 
    G ->  Algebra(UnderlyingField(G), GeneratorsOfGroup(G)) );

#############################################################################
##
#M  SpanOfMatrixGroup( <G> )
##
InstallMethod( SpanOfMatrixGroup, "for matrix group", true,
    [ IsFFEMatrixGroup ], 0, 
    G -> AsVectorSpace( UnderlyingField(G), EnvelopingAlgebra(G) ) );

#############################################################################
##
#M  IsUniformMatrixGroup( <> )
##
##  Matrix group is uniform if fixed point space of every element
##    is either the trivial space or the entire space.
##    (used in Luks algorithm in solmxgrp.gi)
##
InstallMethod( IsUniformMatrixGroup, "for cyclic matrix p-group", true,
    [ IsFFEMatrixGroup and IsCyclic and IsPGroup ], 0,
    G -> IsIdenticalObj( G, InvariantSubspaceOrUniformCyclicPGroup(G) ) );

#############################################################################
##
#A  PreBasis( <H> )
##
InstallMethod( PreBasis, "for vector space homomorphisms", true,
    [ IsVectorSpaceHomomorphism ], 0, 
    function( H ) 
    local srcs, ims, subsp, im, newsubsp, b, imsp, B;

    B := Basis(Source(H));
    srcs := []; ims := [];
    imsp := Image(H);
    subsp := TrivialSubspace(imsp);
    for b in AsList(B) do
	im := ImageElm(H, b);
	newsubsp := Subspace( imsp, Concatenation( AsList(Basis(subsp)), [im] ) );
	if newsubsp <> subsp then
	    subsp := newsubsp;
	    Add( srcs, b );  Add(ims, im );
	fi;
    od;

    return [srcs, ims];
    end );

#############################################################################
##
#F Pullback( <H>, <v> )
##
InstallGlobalFunction( PullBack, function( H, v )  # v in image under H
    local preBasis, basis, tmp;
    tmp := PreBasis( H );
    preBasis := BasisNC( Source(H), tmp[1] );
    basis := Basis( Image(H), tmp[2] );
    return LinearCombination( Coefficients( basis, v ), preBasis );
end );

#############################################################################
##
#F  ImageMat( <H>, <A> )
##
InstallGlobalFunction( ImageMat, function( H, A )
local imgBasis, imgOfA;
    imgBasis := CanonicalBasis(Image(H));
    imgOfA := List( BasisVectors(imgBasis), v-> ImageElm( H, PullBack(H,v)^A ) );
    return TransposedMat( imgOfA );
end );

#############################################################################
##
#F  ExtendToBasis( <V>, <vects> )
##
InstallGlobalFunction( ExtendToBasis, function( V, vects )
     local subsp, b, newsubsp;

     vects := ShallowCopy( vects );
     subsp := Subspace( V, vects );
     for b in BasisVectors( Basis( V ) ) do
	newsubsp := Subspace( V,
                          Concatenation( BasisVectors(Basis(subsp)), [b] ) );
	if newsubsp <> subsp then
	    subsp := newsubsp;
	    Add( vects, b );
	fi;
    od;
   
    return Basis( V, vects );
end );

#############################################################################
##
#F  ProjectionOntoVectorSubspace( <V>, <W> )
##
##  H := ProjectionOfVectorSpace := function( V, W );
##  v := Random(V);  ImageElm(H, ImageElm(H, v)) = ImageElm(H, v);
##
InstallGlobalFunction( ProjectionOntoVectorSubspace, function( V, W ) # V->W
    local basisW, basisV;

    basisW := BasisVectors(Basis(W));
    basisV := BasisVectors(Basis(V));
    if not IsSubspace(V,W) then
	Print("ProjectionOntoVectorSubspace:  W must be a subspace of V\n");
	return fail;
    fi;
    return LeftModuleHomomorphismByImages(V, W, ExtendToBasis(V,basisW), 
		Concatenation( basisW,
      ListWithIdenticalEntries( Length(basisV) - Length(basisW), Zero(W) ) ) );
end );

#############################################################################
##
#F  IsomorphismToFullRowSpace( <V> )
##
InstallGlobalFunction( IsomorphismToFullRowSpace, function( V )  # V -> standard vector space
    local basisV, imV;

    basisV := BasisVectors(Basis(V));
    imV := FullRowSpace( Field(Flat(basisV)), Length(basisV) );
    return LeftModuleHomomorphismByImages(V, imV,
                                          basisV, BasisVectors(Basis(imV)) );
end );


#############################################################################
##
#F  ProjectionOntoFullRowSpace( <V>, <W> )
##
InstallGlobalFunction( ProjectionOntoFullRowSpace, function( V, W )  # V->W -> standard vector space
    return CompositionMapping( IsomorphismToFullRowSpace(W),
                               ProjectionOntoVectorSubspace(V, W) );
end );


#############################################################################
#############################################################################
##
##  Groups
##
#############################################################################
#############################################################################

#############################################################################
##
#F  RandomSubprod( <grp> )
##
##  REFERENCE:  (random subproducts, random normal subproducts,
##               random Schreier subproducts, random commutator subproducts)
##  G.~Cooperman and L.~Finkelstein, ``Combinatorial Tools for Computational
##  Group Theory'', Proceedings of DIMACS Workshop on Groups and Computation,
##  DIMACS-AMS 11, AMS Press, Providence, RI, 1993, pp.~53--86
##
InstallGlobalFunction( RandomSubprod, function(grp)
    local prod, gen;
    prod := One(grp);
    for gen in GeneratorsOfGroup(grp) do
        if Random([true,false]) then prod := prod * gen; fi;
    od;
    return prod;
end );

#############################################################################
##
#F  RandomNormalSubproduct( <grp>, <subgp> )
##
InstallGlobalFunction( RandomNormalSubproduct, function(grp, subgp)
    return RandomSubprod(subgp)^RandomSubprod(grp);
end );

#############################################################################
##
#F  RandomCommutatorSubproduct( <grp>, <subgp> )
##
InstallGlobalFunction( RandomCommutatorSubproduct, function(grp1, grp2)
    return Comm( RandomSubprod(grp1), RandomSubprod(grp2) );
end );

#############################################################################
##
#M  IsCharacteristicMatrixPGroup( <H> )
##
InstallMethod( IsCharacteristicMatrixPGroup, "for matrix p-group", true,
    [ IsFFEMatrixGroup and IsPGroup ], 0,
    H -> Characteristic(FieldOfMatrixGroup(H)) = PrimePGroup(H) );

#############################################################################
##
#M  IsNoncharacteristicMatrixPGroup( <H> )
##
InstallMethod( IsNoncharacteristicMatrixPGroup, "for matrix p-group", true,
    [ IsFFEMatrixGroup and IsPGroup ], 0,
    H -> Characteristic(FieldOfMatrixGroup(H)) <> PrimePGroup(H) );
InstallImmediateMethod( IsNoncharacteristicMatrixPGroup,
                        IsPGroup and HasIsCharacteristicMatrixPGroup,
                        0, grp -> not IsCharacteristicMatrixPGroup(grp) );

#############################################################################
##
#M  SizeUpperBound( <G> )
##
##  (implemented only what's needed for solmxgrp.gi)
##
InstallMethod( SizeUpperBound, "for groups", true, [ IsGroup ], SUM_FLAGS,
    function(G)
        if HasSize(G) then return Size(G);
        elif HasParent(G) and not IsIdenticalObj(G,Parent(G)) then
            return SizeUpperBound(Parent(G));
        else TryNextMethod(); return;
        fi;
    end );
InstallMethod( SizeUpperBound, "for matrix groups", true, [ IsFFEMatrixGroup ], 0,
    G -> Size(GL(DimensionOfMatrixGroup(G),Size(FieldOfMatrixGroup(G))) )); 
InstallMethod( SizeUpperBound, "for perm groups", true, [ IsPermGroup ], 0,
    G -> Size(SymmetricGroup(NrMovedPoints(G))) );

#############################################################################
##
#F  DecomposeEltIntoPElts( <elt> )
#F  DecomposeEltIntoPElts( <elt>, <ordOfElt> )
##
##  Returns list of lists, each of form:  [p, pElt]
##    such that each p is unique, pElt has order prime power of p,
##    and arg, elt, is product of pElt's.
##  (this format needed for PGroupGeneratorsOfAbelianGroup)
##
InstallGlobalFunction( DecomposeEltIntoPElts, function( arg )
    local elt, ordOfElt, powerElt, ord, elts, i;
    elt := arg[1];
    if Length( arg ) = 2 then ordOfElt := arg[2];
    else ordOfElt := Order( elt );
    fi;
    elts := [];
    ord := PrimePowersInt( ordOfElt );
    for i in 2*[1..Length(ord)/2]-1 do
      powerElt := elt^(ordOfElt/(ord[i]^ord[i+1]));
      elts[ ord[i] ] := [ ord[i], powerElt ];
    od;
    return Compacted(elts);
end );

#############################################################################
##
#M  PGroupGeneratorsOfAbelianGroup( <H> )
##
##  Returns list of lists, each of form:  [p, pgroupGenerators, exponent]
##  (this format needed for solmxgrp.gi)
##
InstallMethod( PGroupGeneratorsOfAbelianGroup, "for abelian groups", true,
[ IsGroup and IsAbelian ], 0,
function( H )
    local gen, ordOfGen, exponent, gens, decomp, pElt, base, exp;
    gens := [];
    exponent := 1;
    for gen in GeneratorsOfGroup( H ) do
        ordOfGen := Order( gen );
        exponent := LcmInt( exponent, ordOfGen );
        decomp := DecomposeEltIntoPElts( gen, ordOfGen );
        for pElt in decomp do
            if IsBound( gens[ pElt[1] ] ) then
                Add( gens[ pElt[1] ][2], pElt[2] );
            else gens[ pElt[1] ] := [ pElt[1], [pElt[2]] ];
            fi;
        od;
    od;
    SetExponent( H, exponent );
    # Set order of each pGroup in array slot 3
    base := 0;
    for exp in PrimePowersInt(exponent) do
        if base = 0 then base := exp;
        else
            gens[ base ][3] := base^(exp);
            base := 0;
        fi;
    od;
    return Compacted(gens);
end );

#############################################################################
##
#M  GeneratorOfCyclicGroup( <G> )
##
##  (implemented only what's needed for solmxgrp.gi)
##
InstallMethod( GeneratorOfCyclicGroup, "for cyclic matrix p-group",true,
        [ IsFFEMatrixGroup and IsCyclic and IsPGroup ], 0,
function( G )
    local gen;
    if IsTrivial(G) then
      return One(G);
    elif Length( GeneratorsOfGroup( G ) ) = 1 then
	return GeneratorsOfGroup( G )[1];
    elif IsUniformMatrixGroup(G) and IsNoncharacteristicMatrixPGroup(G) then
	InvariantSubspaceOrCyclicGroup(G);
	if not HasGeneratorOfCyclicGroup(G) then
	    Error("internal error:  no cyclic generator");
	elif Order(GeneratorOfCyclicGroup(G)) = 1 then
	    Error("internal error:  cyclic generator of order 1");
	else return GeneratorOfCyclicGroup(G);
	fi;
    else TryNextMethod();
	  return;
    fi;
end );


#############################################################################
##
#M  IndependentGeneratorsOfAbelianMatrixGroup( <> )
##
##  (implemented only what's needed for solmxgrp.gi)
##  (These should be unified with IndependentGeneratorsOfAbelianGroup,
##   which currently has methods for perm group)
##
InstallMethod( IndependentGeneratorsOfAbelianMatrixGroup,
  "for abelian matrix group", true,
  [ IsGroup and IsFFEMatrixGroup and IsAbelian ], 0,
  function(G)
    if IsTrivial(G) then return [];
    elif HasGeneratorOfCyclicGroup(G) then return [GeneratorOfCyclicGroup(G)];
    elif IsQuotientToAdditiveGroup(G) then
        return BasisOfHomCosetAddMatrixGroup(G).basis;
    elif HasChainSubgroup(G) and HasQuotientGroup(G) then
        return Concatenation(
             IndependentGeneratorsOfAbelianMatrixGroup(ChainSubgroup(G)),
             List( IndependentGeneratorsOfAbelianMatrixGroup(
                                                   QuotientGroup(G) ),
                   g -> SourceElt(g) ) );
    elif not  HasChainSubgroup(G) or not HasQuotientGroup(G) then
        MakeHomChain(G);
        return IndependentGeneratorsOfAbelianMatrixGroup(G);
    else return fail;
    fi;
end );
InstallMethod( IndependentGeneratorsOfAbelianMatrixGroup,
  "for additive groups", true,
  [ IsAdditiveGroup ], 0,
  function(G)
    if IsTrivial(G) then return [];
    elif HasGeneratorOfCyclicGroup(G) then return [GeneratorOfCyclicGroup(G)];
    else return BasisOfHomCosetAddMatrixGroup(G).basis;
  fi;
end );

#############################################################################
##
#F  IsInCenter( <G>, <g> )
#F  IsInCentre( <G>, <g> )
##
InstallGlobalFunction( IsInCenter,
    function(G,g)
    	return ForAll(GeneratorsOfGroup(G), h->IsOne(Comm(g,h)));
    end );
DeclareSynonym( "IsInCentre", IsInCenter );

#############################################################################
##
#F  UnipotentSubgroup( <n>, <p> )
##
InstallGlobalFunction( UnipotentSubgroup, function( n, p )
    local G, subgroup, gens, I, i, gen;
    G := GL(n,p);
    I := One( G );
    I := List( I, row -> ShallowCopy(row) ); # to make I mutable
    gens := [];
    for i in [1..n-1] do
	gen := StructuralCopy( I );
	gen[i][i+1] := One( GF(p) );
	Add( gens, gen );
    od;
    subgroup := SubgroupNC( G, gens );
    # The unipotent group is nilpotent
    SetIsNilpotentGroup(subgroup,true);
    return subgroup;
end );

#############################################################################
#############################################################################
##
##  Matrix group recognition
##
##  These are functions for the recursive part of the matrix group
##  recognition project.  They belong in a library file I intend to
##  write in the near future.
##
#############################################################################
#############################################################################

#############################################################################
##
#M  NaturalHomomorphismByInvariantSubspace( <A>, <W> )
##
##  Move to mxgrprec ???
##
InstallMethod( NaturalHomomorphismByInvariantSubspace, "for matrix algebra", true,
    [ IsAlgebra, IsVectorSpace ], 0,
    function( A, W )
    	return OperationAlgebraHomomorphism( A, Basis(W), OnRight );
    end );

#############################################################################
##
#M  NaturalHomomorphismByInvariantSubspace( <G>, <W> )
##
InstallMethod( NaturalHomomorphismByInvariantSubspace, "for matrix group", true,
    [ IsFFEMatrixGroup, IsVectorSpace ], 0,
function( G, W )
    local A, algHom, gens, imgs, MyImageElm;
    # GAP ImageElm() checks families, and only one family is HomCoset
    MyImageElm := function( hom, elt )
        return InducedLinearAction( hom!.basis, elt, hom!.operation );
    end;
    A := EnvelopingAlgebra( G );
    algHom := NaturalHomomorphismByInvariantSubspace( A, W );
    return GroupHomomorphismByFunction
        ( G, GL(Dimension(W),Size(UnderlyingField(W))), g->MyImageElm(algHom,g) );
end );

#############################################################################
##
#M  NaturalHomomorphismByFixedPointSubspace( <G>, <W> )
##
InstallMethod( NaturalHomomorphismByFixedPointSubspace, "for matrix group", true,
    [ IsFFEMatrixGroup, IsVectorSpace ], 0,
function( G, W )
    local A, vecHom, gens, imgs, dim, fnc;
    if not ForAll( GeneratorsOfGroup(G),
                   g -> ForAll( BasisVectors(Basis(W)), w->w*g=w ) ) then
        Error("Vector space, W, is not fixed by matrix group, G");
    fi;
    A := EnvelopingAlgebra( G );
    vecHom := NaturalHomomorphismBySubspace
                               ( UnderlyingVectorSpace(G), W );
    dim := DimensionOfVectors( W ) - Dimension(W);
    # preimagesbasisimage are subset of CanonicalBasis(Source(vecHom))
    #    such that their image is CanonicalBasis(Source(vecHom)/W)
    # Also CanonicalBasis(Source(vecHom)/W) are elem. basis vectors
    #    and because Source(vecHom) is FullRowSpace(), same is true for it.
    fnc := g -> List([1..dim],
                     i->ImageElm(vecHom,(vecHom!.preimagesbasisimage[i])*g));
    # THESE DON'T WORK.  WHY??
    # Apparently, GAP calls ImagesSet() instead of ImagesList() (if it existed)
    # So, GAP assumes the non-set as input should be ordered as set on output
    #fnc := g -> ImageElm(vecHom,(vecHom!.preimagesbasisimage)*g);
    #fnc := g->ImageElm(vecHom, List([1..dim],i->(vecHom!.preim...[i])*g));
    return GroupHomomorphismByFunction
                          (G, GL(dim, Size(UnderlyingField(W))), fnc );
end );

#############################################################################
##
#M  NaturalHomomorphismByHomVW( <G>, <W> )
##
InstallMethod( NaturalHomomorphismByHomVW, "for matrix group", true,
    [ IsFFEMatrixGroup, IsVectorSpace ], 0,
function( G, W )
    local V, fnc, hom; # Note that W is not used.
    V := UnderlyingVectorSpace(G);
    fnc := g -> List( BasisVectors(Basis(V)), v -> v*g-v );
    # if fnc(G.1*G.1) <> fnc(G.1)+fnc(G.1) then
    #     Error("inconsistent"); fi;
    #NOTE:  GAP also has IsFullHomModule(), Hom()
    # LeftModuleHomomorphismByImages(), etc.  Prob. not general enough
    #   for us, although GAP would then understand hom space
    #   as a Gaussian matrix space (in which lin. algebra works)..
    # Image of hom. is Hom(V,subspace) as additive group
    # This works because subspace vectors are fixed by G
    #   and Im(G) \le subspace
    hom := GroupHomomorphismByFunction(
	  G,
	  # AdditiveGroupByGenerators(GeneratorsOfGroup(
	  SubadditiveGroupNC(
	      GL(DimensionOfMatrixGroup(G),Size(FieldOfMatrixGroup(G))),
	      GeneratorsOfGroup(
	      GL(DimensionOfMatrixGroup(G),Size(FieldOfMatrixGroup(G)))
	  )),
	  fnc );
    # GAP4r1 Image(hom) needs this patch when range is AdditiveGroup()
    SetImagesSource( hom,
		     AdditiveGroup( List( GeneratorsOfGroup(G), fnc ) ) );
    UseSubsetRelation( Range(hom), Image(hom) );
    return hom;
end );


#E