/usr/share/gap/lib/utils.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 | #############################################################################
##
#W utils.gi GAP Library Gene Cooperman
#W and Scott Murray
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This is a temporary file containing utilities for group chains.
##
#############################################################################
#############################################################################
##
## General
##
#############################################################################
#############################################################################
#############################################################################
##
#F UseSubsetRelationNC( <super>, <sub> )
##
InstallGlobalFunction( UseSubsetRelationNC, function ( super, sub )
local entry;
for entry in SUBSET_MAINTAINED_INFO[1] do
if entry[1]( super ) and entry[2]( sub ) and not entry[4]( sub ) then
entry[5]( sub, entry[3]( super ) );
fi;
od;
return true;
end );
#############################################################################
##
#M ImageUnderWord( <basicIm>, <word>, <orbitGenerators>, <homFromFree> )
##
InstallMethod( ImageUnderWord, "for basic images", true,
[ IsList, IsWordWithInverse, IsList, IsGroupHomomorphism ], 0,
function( basicIm, word, orbitGenerators, homFromFree )
local newIm, i, freeGens, term, oGen;
newIm := ShallowCopy( basicIm );
freeGens := GeneratorsOfGroup( Source( homFromFree ) );
for i in [1..Length( word )] do
term := Subword( word, i, i );
if term in freeGens then
oGen := orbitGenerators[ Position( freeGens, term ) ];
else
oGen := orbitGenerators[ Position( freeGens, term^(-1) ) ]^(-1);
fi;
newIm := List( newIm, b -> b^oGen );
od;
return newIm;
end );
#############################################################################
##
#M ImageUnderWord( <basicIm>, <word>, <orbitGenerators>, <homFromFree> )
##
InstallMethod( ImageUnderWord, "for integers", true,
[ IsInt, IsWordWithInverse, IsList, IsGroupHomomorphism ], 0,
function( pnt, word, orbitGenerators, homFromFree )
local newIm, i, freeGens, term, oGen;
freeGens := GeneratorsOfGroup( Source( homFromFree ) );
for i in [1..Length( word )] do
term := Subword( word, i, i );
if term in freeGens then
oGen := orbitGenerators[ Position( freeGens, term ) ];
else
oGen := orbitGenerators[ Position( freeGens, term^(-1) ) ]^(-1);
fi;
pnt := pnt^oGen;
od;
return pnt;
end );
#############################################################################
#############################################################################
##
## Matrices and vectors
##
#############################################################################
#############################################################################
#############################################################################
##
#M UnderlyingField( <V> )
##
InstallMethod( UnderlyingField, "for vector space", true,
[ IsVectorSpace ], 0,
V -> LeftActingDomain( V ) );
#############################################################################
##
#M UnderlyingField( <A> )
##
InstallMethod( UnderlyingField, "for matrix algebra", true,
[ IsAlgebra ], 0,
A -> LeftActingDomain( A ) );
#############################################################################
##
#M UnderlyingField( <G> )
##
InstallMethod( UnderlyingField, "for matrix group", true,
[ IsFFEMatrixGroup ], 0,
G -> FieldOfMatrixGroup( G ) );
#############################################################################
##
#M MatrixDimension( <A> )
##
InstallMethod( MatrixDimension, "for matrix algebra", true,
[ IsAlgebra ], 0,
A -> Length( One( A ) ) );
#############################################################################
##
#M MatrixDimension( <G> )
##
InstallMethod( MatrixDimension, "for matrix group", true,
[ IsFFEMatrixGroup ], 0, DimensionOfMatrixGroup );
#############################################################################
##
#M UnderlyingVectorSpace( <A> )
##
InstallMethod( UnderlyingVectorSpace, "for matrix algebra", true,
[ IsAlgebra ], 0,
A -> FullRowSpace( UnderlyingField(A), MatrixDimension(A) ) );
#############################################################################
##
#M UnderlyingVectorSpace( <G )
##
InstallMethod( UnderlyingVectorSpace, "for matrix group", true,
[ IsFFEMatrixGroup ], 0,
G -> FullRowSpace( UnderlyingField(G), MatrixDimension(G) ) );
#############################################################################
##
#M UnderlyingVectorSpace( <M> )
##
InstallMethod( UnderlyingVectorSpace, "for matrix", true,
[ IsMatrix ], 0,
M -> FullRowSpace( DefaultFieldOfMatrix(M), Length(M) ) );
#############################################################################
##
#M FixedPointSpace( <matrix> )
##
InstallMethod( FixedPointSpace, "for matrix", true,
[ IsMatrix ], 0,matrix ->
Subspace( UnderlyingVectorSpace(matrix),
NullspaceMat( matrix - One(matrix) ),
"basis" ) ); # Tells GAP not to check if it's a basis.
#############################################################################
##
#M PermMatrixGroup( <G> )
##
InstallMethod( PermMatrixGroup, "for perm group", true,
[ IsPermGroup ], 0,
G -> Group( List( GeneratorsOfGroup( G ),
elt -> PermutationMat( elt, Maximum( 1, NrMovedPoints(G) ),
GF(2) ) ) ) );
#############################################################################
##
#M EnvelopingAlgebra( <G> )
##
InstallMethod( EnvelopingAlgebra, "for matrix group", true,
[ IsFFEMatrixGroup ], 0,
G -> Algebra(UnderlyingField(G), GeneratorsOfGroup(G)) );
#############################################################################
##
#M SpanOfMatrixGroup( <G> )
##
InstallMethod( SpanOfMatrixGroup, "for matrix group", true,
[ IsFFEMatrixGroup ], 0,
G -> AsVectorSpace( UnderlyingField(G), EnvelopingAlgebra(G) ) );
#############################################################################
##
#M IsUniformMatrixGroup( <> )
##
## Matrix group is uniform if fixed point space of every element
## is either the trivial space or the entire space.
## (used in Luks algorithm in solmxgrp.gi)
##
InstallMethod( IsUniformMatrixGroup, "for cyclic matrix p-group", true,
[ IsFFEMatrixGroup and IsCyclic and IsPGroup ], 0,
G -> IsIdenticalObj( G, InvariantSubspaceOrUniformCyclicPGroup(G) ) );
#############################################################################
##
#A PreBasis( <H> )
##
InstallMethod( PreBasis, "for vector space homomorphisms", true,
[ IsVectorSpaceHomomorphism ], 0,
function( H )
local srcs, ims, subsp, im, newsubsp, b, imsp, B;
B := Basis(Source(H));
srcs := []; ims := [];
imsp := Image(H);
subsp := TrivialSubspace(imsp);
for b in AsList(B) do
im := ImageElm(H, b);
newsubsp := Subspace( imsp, Concatenation( AsList(Basis(subsp)), [im] ) );
if newsubsp <> subsp then
subsp := newsubsp;
Add( srcs, b ); Add(ims, im );
fi;
od;
return [srcs, ims];
end );
#############################################################################
##
#F Pullback( <H>, <v> )
##
InstallGlobalFunction( PullBack, function( H, v ) # v in image under H
local preBasis, basis, tmp;
tmp := PreBasis( H );
preBasis := BasisNC( Source(H), tmp[1] );
basis := Basis( Image(H), tmp[2] );
return LinearCombination( Coefficients( basis, v ), preBasis );
end );
#############################################################################
##
#F ImageMat( <H>, <A> )
##
InstallGlobalFunction( ImageMat, function( H, A )
local imgBasis, imgOfA;
imgBasis := CanonicalBasis(Image(H));
imgOfA := List( BasisVectors(imgBasis), v-> ImageElm( H, PullBack(H,v)^A ) );
return TransposedMat( imgOfA );
end );
#############################################################################
##
#F ExtendToBasis( <V>, <vects> )
##
InstallGlobalFunction( ExtendToBasis, function( V, vects )
local subsp, b, newsubsp;
vects := ShallowCopy( vects );
subsp := Subspace( V, vects );
for b in BasisVectors( Basis( V ) ) do
newsubsp := Subspace( V,
Concatenation( BasisVectors(Basis(subsp)), [b] ) );
if newsubsp <> subsp then
subsp := newsubsp;
Add( vects, b );
fi;
od;
return Basis( V, vects );
end );
#############################################################################
##
#F ProjectionOntoVectorSubspace( <V>, <W> )
##
## H := ProjectionOfVectorSpace := function( V, W );
## v := Random(V); ImageElm(H, ImageElm(H, v)) = ImageElm(H, v);
##
InstallGlobalFunction( ProjectionOntoVectorSubspace, function( V, W ) # V->W
local basisW, basisV;
basisW := BasisVectors(Basis(W));
basisV := BasisVectors(Basis(V));
if not IsSubspace(V,W) then
Print("ProjectionOntoVectorSubspace: W must be a subspace of V\n");
return fail;
fi;
return LeftModuleHomomorphismByImages(V, W, ExtendToBasis(V,basisW),
Concatenation( basisW,
ListWithIdenticalEntries( Length(basisV) - Length(basisW), Zero(W) ) ) );
end );
#############################################################################
##
#F IsomorphismToFullRowSpace( <V> )
##
InstallGlobalFunction( IsomorphismToFullRowSpace, function( V ) # V -> standard vector space
local basisV, imV;
basisV := BasisVectors(Basis(V));
imV := FullRowSpace( Field(Flat(basisV)), Length(basisV) );
return LeftModuleHomomorphismByImages(V, imV,
basisV, BasisVectors(Basis(imV)) );
end );
#############################################################################
##
#F ProjectionOntoFullRowSpace( <V>, <W> )
##
InstallGlobalFunction( ProjectionOntoFullRowSpace, function( V, W ) # V->W -> standard vector space
return CompositionMapping( IsomorphismToFullRowSpace(W),
ProjectionOntoVectorSubspace(V, W) );
end );
#############################################################################
#############################################################################
##
## Groups
##
#############################################################################
#############################################################################
#############################################################################
##
#F RandomSubprod( <grp> )
##
## REFERENCE: (random subproducts, random normal subproducts,
## random Schreier subproducts, random commutator subproducts)
## G.~Cooperman and L.~Finkelstein, ``Combinatorial Tools for Computational
## Group Theory'', Proceedings of DIMACS Workshop on Groups and Computation,
## DIMACS-AMS 11, AMS Press, Providence, RI, 1993, pp.~53--86
##
InstallGlobalFunction( RandomSubprod, function(grp)
local prod, gen;
prod := One(grp);
for gen in GeneratorsOfGroup(grp) do
if Random([true,false]) then prod := prod * gen; fi;
od;
return prod;
end );
#############################################################################
##
#F RandomNormalSubproduct( <grp>, <subgp> )
##
InstallGlobalFunction( RandomNormalSubproduct, function(grp, subgp)
return RandomSubprod(subgp)^RandomSubprod(grp);
end );
#############################################################################
##
#F RandomCommutatorSubproduct( <grp>, <subgp> )
##
InstallGlobalFunction( RandomCommutatorSubproduct, function(grp1, grp2)
return Comm( RandomSubprod(grp1), RandomSubprod(grp2) );
end );
#############################################################################
##
#M IsCharacteristicMatrixPGroup( <H> )
##
InstallMethod( IsCharacteristicMatrixPGroup, "for matrix p-group", true,
[ IsFFEMatrixGroup and IsPGroup ], 0,
H -> Characteristic(FieldOfMatrixGroup(H)) = PrimePGroup(H) );
#############################################################################
##
#M IsNoncharacteristicMatrixPGroup( <H> )
##
InstallMethod( IsNoncharacteristicMatrixPGroup, "for matrix p-group", true,
[ IsFFEMatrixGroup and IsPGroup ], 0,
H -> Characteristic(FieldOfMatrixGroup(H)) <> PrimePGroup(H) );
InstallImmediateMethod( IsNoncharacteristicMatrixPGroup,
IsPGroup and HasIsCharacteristicMatrixPGroup,
0, grp -> not IsCharacteristicMatrixPGroup(grp) );
#############################################################################
##
#M SizeUpperBound( <G> )
##
## (implemented only what's needed for solmxgrp.gi)
##
InstallMethod( SizeUpperBound, "for groups", true, [ IsGroup ], SUM_FLAGS,
function(G)
if HasSize(G) then return Size(G);
elif HasParent(G) and not IsIdenticalObj(G,Parent(G)) then
return SizeUpperBound(Parent(G));
else TryNextMethod(); return;
fi;
end );
InstallMethod( SizeUpperBound, "for matrix groups", true, [ IsFFEMatrixGroup ], 0,
G -> Size(GL(DimensionOfMatrixGroup(G),Size(FieldOfMatrixGroup(G))) ));
InstallMethod( SizeUpperBound, "for perm groups", true, [ IsPermGroup ], 0,
G -> Size(SymmetricGroup(NrMovedPoints(G))) );
#############################################################################
##
#F DecomposeEltIntoPElts( <elt> )
#F DecomposeEltIntoPElts( <elt>, <ordOfElt> )
##
## Returns list of lists, each of form: [p, pElt]
## such that each p is unique, pElt has order prime power of p,
## and arg, elt, is product of pElt's.
## (this format needed for PGroupGeneratorsOfAbelianGroup)
##
InstallGlobalFunction( DecomposeEltIntoPElts, function( arg )
local elt, ordOfElt, powerElt, ord, elts, i;
elt := arg[1];
if Length( arg ) = 2 then ordOfElt := arg[2];
else ordOfElt := Order( elt );
fi;
elts := [];
ord := PrimePowersInt( ordOfElt );
for i in 2*[1..Length(ord)/2]-1 do
powerElt := elt^(ordOfElt/(ord[i]^ord[i+1]));
elts[ ord[i] ] := [ ord[i], powerElt ];
od;
return Compacted(elts);
end );
#############################################################################
##
#M PGroupGeneratorsOfAbelianGroup( <H> )
##
## Returns list of lists, each of form: [p, pgroupGenerators, exponent]
## (this format needed for solmxgrp.gi)
##
InstallMethod( PGroupGeneratorsOfAbelianGroup, "for abelian groups", true,
[ IsGroup and IsAbelian ], 0,
function( H )
local gen, ordOfGen, exponent, gens, decomp, pElt, base, exp;
gens := [];
exponent := 1;
for gen in GeneratorsOfGroup( H ) do
ordOfGen := Order( gen );
exponent := LcmInt( exponent, ordOfGen );
decomp := DecomposeEltIntoPElts( gen, ordOfGen );
for pElt in decomp do
if IsBound( gens[ pElt[1] ] ) then
Add( gens[ pElt[1] ][2], pElt[2] );
else gens[ pElt[1] ] := [ pElt[1], [pElt[2]] ];
fi;
od;
od;
SetExponent( H, exponent );
# Set order of each pGroup in array slot 3
base := 0;
for exp in PrimePowersInt(exponent) do
if base = 0 then base := exp;
else
gens[ base ][3] := base^(exp);
base := 0;
fi;
od;
return Compacted(gens);
end );
#############################################################################
##
#M GeneratorOfCyclicGroup( <G> )
##
## (implemented only what's needed for solmxgrp.gi)
##
InstallMethod( GeneratorOfCyclicGroup, "for cyclic matrix p-group",true,
[ IsFFEMatrixGroup and IsCyclic and IsPGroup ], 0,
function( G )
local gen;
if IsTrivial(G) then
return One(G);
elif Length( GeneratorsOfGroup( G ) ) = 1 then
return GeneratorsOfGroup( G )[1];
elif IsUniformMatrixGroup(G) and IsNoncharacteristicMatrixPGroup(G) then
InvariantSubspaceOrCyclicGroup(G);
if not HasGeneratorOfCyclicGroup(G) then
Error("internal error: no cyclic generator");
elif Order(GeneratorOfCyclicGroup(G)) = 1 then
Error("internal error: cyclic generator of order 1");
else return GeneratorOfCyclicGroup(G);
fi;
else TryNextMethod();
return;
fi;
end );
#############################################################################
##
#M IndependentGeneratorsOfAbelianMatrixGroup( <> )
##
## (implemented only what's needed for solmxgrp.gi)
## (These should be unified with IndependentGeneratorsOfAbelianGroup,
## which currently has methods for perm group)
##
InstallMethod( IndependentGeneratorsOfAbelianMatrixGroup,
"for abelian matrix group", true,
[ IsGroup and IsFFEMatrixGroup and IsAbelian ], 0,
function(G)
if IsTrivial(G) then return [];
elif HasGeneratorOfCyclicGroup(G) then return [GeneratorOfCyclicGroup(G)];
elif IsQuotientToAdditiveGroup(G) then
return BasisOfHomCosetAddMatrixGroup(G).basis;
elif HasChainSubgroup(G) and HasQuotientGroup(G) then
return Concatenation(
IndependentGeneratorsOfAbelianMatrixGroup(ChainSubgroup(G)),
List( IndependentGeneratorsOfAbelianMatrixGroup(
QuotientGroup(G) ),
g -> SourceElt(g) ) );
elif not HasChainSubgroup(G) or not HasQuotientGroup(G) then
MakeHomChain(G);
return IndependentGeneratorsOfAbelianMatrixGroup(G);
else return fail;
fi;
end );
InstallMethod( IndependentGeneratorsOfAbelianMatrixGroup,
"for additive groups", true,
[ IsAdditiveGroup ], 0,
function(G)
if IsTrivial(G) then return [];
elif HasGeneratorOfCyclicGroup(G) then return [GeneratorOfCyclicGroup(G)];
else return BasisOfHomCosetAddMatrixGroup(G).basis;
fi;
end );
#############################################################################
##
#F IsInCenter( <G>, <g> )
#F IsInCentre( <G>, <g> )
##
InstallGlobalFunction( IsInCenter,
function(G,g)
return ForAll(GeneratorsOfGroup(G), h->IsOne(Comm(g,h)));
end );
DeclareSynonym( "IsInCentre", IsInCenter );
#############################################################################
##
#F UnipotentSubgroup( <n>, <p> )
##
InstallGlobalFunction( UnipotentSubgroup, function( n, p )
local G, subgroup, gens, I, i, gen;
G := GL(n,p);
I := One( G );
I := List( I, row -> ShallowCopy(row) ); # to make I mutable
gens := [];
for i in [1..n-1] do
gen := StructuralCopy( I );
gen[i][i+1] := One( GF(p) );
Add( gens, gen );
od;
subgroup := SubgroupNC( G, gens );
# The unipotent group is nilpotent
SetIsNilpotentGroup(subgroup,true);
return subgroup;
end );
#############################################################################
#############################################################################
##
## Matrix group recognition
##
## These are functions for the recursive part of the matrix group
## recognition project. They belong in a library file I intend to
## write in the near future.
##
#############################################################################
#############################################################################
#############################################################################
##
#M NaturalHomomorphismByInvariantSubspace( <A>, <W> )
##
## Move to mxgrprec ???
##
InstallMethod( NaturalHomomorphismByInvariantSubspace, "for matrix algebra", true,
[ IsAlgebra, IsVectorSpace ], 0,
function( A, W )
return OperationAlgebraHomomorphism( A, Basis(W), OnRight );
end );
#############################################################################
##
#M NaturalHomomorphismByInvariantSubspace( <G>, <W> )
##
InstallMethod( NaturalHomomorphismByInvariantSubspace, "for matrix group", true,
[ IsFFEMatrixGroup, IsVectorSpace ], 0,
function( G, W )
local A, algHom, gens, imgs, MyImageElm;
# GAP ImageElm() checks families, and only one family is HomCoset
MyImageElm := function( hom, elt )
return InducedLinearAction( hom!.basis, elt, hom!.operation );
end;
A := EnvelopingAlgebra( G );
algHom := NaturalHomomorphismByInvariantSubspace( A, W );
return GroupHomomorphismByFunction
( G, GL(Dimension(W),Size(UnderlyingField(W))), g->MyImageElm(algHom,g) );
end );
#############################################################################
##
#M NaturalHomomorphismByFixedPointSubspace( <G>, <W> )
##
InstallMethod( NaturalHomomorphismByFixedPointSubspace, "for matrix group", true,
[ IsFFEMatrixGroup, IsVectorSpace ], 0,
function( G, W )
local A, vecHom, gens, imgs, dim, fnc;
if not ForAll( GeneratorsOfGroup(G),
g -> ForAll( BasisVectors(Basis(W)), w->w*g=w ) ) then
Error("Vector space, W, is not fixed by matrix group, G");
fi;
A := EnvelopingAlgebra( G );
vecHom := NaturalHomomorphismBySubspace
( UnderlyingVectorSpace(G), W );
dim := DimensionOfVectors( W ) - Dimension(W);
# preimagesbasisimage are subset of CanonicalBasis(Source(vecHom))
# such that their image is CanonicalBasis(Source(vecHom)/W)
# Also CanonicalBasis(Source(vecHom)/W) are elem. basis vectors
# and because Source(vecHom) is FullRowSpace(), same is true for it.
fnc := g -> List([1..dim],
i->ImageElm(vecHom,(vecHom!.preimagesbasisimage[i])*g));
# THESE DON'T WORK. WHY??
# Apparently, GAP calls ImagesSet() instead of ImagesList() (if it existed)
# So, GAP assumes the non-set as input should be ordered as set on output
#fnc := g -> ImageElm(vecHom,(vecHom!.preimagesbasisimage)*g);
#fnc := g->ImageElm(vecHom, List([1..dim],i->(vecHom!.preim...[i])*g));
return GroupHomomorphismByFunction
(G, GL(dim, Size(UnderlyingField(W))), fnc );
end );
#############################################################################
##
#M NaturalHomomorphismByHomVW( <G>, <W> )
##
InstallMethod( NaturalHomomorphismByHomVW, "for matrix group", true,
[ IsFFEMatrixGroup, IsVectorSpace ], 0,
function( G, W )
local V, fnc, hom; # Note that W is not used.
V := UnderlyingVectorSpace(G);
fnc := g -> List( BasisVectors(Basis(V)), v -> v*g-v );
# if fnc(G.1*G.1) <> fnc(G.1)+fnc(G.1) then
# Error("inconsistent"); fi;
#NOTE: GAP also has IsFullHomModule(), Hom()
# LeftModuleHomomorphismByImages(), etc. Prob. not general enough
# for us, although GAP would then understand hom space
# as a Gaussian matrix space (in which lin. algebra works)..
# Image of hom. is Hom(V,subspace) as additive group
# This works because subspace vectors are fixed by G
# and Im(G) \le subspace
hom := GroupHomomorphismByFunction(
G,
# AdditiveGroupByGenerators(GeneratorsOfGroup(
SubadditiveGroupNC(
GL(DimensionOfMatrixGroup(G),Size(FieldOfMatrixGroup(G))),
GeneratorsOfGroup(
GL(DimensionOfMatrixGroup(G),Size(FieldOfMatrixGroup(G)))
)),
fnc );
# GAP4r1 Image(hom) needs this patch when range is AdditiveGroup()
SetImagesSource( hom,
AdditiveGroup( List( GeneratorsOfGroup(G), fnc ) ) );
UseSubsetRelation( Range(hom), Image(hom) );
return hom;
end );
#E
|