This file is indexed.

/usr/share/gap/lib/vspc.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
#############################################################################
##
#W  vspc.gi                     GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains generic methods for vector spaces.
##


#############################################################################
##
#M  SetLeftActingDomain( <extL>, <D> )
##
##  check whether the left acting domain <D> of the external left set <extL>
##  knows that it is a division ring.
##  This is used, e.g.,  to tell a free module over a division ring
##  that it is a vector space.
##
InstallOtherMethod( SetLeftActingDomain,
    "method to set also 'IsLeftActedOnByDivisionRing'",
    [ IsAttributeStoringRep and IsLeftActedOnByRing, IsObject ],0,
    function( extL, D )
    if HasIsDivisionRing( D ) and IsDivisionRing( D ) then
      SetIsLeftActedOnByDivisionRing( extL, true );
    fi;
    TryNextMethod();
    end );


#############################################################################
##
#M  IsLeftActedOnByDivisionRing( <M> )
##
InstallMethod( IsLeftActedOnByDivisionRing,
    "method for external left set that is left acted on by a ring",
    [ IsExtLSet and IsLeftActedOnByRing ],
    function( M )
    if IsIdenticalObj( M, LeftActingDomain( M ) ) then
      TryNextMethod();
    else
      return IsDivisionRing( LeftActingDomain( M ) );
    fi;
    end );


#############################################################################
##
#F  VectorSpace( <F>, <gens>[, <zero>][, "basis"] )
##
##  The only difference between `VectorSpace' and `FreeLeftModule' shall be
##  that the left acting domain of a vector space must be a division ring.
##
InstallGlobalFunction( VectorSpace, function( arg )
    if Length( arg ) = 0 or not IsDivisionRing( arg[1] ) then
      Error( "usage: VectorSpace( <F>, <gens>[, <zero>][, \"basis\"] )" );
    fi;
    return CallFuncList( FreeLeftModule, arg );
    end );


#############################################################################
##
#M  AsSubspace( <V>, <C> )  . . . . . . . for a vector space and a collection
##
InstallMethod( AsSubspace,
    "for a vector space and a collection",
    [ IsVectorSpace, IsCollection ],
    function( V, C )
    local newC;

    if not IsSubset( V, C ) then
      return fail;
    fi;
    newC:= AsVectorSpace( LeftActingDomain( V ), C );
    if newC = fail then
      return fail;
    fi;
    SetParent( newC, V );
    UseIsomorphismRelation( C, newC );
    UseSubsetRelation( C, newC );

    return newC;
    end );


#############################################################################
##
#M  AsLeftModule( <F>, <V> )  . . . . . .  for division ring and vector space
##
##  View the vector space <V> as a vector space over the division ring <F>.
##
InstallMethod( AsLeftModule,
    "method for a division ring and a vector space",
    [ IsDivisionRing, IsVectorSpace ],
    function( F, V )

    local W,        # the space, result
          base,     # basis vectors of field extension
          gen,      # loop over generators of 'V'
          b,        # loop over 'base'
          gens,     # generators of 'V'
          newgens;  # extended list of generators

    if Characteristic( F ) <> Characteristic( LeftActingDomain( V ) ) then

      # This is impossible.
      return fail;

    elif F = LeftActingDomain( V ) then

      # No change of the left acting domain is necessary.
      return V;

    elif IsSubset( F, LeftActingDomain( V ) ) then

      # Check whether 'V' is really a space over the bigger field,
      # that is, whether the set of elements does not change.
      base:= BasisVectors( Basis( AsField( LeftActingDomain( V ), F ) ) );
      for gen in GeneratorsOfLeftModule( V ) do
        for b in base do
          if not b * gen in V then

            # The field extension would change the set of elements.
            return fail;

          fi;
        od;
      od;

      # Construct the space.
      W:= LeftModuleByGenerators( F, GeneratorsOfLeftModule(V), Zero(V) );

    elif IsSubset( LeftActingDomain( V ), F ) then

      # View 'V' as a space over a smaller field.
      # For that, the list of generators must be extended.
      gens:= GeneratorsOfLeftModule( V );
      if IsEmpty( gens ) then
        W:= LeftModuleByGenerators( F, [], Zero( V ) );
      else

        base:= BasisVectors( Basis( AsField( F, LeftActingDomain( V ) ) ) );
        newgens:= [];
        for b in base do
          for gen in gens do
            Add( newgens, b * gen );
          od;
        od;
        W:= LeftModuleByGenerators( F, newgens );

      fi;

    else

      # View 'V' first as space over the intersection of fields,
      # and then over the desired field.
      return AsLeftModule( F,
                 AsLeftModule( Intersection( F,
                     LeftActingDomain( V ) ), V ) );

    fi;

    UseIsomorphismRelation( V, W );
    UseSubsetRelation( V, W );
    return W;
    end );


#############################################################################
##
#M  ViewObj( <V> )  . . . . . . . . . . . . . . . . . . . view a vector space
##
##  print left acting domain, if known also dimension or no. of generators
##
InstallMethod( ViewObj,
    "for vector space with known generators",
    [ IsVectorSpace and HasGeneratorsOfLeftModule ],
    function( V )
    Print( "<vector space over ", LeftActingDomain( V ), ", with ",
           Length( GeneratorsOfLeftModule( V ) ), " generators>" );
    end );

InstallMethod( ViewObj,
    "for vector space with known dimension",
    [ IsVectorSpace and HasDimension ],
    1, # override method for known generators
    function( V )
    Print( "<vector space of dimension ", Dimension( V ),
           " over ", LeftActingDomain( V ), ">" );
    end );

InstallMethod( ViewObj,
    "for vector space",
    [ IsVectorSpace ],
    function( V )
    Print( "<vector space over ", LeftActingDomain( V ), ">" );
    end );


#############################################################################
##
#M  PrintObj( <V> ) . . . . . . . . . . . . . . . . . . .  for a vector space
##
InstallMethod( PrintObj,
    "method for vector space with left module generators",
    [ IsVectorSpace and HasGeneratorsOfLeftModule ],
    function( V )
    Print( "VectorSpace( ", LeftActingDomain( V ), ", ",
           GeneratorsOfLeftModule( V ) );
    if IsEmpty( GeneratorsOfLeftModule( V ) ) and HasZero( V ) then
      Print( ", ", Zero( V ), " )" );
    else
      Print( " )" );
    fi;
    end );

InstallMethod( PrintObj,
    "method for vector space",
    [ IsVectorSpace ],
    function( V )
    Print( "VectorSpace( ", LeftActingDomain( V ), ", ... )" );
    end );


#############################################################################
##
#M  \/( <V>, <W> )  . . . . . . . . .  factor of a vector space by a subspace
#M  \/( <V>, <vectors> )  . . . . . .  factor of a vector space by a subspace
##
InstallOtherMethod( \/,
    "method for vector space and collection",
    IsIdenticalObj,
    [ IsVectorSpace, IsCollection ],
    function( V, vectors )
    if IsVectorSpace( vectors ) then
      TryNextMethod();
    else
      return V / Subspace( V, vectors );
    fi;
    end );

InstallOtherMethod( \/,
    "generic method for two vector spaces",
    IsIdenticalObj,
    [ IsVectorSpace, IsVectorSpace ],
    function( V, W )
    return ImagesSource( NaturalHomomorphismBySubspace( V, W ) );
    end );


#############################################################################
##
#M  Intersection2Spaces( <AsStruct>, <Substruct>, <Struct> )
##
InstallGlobalFunction( Intersection2Spaces,
    function( AsStructure, Substructure, Structure )
    return function( V, W )
    local inters,  # intersection, result
          F,       # coefficients field
          gensV,   # list of generators of 'V'
          gensW,   # list of generators of 'W'
          VW,      # sum of 'V' and 'W'
          B;       # basis of 'VW'

    if LeftActingDomain( V ) <> LeftActingDomain( W ) then

      # Compute the intersection as vector space over the intersection
      # of the coefficients fields.
      # (Note that the characteristic is the same.)
      F:= Intersection2( LeftActingDomain( V ), LeftActingDomain( W ) );
      return Intersection2( AsStructure( F, V ), AsStructure( F, W ) );

    elif IsFiniteDimensional( V ) and IsFiniteDimensional( W ) then

      # Compute the intersection of two spaces over the same field.
      gensV:= GeneratorsOfLeftModule( V );
      gensW:= GeneratorsOfLeftModule( W );
      if   IsEmpty( gensV ) then
        if Zero( V ) in W then
          inters:= V;
        else
          inters:= [];
        fi;
      elif IsEmpty( gensW ) then
        if Zero( V ) in W then
          inters:= W;
        else
          inters:= [];
        fi;
      else
        # Compute a common coefficient space.
        VW:= LeftModuleByGenerators( LeftActingDomain( V ),
                                     Concatenation( gensV, gensW ) );
        B:= Basis( VW );

        # Construct the coefficient subspaces corresponding to 'V' and 'W'.
        gensV:= List( gensV, x -> Coefficients( B, x ) );
        gensW:= List( gensW, x -> Coefficients( B, x ) );

        # Construct the intersection of row spaces, and carry back to VW.
        inters:= List( SumIntersectionMat( gensV, gensW )[2],
                       x -> LinearCombination( B, x ) );

        # Construct the intersection space, if possible with a parent.
        if     HasParent( V ) and HasParent( W )
           and IsIdenticalObj( Parent( V ), Parent( W ) ) then
          inters:= Substructure( Parent( V ), inters, "basis" );
        elif IsEmpty( inters ) then
          inters:= Substructure( V, inters, "basis" );
          SetIsTrivial( inters, true );
        else
          inters:= Structure( LeftActingDomain( V ), inters, "basis" );
        fi;

        # Run implications by the subset relation.
        UseSubsetRelation( V, inters );
        UseSubsetRelation( W, inters );
      fi;

      # Return the result.
      return inters;

    else
      TryNextMethod();
    fi;
    end;
end );


#############################################################################
##
#M  Intersection2( <V>, <W> ) . . . . . . . . . . . . . for two vector spaces
##
InstallMethod( Intersection2,
    "method for two vector spaces",
    IsIdenticalObj,
    [ IsVectorSpace, IsVectorSpace ],
    Intersection2Spaces( AsLeftModule, SubspaceNC, VectorSpace ) );


#############################################################################
##
#M  ClosureLeftModule( <V>, <a> ) . . . . . . . . . closure of a vector space
##
InstallMethod( ClosureLeftModule,
    "method for a vector space with basis, and a vector",
    IsCollsElms,
    [ IsVectorSpace and HasBasis, IsVector ],
    function( V, w )
    local   B; # basis of 'V'

    # We can test membership easily.
    B:= Basis( V );
#T why easily?
    if Coefficients( B, w ) = fail then

      # In the case of a vector space, we know a basis of the closure.
      B:= Concatenation( BasisVectors( B ), [ w ] );
      V:= LeftModuleByGenerators( LeftActingDomain( V ), B );
      UseBasis( V, B );

    fi;
    return V;
    end );


#############################################################################
##
##  Methods for collections of subspaces of a vector space
##


#############################################################################
##
#R  IsSubspacesVectorSpaceDefaultRep( <D> )
##
##  is the representation of domains of subspaces of a vector space <V>,
##  with the components 'structure' (with value <V>) and 'dimension'
##  (with value either the dimension of the subspaces in the domain
##  or the string '\"all\"', which means that the domain contains all
##  subspaces of <V>).
##
DeclareRepresentation(
    "IsSubspacesVectorSpaceDefaultRep",
    IsComponentObjectRep,
    [ "dimension", "structure" ] );
#T not IsAttributeStoringRep?


#############################################################################
##
#M  PrintObj( <D> )  . . . . . . . . . . . . . . . . . for a subspaces domain
##
InstallMethod( PrintObj,
    "method for a subspaces domain",
    [ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
    function( D )
    if IsInt( D!.dimension ) then
      Print( "Subspaces( ", D!.structure, ", ", D!.dimension, " )" );
    else
      Print( "Subspaces( ", D!.structure, " )" );
    fi;
    end );


#############################################################################
##
#M  Size( <D> ) . . . . . . . . . . . . . . . . . . .  for a subspaces domain
##
##  The number of $k$-dimensional subspaces in a $n$-dimensional space over
##  the field with $q$ elements is
##  $$
##  a(n,k) = \prod_{i=0}^{k-1} \frac{q^n-q^i}{q^k-q^i} =
##           \prod_{i=0}^{k-1} \frac{q^{n-i}-1}{q^{k-i}-1}.
##  $$
##  We have the recursion
##  $$
##  a(n,k+1) = a(n,k) \frac{q^{n-i}-1}{q^{i+1}-1}.
##  $$
##
##  (The number of all subspaces is $\sum_{k=0}^n a(n,k)$.)
##
InstallMethod( Size,
    "method for a subspaces domain",
    [ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
    function( D )

    local k,
          n,
          q,
          size,
          qn,
          qd,
          ank,
          i;

    if D!.dimension = "all" then

      # all subspaces of the space
      n:= Dimension( D!.structure );

      q:= Size( LeftActingDomain( D!.structure ) );
      size:= 1;
      qn:= q^n;
      qd:= q;

      # $a(n,0)$
      ank:= 1;

      for k in [ 1 .. Int( (n-1)/2 ) ] do

        # Compute $a(n,k)$.
        ank:= ank * ( qn - 1 ) / ( qd - 1 );
        qn:= qn / q;
        qd:= qd * q;

        size:= size + ank;

      od;

      size:= 2 * size;

      if n mod 2 = 0 then

        # Add the number of spaces of dimension $n/2$.
        size:= size + ank * ( qn - 1 ) / ( qd - 1 );
      fi;

    else

      # number of spaces of dimension 'k' only
      n:= Dimension( D!.structure );
      if   D!.dimension < 0 or
           n < D!.dimension then
        return 0;
      elif n / 2 < D!.dimension then
        k:= n - D!.dimension;
      else
        k:= D!.dimension;
      fi;

      q:= Size( LeftActingDomain( D!.structure ) );
      size:= 1;

      qn:= q^n;
      qd:= q;
      for i in [ 1 .. k ] do
        size:= size * ( qn - 1 ) / ( qd - 1 );
        qn:= qn / q;
        qd:= qd * q;
      od;

    fi;

    # Return the result.
    return size;
    end );


#############################################################################
##
#M  Enumerator( <D> ) . . . . . . . . . . . . . . . .  for a subspaces domain
##
##  Use the iterator to compute the elements list.
#T This is not allowed!
##
InstallMethod( Enumerator,
    "method for a subspaces domain",
    [ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
    function( D )
    local iter,    # iterator for 'D'
          elms;    # elements list, result

    iter:= Iterator( D );
    elms:= [];
    while not IsDoneIterator( iter ) do
      Add( elms, NextIterator( iter ) );
    od;
    return elms;
    end );
#T necessary?


#############################################################################
##
#M  Iterator( <D> ) . . . . . . . . . . . . . . . . .  for a subspaces domain
##
##  uses the subspaces iterator for full row spaces and the mechanism of
##  associated row spaces.
##
BindGlobal( "IsDoneIterator_Subspaces",
    iter -> IsDoneIterator( iter!.associatedIterator ) );

BindGlobal( "NextIterator_Subspaces", function( iter )
    local next;
    next:= NextIterator( iter!.associatedIterator );
    next:= List( GeneratorsOfLeftModule( next ),
                 x -> LinearCombination( iter!.basis, x ) );
    return Subspace( iter!.structure, next, "basis" );
    end );

BindGlobal( "ShallowCopy_Subspaces",
    iter -> rec( structure          := iter!.structure,
                 basis              := iter!.basis,
                 associatedIterator := ShallowCopy(
                                           iter!.associatedIterator ) ) );

InstallMethod( Iterator,
    "for a subspaces domain",
    [ IsSubspacesVectorSpace and IsSubspacesVectorSpaceDefaultRep ],
    function( D )
    local V;      # the vector space

    V:= D!.structure;
    return IteratorByFunctions( rec(
               IsDoneIterator     := IsDoneIterator_Subspaces,
               NextIterator       := NextIterator_Subspaces,
               ShallowCopy        := ShallowCopy_Subspaces,
               structure          := V,
               basis              := Basis( V ),
               associatedIterator := Iterator(
                      Subspaces( FullRowSpace( LeftActingDomain( V ),
                                               Dimension( V ) ),
                                 D!.dimension ) ) ) );
    end );


#############################################################################
##
#M  Subspaces( <V>, <dim> )
##
InstallMethod( Subspaces,
    "for a vector space, and an integer",
    [ IsVectorSpace, IsInt ],
    function( V, dim )
    if IsFinite( V ) then
      return Objectify( NewType( CollectionsFamily( FamilyObj( V ) ),
                                     IsSubspacesVectorSpace
                                 and IsSubspacesVectorSpaceDefaultRep ),
                        rec(
                             structure  := V,
                             dimension  := dim
                           )
                      );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  Subspaces( <V> )
##
InstallMethod( Subspaces,
    "for a vector space",
    [ IsVectorSpace ],
    function( V )
    if IsFinite( V ) then
      return Objectify( NewType( CollectionsFamily( FamilyObj( V ) ),
                                     IsSubspacesVectorSpace
                                 and IsSubspacesVectorSpaceDefaultRep ),
                        rec(
                             structure  := V,
                             dimension  := "all"
                           )
                      );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#F  IsSubspace( <V>, <U> ) . . . . . . . . . . . . . . . . . check <U> <= <V>
##
InstallGlobalFunction( IsSubspace, function( V, U )
    return IsVectorSpace( U ) and IsSubset( V, U );
end );


#############################################################################
##
#M  IsVectorSpaceHomomorphism( <map> )
##
InstallMethod( IsVectorSpaceHomomorphism,
    [ IsGeneralMapping ],
    function( map )
    local S, R, F;
    S:= Source( map );
    if not IsVectorSpace( S ) then
      return false;
    fi;
    R:= Range( map );
    if not IsVectorSpace( R ) then
      return false;
    fi;
    F:= LeftActingDomain( S );
    return ( F = LeftActingDomain( R ) ) and IsLinearMapping( F, map );
    end );


#############################################################################
##
#E