/usr/share/gap/lib/vspchom.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 | #############################################################################
##
#W vspchom.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## 1. Single Linear Mappings
## 2. Vector Spaces of Linear Mappings
##
#############################################################################
##
## <#GAPDoc Label="[1]{vspchom}">
## <E>Vector space homomorphisms</E> (or <E>linear mappings</E>) are defined
## in Section <Ref Sect="Linear Mappings"/>.
## &GAP; provides special functions to construct a particular linear
## mapping from images of given elements in the source,
## from a matrix of coefficients, or as a natural epimorphism.
## <P/>
## <M>F</M>-linear mappings with same source and same range can be added,
## so one can form vector spaces of linear mappings.
## <#/GAPDoc>
##
#############################################################################
##
## 1. Single Linear Mappings
##
#############################################################################
##
#O LeftModuleGeneralMappingByImages( <V>, <W>, <gens>, <imgs> )
##
## <#GAPDoc Label="LeftModuleGeneralMappingByImages">
## <ManSection>
## <Oper Name="LeftModuleGeneralMappingByImages" Arg='V, W, gens, imgs'/>
##
## <Description>
## Let <A>V</A> and <A>W</A> be two left modules over the same left acting
## domain <M>R</M>, say, and <A>gens</A> and <A>imgs</A> lists
## (of the same length) of elements in <A>V</A> and <A>W</A>, respectively.
## <Ref Oper="LeftModuleGeneralMappingByImages"/> returns
## the general mapping with source <A>V</A> and range <A>W</A>
## that is defined by mapping the elements in <A>gens</A> to the
## corresponding elements in <A>imgs</A>,
## and taking the <M>R</M>-linear closure.
## <P/>
## <A>gens</A> need not generate <A>V</A> as a left <M>R</M>-module,
## and if the specification does not define a linear mapping then the result
## will be multi-valued; hence in general it is not a mapping
## (see <Ref Func="IsMapping"/>).
## <Example><![CDATA[
## gap> V:= Rationals^2;;
## gap> W:= VectorSpace( Rationals, [ [1,2,3], [1,0,1] ] );;
## gap> f:= LeftModuleGeneralMappingByImages( V, W,
## > [[1,0],[2,0]], [[1,0,1],[1,0,1] ] );
## [ [ 1, 0 ], [ 2, 0 ] ] -> [ [ 1, 0, 1 ], [ 1, 0, 1 ] ]
## gap> IsMapping( f );
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LeftModuleGeneralMappingByImages",
[ IsLeftModule, IsLeftModule, IsHomogeneousList, IsHomogeneousList ] );
#############################################################################
##
#F LeftModuleHomomorphismByImages( <V>, <W>, <gens>, <imgs> )
#O LeftModuleHomomorphismByImagesNC( <V>, <W>, <gens>, <imgs> )
##
## <#GAPDoc Label="LeftModuleHomomorphismByImages">
## <ManSection>
## <Func Name="LeftModuleHomomorphismByImages" Arg='V, W, gens, imgs'/>
## <Oper Name="LeftModuleHomomorphismByImagesNC" Arg='V, W, gens, imgs'/>
##
## <Description>
## Let <A>V</A> and <A>W</A> be two left modules over the same left acting
## domain <M>R</M>, say, and <A>gens</A> and <A>imgs</A> lists (of the same
## length) of elements in <A>V</A> and <A>W</A>, respectively.
## <Ref Func="LeftModuleHomomorphismByImages"/> returns
## the left <M>R</M>-module homomorphism with source <A>V</A> and range
## <A>W</A> that is defined by mapping the elements in <A>gens</A> to the
## corresponding elements in <A>imgs</A>.
## <P/>
## If <A>gens</A> does not generate <A>V</A> or if the homomorphism does not
## exist (i.e., if mapping the generators describes only a multi-valued
## mapping) then <K>fail</K> is returned.
## For creating a possibly multi-valued mapping from <A>V</A> to <A>W</A>
## that respects addition, multiplication, and scalar multiplication,
## <Ref Func="LeftModuleGeneralMappingByImages"/> can be used.
## <P/>
## <Ref Oper="LeftModuleHomomorphismByImagesNC"/> does the same as
## <Ref Func="LeftModuleHomomorphismByImages"/>,
## except that it omits all checks.
## <Example><![CDATA[
## gap> V:=Rationals^2;;
## gap> W:=VectorSpace( Rationals, [ [ 1, 0, 1 ], [ 1, 2, 3 ] ] );;
## gap> f:=LeftModuleHomomorphismByImages( V, W,
## > [ [ 1, 0 ], [ 0, 1 ] ], [ [ 1, 0, 1 ], [ 1, 2, 3 ] ] );
## [ [ 1, 0 ], [ 0, 1 ] ] -> [ [ 1, 0, 1 ], [ 1, 2, 3 ] ]
## gap> Image( f, [1,1] );
## [ 2, 2, 4 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "LeftModuleHomomorphismByImages" );
DeclareOperation( "LeftModuleHomomorphismByImagesNC",
[ IsLeftModule, IsLeftModule, IsList, IsList ] );
#############################################################################
##
#A AsLeftModuleGeneralMappingByImages( <map> )
##
## <ManSection>
## <Attr Name="AsLeftModuleGeneralMappingByImages" Arg='map'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "AsLeftModuleGeneralMappingByImages", IsGeneralMapping );
#############################################################################
##
#O LeftModuleHomomorphismByMatrix( <BS>, <matrix>, <BR> )
##
## <#GAPDoc Label="LeftModuleHomomorphismByMatrix">
## <ManSection>
## <Oper Name="LeftModuleHomomorphismByMatrix" Arg='BS, matrix, BR'/>
##
## <Description>
## Let <A>BS</A> and <A>BR</A> be bases of the left <M>R</M>-modules
## <M>V</M> and <M>W</M>, respectively.
## <Ref Oper="LeftModuleHomomorphismByMatrix"/> returns the <M>R</M>-linear
## mapping from <M>V</M> to <M>W</M> that is defined by the matrix
## <A>matrix</A>, as follows.
## The image of the <M>i</M>-th basis vector of <A>BS</A> is the linear
## combination of the basis vectors of <A>BR</A> with coefficients the
## <M>i</M>-th row of <A>matrix</A>.
## <Example><![CDATA[
## gap> V:= Rationals^2;;
## gap> W:= VectorSpace( Rationals, [ [ 1, 0, 1 ], [ 1, 2, 3 ] ] );;
## gap> f:= LeftModuleHomomorphismByMatrix( Basis( V ),
## > [ [ 1, 2 ], [ 3, 1 ] ], Basis( W ) );
## <linear mapping by matrix, ( Rationals^
## 2 ) -> <vector space over Rationals, with 2 generators>>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LeftModuleHomomorphismByMatrix",
[ IsBasis, IsMatrix, IsBasis ] );
#############################################################################
##
#O NaturalHomomorphismBySubspace( <V>, <W> ) . . . . . map onto factor space
##
## <#GAPDoc Label="NaturalHomomorphismBySubspace">
## <ManSection>
## <Oper Name="NaturalHomomorphismBySubspace" Arg='V, W'/>
##
## <Description>
## For an <M>R</M>-vector space <A>V</A> and a subspace <A>W</A> of
## <A>V</A>,
## <Ref Oper="NaturalHomomorphismBySubspace"/> returns the <M>R</M>-linear
## mapping that is the natural projection of <A>V</A> onto the factor space
## <C><A>V</A> / <A>W</A></C>.
## <Example><![CDATA[
## gap> V:= Rationals^3;;
## gap> W:= VectorSpace( Rationals, [ [ 1, 1, 1 ] ] );;
## gap> f:= NaturalHomomorphismBySubspace( V, W );
## <linear mapping by matrix, ( Rationals^3 ) -> ( Rationals^2 )>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "NaturalHomomorphismBySubspace",
[ IsLeftModule, IsLeftModule ] );
#############################################################################
##
#F NaturalHomomorphismBySubspaceOntoFullRowSpace( <V>, <W> )
##
## <ManSection>
## <Func Name="NaturalHomomorphismBySubspaceOntoFullRowSpace" Arg='V, W'/>
##
## <Description>
## returns a vector space homomorphism from the vector space <A>V</A> onto a
## full row space, with kernel exactly the vector space <A>W</A>,
## which must be contained in <A>V</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "NaturalHomomorphismBySubspaceOntoFullRowSpace" );
#############################################################################
##
## 2. Vector Spaces of Linear Mappings
##
#############################################################################
##
#P IsFullHomModule( <M> )
##
## <#GAPDoc Label="IsFullHomModule">
## <ManSection>
## <Prop Name="IsFullHomModule" Arg='M'/>
##
## <Description>
## A <E>full hom module</E> is a module of all <M>R</M>-linear mappings
## between two left <M>R</M>-modules.
## The function <Ref Oper="Hom"/> can be used to construct a full hom
## module.
## <Example><![CDATA[
## gap> V:= Rationals^2;;
## gap> W:= VectorSpace( Rationals, [ [ 1, 0, 1 ], [ 1, 2, 3 ] ] );;
## gap> H:= Hom( Rationals, V, W );;
## gap> IsFullHomModule( H );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsFullHomModule", IsFreeLeftModule );
#############################################################################
##
#P IsPseudoCanonicalBasisFullHomModule( <B> )
##
## <#GAPDoc Label="IsPseudoCanonicalBasisFullHomModule">
## <ManSection>
## <Prop Name="IsPseudoCanonicalBasisFullHomModule" Arg='B'/>
##
## <Description>
## A basis of a full hom module is called pseudo canonical basis
## if the matrices of its basis vectors w.r.t. the stored bases of source
## and range contain exactly one identity entry and otherwise zeros.
## <P/>
## Note that this is not a canonical basis
## (see <Ref Func="CanonicalBasis"/>)
## because it depends on the stored bases of source and range.
## <Example><![CDATA[
## gap> IsPseudoCanonicalBasisFullHomModule( Basis( H ) );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsPseudoCanonicalBasisFullHomModule", IsBasis );
#############################################################################
##
#O Hom( <F>, <V>, <W> ) . . . space of <F>-linear mappings from <V> to <W>
##
## <#GAPDoc Label="Hom">
## <ManSection>
## <Oper Name="Hom" Arg='F, V, W'/>
##
## <Description>
## For a field <A>F</A> and two vector spaces <A>V</A> and <A>W</A>
## that can be regarded as <A>F</A>-modules
## (see <Ref Func="AsLeftModule"/>),
## <Ref Oper="Hom"/> returns the <A>F</A>-vector space of
## all <A>F</A>-linear mappings from <A>V</A> to <A>W</A>.
## <Example><![CDATA[
## gap> V:= Rationals^2;;
## gap> W:= VectorSpace( Rationals, [ [ 1, 0, 1 ], [ 1, 2, 3 ] ] );;
## gap> H:= Hom( Rationals, V, W );
## Hom( Rationals, ( Rationals^2 ), <vector space over Rationals, with
## 2 generators> )
## gap> Dimension( H );
## 4
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Hom", [ IsRing, IsLeftModule, IsLeftModule ] );
#############################################################################
##
#O End( <F>, <V> ) . . . . . . space of <F>-linear mappings from <V> to <V>
##
## <#GAPDoc Label="End">
## <ManSection>
## <Oper Name="End" Arg='F, V'/>
##
## <Description>
## For a field <A>F</A> and a vector space <A>V</A> that can be regarded as
## an <A>F</A>-module (see <Ref Func="AsLeftModule"/>),
## <Ref Oper="End"/> returns the <A>F</A>-algebra of all <A>F</A>-linear
## mappings from <A>V</A> to <A>V</A>.
## <Example><![CDATA[
## gap> A:= End( Rationals, Rationals^2 );
## End( Rationals, ( Rationals^2 ) )
## gap> Dimension( A );
## 4
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "End", [ IsRing, IsLeftModule ] );
#############################################################################
##
#F IsLinearMappingsModule( <V> )
##
## <#GAPDoc Label="IsLinearMappingsModule">
## <ManSection>
## <Filt Name="IsLinearMappingsModule" Arg='V'/>
##
## <Description>
## If an <M>F</M>-vector space <A>V</A> is in the filter
## <Ref Filt="IsLinearMappingsModule"/> then
## this expresses that <A>V</A> consists of linear mappings,
## and that <A>V</A> is handled via the mechanism of nice bases
## (see <Ref Sect="Vector Spaces Handled By Nice Bases"/>),
## in the following way.
## Let <M>S</M> and <M>R</M> be the source and the range, respectively,
## of each mapping in <M>V</M>.
## Then the <Ref Attr="NiceFreeLeftModuleInfo"/> value of <A>V</A> is
## a record with the components <C>basissource</C> (a basis <M>B_S</M> of
## <M>S</M>) and <C>basisrange</C> (a basis <M>B_R</M> of <M>R</M>),
## and the <Ref Func="NiceVector"/> value of <M>v \in <A>V</A></M>
## is defined as the matrix of the <M>F</M>-linear mapping <M>v</M>
## w.r.t. the bases <M>B_S</M> and <M>B_R</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareHandlingByNiceBasis( "IsLinearMappingsModule",
"for free left modules of linear mappings" );
#############################################################################
##
#M IsFiniteDimensional( <A> ) . . . . . hom FLMLORs are finite dimensional
##
InstallTrueMethod( IsFiniteDimensional, IsLinearMappingsModule );
#############################################################################
##
#E
|