This file is indexed.

/usr/share/gap/lib/word.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
#############################################################################
##
#W  word.gd                     GAP library                     Thomas Breuer
#W                                                             & Frank Celler
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file declares the categories and operations for words and
##  nonassociative words.
##
##  1. Categories of Words and Nonassociative Words
##  2. Comparison of Words
##  3. Operations for Words
##  4. Free Magmas
##  5. External Representation for Nonassociative Words
##


#############################################################################
##
##  <#GAPDoc Label="[1]{word}">
##  This chapter describes categories of <E>words</E> and
##  <E>nonassociative words</E>, and operations for them.
##  For information about <E>associative words</E>,
##  which occur for example as elements in free groups,
##  see Chapter&nbsp;<Ref Chap="Associative Words"/>.
##  <#/GAPDoc>
##


#############################################################################
##
##  1. Categories of Words and Nonassociative Words
##


#############################################################################
##
#C  IsWord( <obj> )
#C  IsWordWithOne( <obj> )
#C  IsWordWithInverse( <obj> )
##
##  <#GAPDoc Label="IsWord">
##  <ManSection>
##  <Filt Name="IsWord" Arg='obj' Type='Category'/>
##  <Filt Name="IsWordWithOne" Arg='obj' Type='Category'/>
##  <Filt Name="IsWordWithInverse" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Index>abstract word</Index>
##  Given a free multiplicative structure <M>M</M> that is freely generated
##  by a subset <M>X</M>,
##  any expression of an element in <M>M</M> as an iterated product of
##  elements in <M>X</M> is called a <E>word</E> over <M>X</M>.
##  <P/>
##  Interesting cases of free multiplicative structures are those of
##  free semigroups, free monoids, and free groups,
##  where the multiplication is associative
##  (see&nbsp;<Ref Func="IsAssociative"/>),
##  which are described in Chapter&nbsp;<Ref Chap="Associative Words"/>,
##  and also the case of free magmas,
##  where the multiplication is nonassociative
##  (see&nbsp;<Ref Func="IsNonassocWord"/>).
##  <P/>
##  Elements in free magmas
##  (see&nbsp;<Ref Func="FreeMagma" Label="for given rank"/>)
##  lie in the category <Ref Func="IsWord"/>;
##  similarly, elements in free magmas-with-one
##  (see&nbsp;<Ref Func="FreeMagmaWithOne" Label="for given rank"/>) 
##  lie in the category <Ref Func="IsWordWithOne"/>, and so on.
##  <P/>
##  <Ref Func="IsWord"/> is mainly a <Q>common roof</Q> for the two
##  <E>disjoint</E> categories
##  <Ref Func="IsAssocWord"/> and <Ref Func="IsNonassocWord"/>
##  of associative and nonassociative words.
##  This means that associative words are <E>not</E> regarded as special
##  cases of nonassociative words.
##  The main reason for this setup is that we are interested in different
##  external representations for associative and nonassociative words
##  (see&nbsp;<Ref Sect="External Representation for Nonassociative Words"/>
##  and <Ref Sect="The External Representation for Associative Words"/>).
##  <P/>
##  Note that elements in finitely presented groups and also elements in
##  polycyclic groups in &GAP; are <E>not</E> in <Ref Func="IsWord"/>
##  although they are usually called words,
##  see Chapters&nbsp;<Ref Chap="Finitely Presented Groups"/>
##  and&nbsp;<Ref Chap="Pc Groups"/>.
##  <P/>
##  Words are <E>constants</E>
##  (see&nbsp;<Ref Sect="Mutability and Copyability"/>),
##  that is, they are not copyable and not mutable.
##  <P/>
##  The usual way to create words is to form them as products of known words,
##  starting from <E>generators</E> of a free structure such as a free magma
##  or a free group (see&nbsp;<Ref Func="FreeMagma" Label="for given rank"/>,
##  <Ref Func="FreeGroup" Label="for given rank"/>).
##  <P/>
##  Words are also used to implement free algebras,
##  in the same way as group elements are used to implement group algebras
##  (see&nbsp;<Ref Sect="Constructing Algebras as Free Algebras"/>
##  and Chapter&nbsp;<Ref Chap="Magma Rings"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> m:= FreeMagmaWithOne( 2 );;  gens:= GeneratorsOfMagmaWithOne( m );
##  [ x1, x2 ]
##  gap> w1:= gens[1] * gens[2] * gens[1];
##  ((x1*x2)*x1)
##  gap> w2:= gens[1] * ( gens[2] * gens[1] );
##  (x1*(x2*x1))
##  gap> w1 = w2;  IsAssociative( m );
##  false
##  false
##  gap> IsWord( w1 );  IsAssocWord( w1 );  IsNonassocWord( w1 );
##  true
##  false
##  true
##  gap> s:= FreeMonoid( 2 );;  gens:= GeneratorsOfMagmaWithOne( s );
##  [ m1, m2 ]
##  gap> u1:= ( gens[1] * gens[2] ) * gens[1];
##  m1*m2*m1
##  gap> u2:= gens[1] * ( gens[2] * gens[1] );
##  m1*m2*m1
##  gap> u1 = u2;  IsAssociative( s );
##  true
##  true
##  gap> IsWord( u1 );  IsAssocWord( u1 );  IsNonassocWord( u1 );
##  true
##  true
##  false
##  gap> a:= (1,2,3);;  b:= (1,2);;
##  gap> w:= a*b*a;;  IsWord( w );
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsWord", IsMultiplicativeElement );
DeclareSynonym( "IsWordWithOne", IsWord and IsMultiplicativeElementWithOne );
DeclareSynonym( "IsWordWithInverse",
    IsWord and IsMultiplicativeElementWithInverse );


#############################################################################
##
#C  IsWordCollection( <obj> )
##
##  <#GAPDoc Label="IsWordCollection">
##  <ManSection>
##  <Filt Name="IsWordCollection" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Ref Func="IsWordCollection"/> is the collections category
##  (see&nbsp;<Ref Func="CategoryCollections"/>) of <Ref Func="IsWord"/>.
##  <Example><![CDATA[
##  gap> IsWordCollection( m );  IsWordCollection( s );
##  true
##  true
##  gap> IsWordCollection( [ "a", "b" ] );
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategoryCollections( "IsWord" );


#############################################################################
##
#C  IsNonassocWord( <obj> )
#C  IsNonassocWordWithOne( <obj> )
##
##  <#GAPDoc Label="IsNonassocWord">
##  <ManSection>
##  <Filt Name="IsNonassocWord" Arg='obj' Type='Category'/>
##  <Filt Name="IsNonassocWordWithOne" Arg='obj' Type='Category'/>
##
##  <Description>
##  A <E>nonassociative word</E> in &GAP; is an element in a free magma or
##  a free magma-with-one (see&nbsp;<Ref Sect="Free Magmas"/>).
##  <P/>
##  The default methods for <Ref Func="ViewObj"/> and <Ref Func="PrintObj"/>
##  show nonassociative words as products of letters,
##  where the succession of multiplications is determined by round brackets.
##  <P/>
##  In this sense each nonassociative word describes a <Q>program</Q> to
##  form a product of generators.
##  (Also associative words can be interpreted as such programs,
##  except that the exact succession of multiplications is not prescribed
##  due to the associativity.)
##  The function <Ref Func="MappedWord"/> implements a way to
##  apply such a program.
##  A more general way is provided by straight line programs
##  (see&nbsp;<Ref Sect="Straight Line Programs"/>).
##  <P/>
##  Note that associative words
##  (see Chapter&nbsp;<Ref Chap="Associative Words"/>)
##  are <E>not</E> regarded as special cases of nonassociative words
##  (see&nbsp;<Ref Func="IsWord"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsNonassocWord", IsWord );
DeclareSynonym( "IsNonassocWordWithOne", IsNonassocWord and IsWordWithOne );


#############################################################################
##
#C  IsNonassocWordCollection( <obj> )
#C  IsNonassocWordWithOneCollection( <obj> )
##
##  <#GAPDoc Label="IsNonassocWordCollection">
##  <ManSection>
##  <Filt Name="IsNonassocWordCollection" Arg='obj' Type='Category'/>
##  <Filt Name="IsNonassocWordWithOneCollection" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Ref Func="IsNonassocWordCollection"/> is the collections category
##  (see&nbsp;<Ref Func="CategoryCollections"/>) of
##  <Ref Func="IsNonassocWord"/>,
##  and <Ref Func="IsNonassocWordWithOneCollection"/> is the collections
##  category of <Ref Func="IsNonassocWordWithOne"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategoryCollections( "IsNonassocWord" );
DeclareCategoryCollections( "IsNonassocWordWithOne" );


#############################################################################
##
#C  IsNonassocWordFamily( <obj> )
#C  IsNonassocWordWithOneFamily( <obj> )
##
##  <ManSection>
##  <Filt Name="IsNonassocWordFamily" Arg='obj' Type='Category'/>
##  <Filt Name="IsNonassocWordWithOneFamily" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategoryFamily( "IsNonassocWord" );
DeclareCategoryFamily( "IsNonassocWordWithOne" );


#############################################################################
##
##  2. Comparison of Words
##
##  <#GAPDoc Label="[2]{word}">
##  <ManSection>
##  <Func Name="\=" Label="for nonassociative words" Arg='w1, w2'/>
##
##  <Description>
##  <Index Subkey="nonassociative words">equality</Index>
##  <P/>
##  Two words are equal if and only if they are words over the same alphabet
##  and with equal external representations
##  (see&nbsp;<Ref Sect="External Representation for Nonassociative Words"/>
##  and <Ref Sect="The External Representation for Associative Words"/>).
##  For nonassociative words, the latter means that the words arise from the
##  letters of the alphabet by the same sequence of multiplications.
##  </Description>
##  </ManSection>
##
##  <ManSection>
##  <Func Name="\&lt;" Label="for nonassociative words" Arg='w1, w2'/>
##
##  <Description>
##  <Index Subkey="nonassociative words">smaller</Index>
##  Words are ordered according to their external representation.
##  More precisely, two words can be compared if they are words over the same
##  alphabet, and the word with smaller external representation is smaller.
##  For nonassociative words, the ordering is defined
##  in&nbsp;<Ref Sect="External Representation for Nonassociative Words"/>;
##  associative words are ordered by the shortlex ordering via <C>&lt;</C>
##  (see&nbsp;<Ref Sect="The External Representation for Associative Words"/>).
##  <P/>
##  Note that the alphabet of a word is determined by its family
##  (see&nbsp;<Ref Sect="Families"/>),
##  and that the result of each call to
##  <Ref Func="FreeMagma" Label="for given rank"/>,
##  <Ref Func="FreeGroup" Label="for given rank"/> etc. consists of words
##  over a new alphabet.
##  In particular, there is no <Q>universal</Q> empty word,
##  every families of words in <Ref Func="IsWordWithOne"/> has its own
##  empty word.
##  <P/>
##  <Example><![CDATA[
##  gap> m:= FreeMagma( "a", "b" );;
##  gap> x:= FreeMagma( "a", "b" );;
##  gap> mgens:= GeneratorsOfMagma( m );
##  [ a, b ]
##  gap> xgens:= GeneratorsOfMagma( x );
##  [ a, b ]
##  gap> a:= mgens[1];;  b:= mgens[2];;
##  gap> a = xgens[1];
##  false
##  gap> a*(a*a) = (a*a)*a;  a*b = b*a;  a*a = a*a;
##  false
##  false
##  true
##  gap> a < b;  b < a;  a < a*b;
##  true
##  false
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
##  3. Operations for Words
##  <#GAPDoc Label="[3]{word}">
##  Two words can be multiplied via <C>*</C> only if they are words over the
##  same alphabet (see&nbsp;<Ref Sect="Comparison of Words"/>).
##  <#/GAPDoc>
##


#############################################################################
##
#O  MappedWord( <w>, <gens>, <imgs> )
##
##  <#GAPDoc Label="MappedWord">
##  <ManSection>
##  <Oper Name="MappedWord" Arg='w, gens, imgs'/>
##
##  <Description>
##  <Ref Func="MappedWord"/> returns the object that is obtained by replacing
##  each occurrence in the word <A>w</A> of a generator in the list
##  <A>gens</A> by the corresponding object in the list <A>imgs</A>.
##  The lists <A>gens</A> and <A>imgs</A> must of course have the same length.
##  <P/>
##  <Ref Func="MappedWord"/> needs to do some preprocessing to get internal
##  generator numbers etc. When mapping many (several thousand) words, an
##  explicit loop over the words syllables might be faster.
##  <P/>
##  For example, if the elements in <A>imgs</A> are all
##  <E>associative words</E>
##  (see Chapter&nbsp;<Ref Chap="Associative Words"/>)
##  in the same family as the elements in <A>gens</A>,
##  and some of them are equal to the corresponding generators in <A>gens</A>,
##  then those may be omitted from <A>gens</A> and <A>imgs</A>.
##  In this situation, the special case that the lists <A>gens</A>
##  and <A>imgs</A> have only length <M>1</M> is handled more efficiently by
##  <Ref Func="EliminatedWord"/>.
##  <Example><![CDATA[
##  gap> m:= FreeMagma( "a", "b" );;  gens:= GeneratorsOfMagma( m );;
##  gap> a:= gens[1];  b:= gens[2];
##  a
##  b
##  gap> w:= (a*b)*((b*a)*a)*b;
##  (((a*b)*((b*a)*a))*b)
##  gap> MappedWord( w, gens, [ (1,2), (1,2,3,4) ] );
##  (2,4,3)
##  gap> a:= (1,2);; b:= (1,2,3,4);;  (a*b)*((b*a)*a)*b;
##  (2,4,3)
##  gap> f:= FreeGroup( "a", "b" );;
##  gap> a:= GeneratorsOfGroup(f)[1];;  b:= GeneratorsOfGroup(f)[2];;
##  gap> w:= a^5*b*a^2/b^4*a;
##  a^5*b*a^2*b^-4*a
##  gap> MappedWord( w, [ a, b ], [ (1,2), (1,2,3,4) ] );
##  (1,3,4,2)
##  gap> (1,2)^5*(1,2,3,4)*(1,2)^2/(1,2,3,4)^4*(1,2);
##  (1,3,4,2)
##  gap> MappedWord( w, [ a ], [ a^2 ] );
##  a^10*b*a^4*b^-4*a^2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "MappedWord", [ IsWord, IsWordCollection, IsList ] );


#############################################################################
##
##  4. Free Magmas
##  <#GAPDoc Label="[4]{word}">
##  The easiest way to create a family of words is to construct the free
##  object generated by these words.
##  Each such free object defines a unique alphabet,
##  and its generators are simply the words of length one over this alphabet;
##  These generators can be accessed via <Ref Func="GeneratorsOfMagma"/> in
##  the case of a free magma,
##  and via <Ref Func="GeneratorsOfMagmaWithOne"/> in the case of a free
##  magma-with-one.
##  <#/GAPDoc>
##


#############################################################################
##
#C  IsFreeMagma( <obj> )
##
##  <ManSection>
##  <Filt Name="IsFreeMagma" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Ref Func="IsFreeMagma"/> is just a synonym for
##  <C>IsNonassocWordCollection and IsMagma</C>,
##  that is, any magma (see&nbsp;<Ref Func="IsMagma"/>) consisting of
##  nonassociative words (see&nbsp;<Ref Func="IsNonassocWord"/>) is in this
##  category.
##  </Description>
##  </ManSection>
##
DeclareSynonym( "IsFreeMagma", IsNonassocWordCollection and IsMagma );


#############################################################################
##
##  5. External Representation for Nonassociative Words
##  <#GAPDoc Label="[5]{word}">
##  The external representation of nonassociative words is defined
##  as follows.
##  The <M>i</M>-th generator of the family of elements in question has
##  external representation <M>i</M>,
##  the identity (if exists) has external representation <M>0</M>,
##  the inverse of the <M>i</M>-th generator (if exists) has external
##  representation <M>-i</M>.
##  If <M>v</M> and <M>w</M> are nonassociative words with external
##  representations <M>e_v</M> and <M>e_w</M>,
##  respectively then the product <M>v * w</M> has external
##  representation <M>[ e_v, e_w ]</M>.
##  So the external representation of any nonassociative word is either an
##  integer or a nested list of integers and lists, where each list has
##  length two.
##  <P/>
##  One can create a nonassociative word from a family of words and the
##  external representation of a nonassociative word using
##  <Ref Func="ObjByExtRep"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> m:= FreeMagma( 2 );;  gens:= GeneratorsOfMagma( m );
##  [ x1, x2 ]
##  gap> w:= ( gens[1] * gens[2] ) * gens[1];
##  ((x1*x2)*x1)
##  gap> ExtRepOfObj( w );  ExtRepOfObj( gens[1] );
##  [ [ 1, 2 ], 1 ]
##  1
##  gap>  ExtRepOfObj( w*w );
##  [ [ [ 1, 2 ], 1 ], [ [ 1, 2 ], 1 ] ]
##  gap> ObjByExtRep( FamilyObj( w ), 2 );
##  x2
##  gap> ObjByExtRep( FamilyObj( w ), [ 1, [ 2, 1 ] ] );
##  (x1*(x2*x1))
##  ]]></Example>
##  <#/GAPDoc>
##


#############################################################################
##
#O  NonassocWord( <Fam>, <extrep> )   . .  construct word from external repr.
##
##  <ManSection>
##  <Oper Name="NonassocWord" Arg='Fam, extrep'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareSynonym( "NonassocWord", ObjByExtRep );


#############################################################################
##
#E