/usr/share/gap/lib/word.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | #############################################################################
##
#W word.gi GAP library Thomas Breuer
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
##
## This file contains generic methods for nonassociative words.
##
#############################################################################
##
#M \=( <w1>, <w2> ) . . . . . . . . . . . . . . . . . . . . . . . for words
##
InstallMethod( \=,
"for two words",
IsIdenticalObj,
[ IsWord, IsWord ], 0,
function( x, y )
return ExtRepOfObj( x ) = ExtRepOfObj( y );
end );
#############################################################################
##
#M \<( <w1>, <w2> ) . . . . . . . . . . . . . . . . . . . . . . . for words
##
## Words are ordered by the lexicographical order of their external
## representation.
##
InstallMethod( \<,
"nonassoc words",
IsIdenticalObj,
[ IsWord, IsWord ], 0,
function( x, y )
local n;
# thsi method does not work for assoc words!
if IsAssocWord(x) and IsAssocWord(y) then
TryNextMethod();
fi;
x:= ExtRepOfObj( x );
y:= ExtRepOfObj( y );
if IsInt( x ) then
return IsList( y ) or x < y;
elif IsInt( y ) then
return false;
fi;
for n in [ 1 .. Minimum( Length( x ), Length( y ) ) ] do
if x[n] < y[n] then
return true;
elif y[n] < x[n] then
return false;
fi;
od;
return Length( x ) < Length( y );
end );
#############################################################################
##
#M \*( <w1>, <w2> ) . . . . . . . . . . . . . . . for nonassociative words
##
## Multiplication of nonassociative words is done by putting the two factors
## into a bracket.
##
InstallMethod( \*,
"for two nonassoc. words",
IsIdenticalObj,
[ IsNonassocWord, IsNonassocWord ], 0,
function( x, y )
local xx, # external representation of `x'
yy; # external representation of `y'
# Treat the special cases that one argument is trivial.
xx:= ExtRepOfObj( x );
if xx = 0 then
return y;
fi;
yy:= ExtRepOfObj( y );
if yy = 0 then
return x;
fi;
# Form the product.
return ObjByExtRep( FamilyObj( x ), [ xx, yy ] );
end );
#############################################################################
##
#M Length( <w> ) . . . . . . . . . . . . . . . . . . . for a nonassoc. word
##
InstallOtherMethod( Length,
"for a nonassoc. word",
true,
[ IsNonassocWord ], 0,
function( w )
local len;
len:= function( obj )
if obj = 0 then
return 0;
elif IsInt( obj ) then
return 1;
else
return len( obj[1] ) + len( obj[2] );
fi;
end;
return len( ExtRepOfObj( w ) );
end );
#############################################################################
##
#M MappedWord( <x>, <gens1>, <gens2> )
##
InstallMethod( MappedWord,
"for a nonassoc. word, a homogeneous list, and a list",
IsElmsCollsX,
[ IsNonassocWord, IsNonassocWordCollection, IsList ], 0,
function( x, gens1, gens2 )
local mapped;
gens1:= List( gens1, ExtRepOfObj );
mapped:= function( word )
if word = 0 then
return One( gens2[1] );
elif IsInt( word ) then
return gens2[ Position( gens1, word ) ];
else
return mapped( word[1] ) * mapped( word[2] );
fi;
end;
return mapped( ExtRepOfObj( x ) );
end );
#############################################################################
##
#M MappedWord( <x>, <empty>, <empty> )
##
InstallOtherMethod( MappedWord, "empty generators list", true,
[ IsObject, IsEmpty, IsList ], 0,
function( x, gens1, gens2 )
return x;
end);
#############################################################################
##
#R IsBracketRep( <obj> )
##
## This representation is equal to the external representation.
##
DeclareRepresentation( "IsBracketRep", IsPositionalObjectRep, [] );
#############################################################################
##
#M Print( <w> ) . . . . . . . . . . . . . . . . . . . for a nonassoc. word
##
InstallMethod( PrintObj,
"for a nonassociative word",
true,
[ IsNonassocWord ], 0,
function( elm )
local names,
print;
names:= FamilyObj( elm )!.names;
print:= function( expr )
if expr = 0 then
Print( "<identity ...>" );
elif IsInt( expr ) then
Print( names[ expr ] );
else
Print( "(" );
print( expr[1] );
Print( "*" );
print( expr[2] );
Print( ")" );
fi;
end;
print( ExtRepOfObj( elm ) );
end );
#############################################################################
##
#M String( <w> ) . . . . . . . . . . . . . . . . . . . for a nonassoc. word
##
InstallMethod( String,
"for a nonassociative word",
true,
[ IsNonassocWord ], 0,
function( elm )
local names,
string;
names:= FamilyObj( elm )!.names;
string:= function( expr )
if expr = 0 then
return "<identity ...>" ;
elif IsInt( expr ) then
return names[ expr ];
else
return Concatenation( "(", string( expr[1] ), "*",
string( expr[2] ), ")" );
fi;
end;
elm:= string( ExtRepOfObj( elm ) );
ConvertToStringRep( elm );
return elm;
end );
#############################################################################
##
#M ObjByExtRep( <F>, <descr> ) . . . . . . for a nonassociative word family
##
## We have to distinguish the cases that the second argument is an integer
## (external representation of generators) and that it is a nested list of
## integers.
##
InstallMethod( ObjByExtRep,
"for a family of nonassociative words, and an integer",
true,
[ IsNonassocWordFamily, IsInt ], 0,
function( F, pos )
return Objectify( F!.defaultType, [ pos ] );
end );
InstallMethod( ObjByExtRep,
"for a family of nonassociative words, and a list",
true,
[ IsNonassocWordFamily, IsList ], 0,
function( F, list )
return Objectify( F!.defaultType, [ list ] );
end );
#############################################################################
##
#M ExtRepOfObj( <w> ) . . . . . . . . . . . . . . for a nonassociative word
##
InstallMethod( ExtRepOfObj,
"for a nonassoc. word",
true,
[ IsNonassocWord and IsBracketRep ], 0,
elm -> elm![1] );
#############################################################################
##
#M OneOp( <w> ) . . . . . . . . . . . . . . . . for a nonass. word-with-one
##
InstallMethod( OneOp,
"for a nonassoc. word-with-one",
true,
[ IsNonassocWordWithOne ], 0,
x -> ObjByExtRep( FamilyObj( x ), 0 ) );
#############################################################################
##
#E
##
|