This file is indexed.

/usr/share/gap/lib/wordass.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
#############################################################################
##
#W  wordass.gd                  GAP library                     Thomas Breuer
#W                                                             & Frank Celler
##
##
#Y  Copyright 1997,    Lehrstuhl D für Mathematik,   RWTH Aachen,    Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file declares the operations for associative words.
##
##  1. Categories of Associative Words
##  2. Comparison of Associative Words
##  3. Operations for Associative Words
##  4. Operations for Associative Words by their Syllables
##  5. Free Groups, Monoids, and Semigroups
##  6. External Representation for Associative Words
##  7. Some Undocumented Functions
##


#############################################################################
##
##  1. Categories of Associative Words
##
##  <#GAPDoc Label="[1]{wordass}">
##  Associative words are used to represent elements in free groups,
##  semigroups and monoids in &GAP;
##  (see&nbsp;<Ref Sect="Free Groups, Monoids and Semigroups"/>).
##  An associative word is just a sequence of letters,
##  where each letter is an element of an alphabet (in the following called a
##  <E>generator</E>) or its inverse.
##  Associative words can be multiplied;
##  in free monoids also the computation of an identity is permitted,
##  in free groups also the computation of inverses
##  (see&nbsp;<Ref Sect="Operations for Associative Words"/>).
##  <P/>
##  Different alphabets correspond to different families of associative words.
##  There is no relation whatsoever between words in different families.
##  <P/>
##  <Example><![CDATA[
##  gap> f:= FreeGroup( "a", "b", "c" );
##  <free group on the generators [ a, b, c ]>
##  gap> gens:= GeneratorsOfGroup(f);
##  [ a, b, c ]
##  gap> w:= gens[1]*gens[2]/gens[3]*gens[2]*gens[1]/gens[1]*gens[3]/gens[2];
##  a*b*c^-1*b*c*b^-1
##  gap> w^-1;
##  b*c^-1*b^-1*c*b^-1*a^-1
##  ]]></Example>
##  <P/>
##  Words are displayed as products of letters.
##  The letters are usually printed like <C>f1</C>, <C>f2</C>, <M>\ldots</M>,
##  but it is possible to give user defined names to them,
##  which can be arbitrary strings.
##  These names do not necessarily identify a unique letter (generator),
##  it is possible to have several letters
##  &ndash;even in the same family&ndash; that are displayed in the same way.
##  Note also that
##  <E>there is no relation between the names of letters and variable names</E>.
##  In the example above, we might have typed
##  <P/>
##  <Example><![CDATA[
##  gap> a:= f.1;; b:= f.2;; c:= f.3;;
##  ]]></Example>
##  <P/>
##  (<E>Interactively</E>, the function
##  <Ref Func="AssignGeneratorVariables"/> provides a shorthand for this.)
##  This allows us to define <C>w</C> more conveniently:
##  <P/>
##  <Example><![CDATA[
##  gap> w := a*b/c*b*a/a*c/b;
##  a*b*c^-1*b*c*b^-1
##  ]]></Example>
##  <P/>
##  Using homomorphisms it is possible to express elements of a group as words
##  in terms of generators,
##  see&nbsp;<Ref Sect="Expressing Group Elements as Words in Generators"/>.
##  <#/GAPDoc>
##


#############################################################################
##
#C  IsAssocWord( <obj> )
#C  IsAssocWordWithOne( <obj> )
#C  IsAssocWordWithInverse( <obj> )
##
##  <#GAPDoc Label="IsAssocWord">
##  <ManSection>
##  <Filt Name="IsAssocWord" Arg='obj' Type='Category'/>
##  <Filt Name="IsAssocWordWithOne" Arg='obj' Type='Category'/>
##  <Filt Name="IsAssocWordWithInverse" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Ref Func="IsAssocWord"/> is the category of associative words
##  in free semigroups,
##  <Ref Func="IsAssocWordWithOne"/> is the category of associative words
##  in free monoids
##  (which admit the operation <Ref Func="One"/> to compute an identity),
##  <Ref Func="IsAssocWordWithInverse"/> is the category of associative words
##  in free groups (which have an inverse).
##  See&nbsp;<Ref Func="IsWord"/> for more general categories of words.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsAssocWord", IsWord and IsAssociativeElement );

DeclareSynonym( "IsAssocWordWithOne", IsAssocWord and IsWordWithOne );

DeclareSynonym( "IsAssocWordWithInverse",
    IsAssocWord and IsWordWithInverse );


#############################################################################
##
#C  IsAssocWordCollection( <obj> )
#C  IsAssocWordWithOneCollection( <obj> )
#C  IsAssocWordWithInverseCollection( <obj> )
##
##  <ManSection>
##  <Filt Name="IsAssocWordCollection" Arg='obj' Type='Category'/>
##  <Filt Name="IsAssocWordWithOneCollection" Arg='obj' Type='Category'/>
##  <Filt Name="IsAssocWordWithInverseCollection" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategoryCollections( "IsAssocWord" );
DeclareCategoryCollections( "IsAssocWordWithOne" );
DeclareCategoryCollections( "IsAssocWordWithInverse" );

DeclareCategoryFamily( "IsAssocWord" );
DeclareCategoryFamily( "IsAssocWordWithOne" );
DeclareCategoryFamily( "IsAssocWordWithInverse" );


#############################################################################
##
#C  IsSyllableWordsFamily( <obj> )
##
##  <#GAPDoc Label="IsSyllableWordsFamily">
##  <ManSection>
##  <Filt Name="IsSyllableWordsFamily" Arg='obj' Type='Category'/>
##
##  <Description>
##  A syllable word family stores words by default in syllable form.
##  There are also different versions of syllable representations, which
##  compress a generator exponent pair in 8, 16 or 32 bits or use a pair of
##  integers.
##  Internal mechanisms try to make this as memory efficient as possible.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsSyllableWordsFamily", IsAssocWordFamily );


#############################################################################
##
#C  Is8BitsFamily( <obj> )
#C  Is16BitsFamily( <obj> )
#C  Is32BitsFamily( <obj> )
#C  IsInfBitsFamily( <obj> )
##
##  <#GAPDoc Label="Is8BitsFamily">
##  <ManSection>
##  <Filt Name="Is16BitsFamily" Arg='obj' Type='Category'/>
##  <Filt Name="Is32BitsFamily" Arg='obj' Type='Category'/>
##  <Filt Name="IsInfBitsFamily" Arg='obj' Type='Category'/>
##
##  <Description>
##  Regardless of the internal representation used, it is possible to convert
##  a word in a list of numbers in letter or syllable representation and vice
##  versa.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "Is8BitsFamily", IsSyllableWordsFamily );
DeclareCategory( "Is16BitsFamily", IsSyllableWordsFamily );
DeclareCategory( "Is32BitsFamily", IsSyllableWordsFamily );
DeclareCategory( "IsInfBitsFamily", IsSyllableWordsFamily );

#############################################################################
##
#R  IsSyllableAssocWordRep( <obj> )
##
##  <#GAPDoc Label="IsSyllableAssocWordRep">
##  <ManSection>
##  <Filt Name="IsSyllableAssocWordRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  A word in syllable representation stores generator/exponents pairs (as
##  given by <Ref Func="ExtRepOfObj"/>.
##  Syllable access is fast, letter access is slow for such words.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation( "IsSyllableAssocWordRep", IsAssocWord, [] );

#############################################################################
##
#R  IsLetterAssocWordRep( <obj> )
##
##  <#GAPDoc Label="IsLetterAssocWordRep">
##  <ManSection>
##  <Filt Name="IsLetterAssocWordRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  A word in letter representation stores a list of generator/inverses
##  numbers (as given by <Ref Func="LetterRepAssocWord"/>).
##  Letter access is fast, syllable access is slow for such words.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation( "IsLetterAssocWordRep", IsAssocWord, [] );

#############################################################################
##
#R  IsBLetterAssocWordRep( <obj> )
#R  IsWLetterAssocWordRep( <obj> )
##
##  <#GAPDoc Label="IsBLetterAssocWordRep">
##  <ManSection>
##  <Filt Name="IsBLetterAssocWordRep" Arg='obj' Type='Representation'/>
##  <Filt Name="IsWLetterAssocWordRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  these two subrepresentations of <Ref Func="IsLetterAssocWordRep"/>
##  indicate whether the word is stored as a list of bytes (in a string)
##  or as a list of integers).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation( "IsBLetterAssocWordRep", IsLetterAssocWordRep, [] );
DeclareRepresentation( "IsWLetterAssocWordRep", IsLetterAssocWordRep, [] );

#############################################################################
##
#C  IsLetterWordsFamily( <obj> )
##
##  <#GAPDoc Label="IsLetterWordsFamily">
##  <ManSection>
##  <Filt Name="IsLetterWordsFamily" Arg='obj' Type='Category'/>
##
##  <Description>
##  A letter word family stores words by default in letter form. 
##  <P/>
##  Internally, there are letter representations that use integers (4 Byte)
##  to represent a generator and letter representations that use single bytes
##  to represent a character.
##  The latter are more memory efficient, but can only be used if there are
##  less than 128 generators (in which case they are used by default).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsLetterWordsFamily", IsAssocWordFamily );

#############################################################################
##
#C  IsBLetterWordsFamily( <obj> )
#C  IsWLetterWordsFamily( <obj> )
##
##  <#GAPDoc Label="IsBLetterWordsFamily">
##  <ManSection>
##  <Filt Name="IsBLetterWordsFamily" Arg='obj' Type='Category'/>
##  <Filt Name="IsWLetterWordsFamily" Arg='obj' Type='Category'/>
##
##  <Description>
##  These two subcategories of <Ref Func="IsLetterWordsFamily"/> specify the
##  type of letter representation to be used.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsBLetterWordsFamily", IsLetterWordsFamily );
DeclareCategory( "IsWLetterWordsFamily", IsLetterWordsFamily );


#############################################################################
##
#T  IsFreeSemigroup( <obj> )
#T  IsFreeMonoid( <obj> )
#C  IsFreeGroup( <obj> )
##
##  <#GAPDoc Label="IsFreeGroup">
##  <ManSection>
##  <Filt Name="IsFreeGroup" Arg='obj' Type='Category'/>
##
##  <Description>
##  Any group consisting of elements in <Ref Func="IsAssocWordWithInverse"/>
##  lies in the filter <Ref Func="IsFreeGroup"/>;
##  this holds in particular for any group created with
##  <Ref Func="FreeGroup" Label="for given rank"/>,
##  or any subgroup of such a group.
##  <P/>
##  <!--  Note that we cannot define <C>IsFreeMonoid</C> as-->
##  <!--  <C>IsAssocWordWithOneCollection and IsMonoid</C> because then-->
##  <!--  every free group would be a free monoid, which is not true!-->
##  <!--  Instead we just make it a property and set it at creation-->
##  Also see Chapter&nbsp;<Ref Chap="Finitely Presented Groups"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsFreeSemigroup", IsAssocWordCollection and IsSemigroup);
DeclareProperty("IsFreeMonoid", IsAssocWordWithOneCollection and IsMonoid);
DeclareSynonym( "IsFreeGroup",
    IsAssocWordWithInverseCollection and IsGroup );


#############################################################################
##
#M  IsGeneratorsOfMagmaWithInverses( <coll> )
##
InstallTrueMethod( IsGeneratorsOfMagmaWithInverses,
    IsAssocWordWithInverseCollection );


#############################################################################
##
#F  AssignGeneratorVariables(<G>)
##
##  <#GAPDoc Label="AssignGeneratorVariables">
##  <ManSection>
##  <Func Name="AssignGeneratorVariables" Arg='G'/>
##
##  <Description>
##  If <A>G</A> is a group, whose generators are represented by symbols (for 
##  example a free group, a finitely presented group or a pc group) this
##  function assigns these generators to global variables with the same 
##  names.
##  <P/>
##  The aim of this function is to make it easy in interactive use to work
##  with (for example) a free group. It is a shorthand for a sequence of
##  assignments of the form
##  <P/>
##  <Log><![CDATA[
##  var1:=GeneratorsOfGroup(G)[1];
##  var2:=GeneratorsOfGroup(G)[2];
##  ...
##  varn:=GeneratorsOfGroup(G)[n];
##  ]]></Log>
##  <P/>
##  However, since overwriting global variables can be very dangerous,
##  <E>it is not permitted to use this function within a function</E>.
##  (If &ndash;despite this warning&ndash; this is done,
##  the result is undefined.)
##  <P/>
##  If the assignment overwrites existing variables a warning is given, if
##  any of the variables if write protected, or any of the generator names   
##  would not be a proper variable name, an error is raised.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AssignGeneratorVariables", [IsDomain] );

#############################################################################
##
##  2. Comparison of Associative Words
##
##  <#GAPDoc Label="[2]{wordass}">
##  <ManSection>
##  <Func Name="\=" Arg='w1, w2' Label="for associative words"/>
##
##  <Description>
##  <Index Subkey="associative words">equality</Index>
##  Two associative words are equal if they are words over the same alphabet
##  and if they are sequences of the same letters.
##  This is equivalent to saying that the external representations of the
##  words are equal,
##  see&nbsp;<Ref Sect="The External Representation for Associative Words"/>
##  and <Ref Sect="Comparison of Words"/>.
##  <P/>
##  There is no <Q>universal</Q> empty word,
##  every alphabet (that is, every family of words) has its own empty word.
##  <Example><![CDATA[
##  gap> f:= FreeGroup( "a", "b", "b" );;
##  gap> gens:= GeneratorsOfGroup(f);
##  [ a, b, b ]
##  gap> gens[2] = gens[3];
##  false
##  gap> x:= gens[1]*gens[2];
##  a*b
##  gap> y:= gens[2]/gens[2]*gens[1]*gens[2];
##  a*b
##  gap> x = y;
##  true
##  gap> z:= gens[2]/gens[2]*gens[1]*gens[3];
##  a*b
##  gap> x = z;
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##
##  <ManSection>
##  <Func Name="\&lt;" Arg='w1, w2' Label="for associative words"/>
##
##  <Description>
##  <Index Subkey="associative words">smaller</Index>
##  The ordering of associative words is defined by length and lexicography
##  (this ordering is called <E>short-lex</E> ordering),
##  that is, shorter words are smaller than longer words,
##  and words of the same length are compared w.r.t.&nbsp;the lexicographical
##  ordering induced by the ordering of generators.
##  Generators are sorted according to the order in which they were created.
##  If the generators are invertible then each generator <A>g</A> is larger
##  than its inverse <A>g</A><C>^-1</C>,
##  and <A>g</A><C>^-1</C> is larger than every generator that is smaller
##  than <A>g</A>.
##  <Example><![CDATA[
##  gap> f:= FreeGroup( 2 );;  gens:= GeneratorsOfGroup( f );;
##  gap> a:= gens[1];;  b:= gens[2];;
##  gap> One(f) < a^-1;  a^-1 < a;  a < b^-1;  b^-1 < b; b < a^2;  a^2 < a*b;
##  true
##  true
##  true
##  true
##  true
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
##  3. Operations for Associative Words
##
##  <#GAPDoc Label="[3]{wordass}">
##  The product of two given associative words is defined as the freely
##  reduced concatenation of the words.
##  <Index Subkey="of words">product</Index>
##  <Index Subkey="of words">quotient</Index>
##  <Index Subkey="of words">power</Index>
##  <Index Subkey="of a word">conjugate</Index>
##  Besides the multiplication <Ref Func="\*"/>, the arithmetical operators
##  <Ref Func="One"/> (if the word lies in a family with identity)
##  and (if the generators are invertible) <Ref Func="Inverse"/>,
##  <Ref Func="\/"/>,<Ref Func="\^"/>,
##  <Index Key="Comm" Subkey="for words"><C>Comm</C></Index>
##  <Ref Func="Comm"/>, and
##  <Index Key="LeftQuotient" Subkey="for words"><C>LeftQuotient</C></Index>
##  <Ref Func="LeftQuotient"/> are applicable to associative words,
##  see&nbsp;<Ref Sect="Arithmetic Operations for Elements"/>.
##  <P/>
##  See also <Ref Func="MappedWord"/>, an operation that is applicable to
##  arbitrary words.
##  <P/>
##  See Section <Ref Sect="Representations for Associative Words"/>
##  for a discussion of the internal representations of associative words
##  that are supported by &GAP;.
##  Note that operations to extract or act on parts of words
##  (letter or syllables) can carry substantially different
##  costs, depending on the representation the words are in.
##  <#/GAPDoc>
##


#############################################################################
##
#A  Length( <w> )
##
##  <#GAPDoc Label="Length:wordass">
##  <ManSection>
##  <Attr Name="Length" Arg='w' Label="for a associative word"/>
##
##  <Description>
##  <Index Subkey="of a word">length</Index>
##  For an associative word <A>w</A>,
##  <Ref Func="Length" Label="for a associative word"/> returns
##  the number of letters in <A>w</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> f := FreeGroup("a","b");; gens := GeneratorsOfGroup(f);;
##  gap> a := gens[1];; b := gens[2];;w := a^5*b*a^2*b^-4*a;;
##  gap>  w; Length( w );  Length( a^17 );  Length( w^0 );
##  a^5*b*a^2*b^-4*a
##  13
##  17
##  0
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Length", IsAssocWord );


#############################################################################
##
#O  Subword( <w>, <from>, <to> )
##
##  <#GAPDoc Label="Subword">
##  <ManSection>
##  <Oper Name="Subword" Arg='w, from, to'/>
##
##  <Description>
##  For an associative word <A>w</A> and two positive integers <A>from</A>
##  and <A>to</A>,
##  <Ref Oper="Subword"/> returns the subword of <A>w</A> that begins
##  at position <A>from</A> and ends at position <A>to</A>.
##  Indexing is done with origin 1.
##  <Example><![CDATA[
##  gap> w;  Subword( w, 3, 7 );
##  a^5*b*a^2*b^-4*a
##  a^3*b*a
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Subword", [ IsAssocWord, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  PositionWord( <w>, <sub>, <from> )
##
##  <#GAPDoc Label="PositionWord">
##  <ManSection>
##  <Oper Name="PositionWord" Arg='w, sub, from'/>
##
##  <Description>
##  Let <A>w</A> and <A>sub</A> be associative words,
##  and <A>from</A> a positive integer.
##  <Ref Func="PositionWord"/> returns the position of the first occurrence
##  of <A>sub</A> as a subword of <A>w</A>, starting at position <A>from</A>.
##  If there is no such occurrence, <K>fail</K> is returned.
##  Indexing is done with origin 1.
##  <P/>
##  In other words, <C>PositionWord( <A>w</A>, <A>sub</A>, <A>from</A> )</C>
##  is the smallest integer <M>i</M> larger than or equal to <A>from</A> such
##  that <C>Subword( <A>w</A>, </C><M>i</M><C>,</C>
##  <M>i</M><C>+Length( <A>sub</A> )-1 ) =</C>
##  <A>sub</A>, see&nbsp;<Ref Func="Subword"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> w;  PositionWord( w, a/b, 1 );
##  a^5*b*a^2*b^-4*a
##  8
##  gap> Subword( w, 8, 9 );
##  a*b^-1
##  gap> PositionWord( w, a^2, 1 );
##  1
##  gap> PositionWord( w, a^2, 2 );
##  2
##  gap> PositionWord( w, a^2, 6 );
##  7
##  gap> PositionWord( w, a^2, 8 );
##  fail
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PositionWord", [ IsAssocWord, IsAssocWord, IsPosInt ] );


#############################################################################
##
#O  SubstitutedWord( <w>, <from>, <to>, <by> )
#O  SubstitutedWord( <w>, <sub>, <from>, <by> )
##
##  <#GAPDoc Label="SubstitutedWord">
##  <ManSection>
##  <Heading>SubstitutedWord</Heading>
##  <Oper Name="SubstitutedWord" Arg='w, from, to, by'
##   Label="replace an interval by a given word"/>
##  <Oper Name="SubstitutedWord" Arg='w, sub, from, by'
##   Label="replace a subword by a given word"/>
##
##  <Description>
##  Let <A>w</A> be an associative word.
##  <P/>
##  In the first form,
##  <Ref Func="SubstitutedWord" Label="replace an interval by a given word"/>
##  returns the associative word obtained by replacing the subword of
##  <A>w</A> that begins at position <A>from</A> and ends at position
##  <A>to</A> by the associative word <A>by</A>.
##  <A>from</A> and <A>to</A> must be positive integers,
##  indexing is done with origin 1.
##  In other words,
##  <C>SubstitutedWord( <A>w</A>, <A>from</A>, <A>to</A>, <A>by</A> )</C>
##  is the product of the three words
##  <C>Subword( <A>w</A>, 1, <A>from</A>-1 )</C>, <A>by</A>,
##  and <C>Subword( <A>w</A>, <A>to</A>+1, Length( <A>w</A> ) )</C>,
##  see&nbsp;<Ref Func="Subword"/>.
##  <P/>
##  In the second form,
##  <Ref Func="SubstitutedWord" Label="replace a subword by a given word"/>
##  returns the associative word obtained by replacing the first occurrence
##  of the associative word <A>sub</A> of <A>w</A>, starting at position
##  <A>from</A>, by the associative word <A>by</A>;
##  if there is no such occurrence, <K>fail</K> is returned.
##  <Example><![CDATA[
##  gap> w;  SubstitutedWord( w, 3, 7, a^19 );
##  a^5*b*a^2*b^-4*a
##  a^22*b^-4*a
##  gap> SubstitutedWord( w, a, 6, b^7 );
##  a^5*b^8*a*b^-4*a
##  gap> SubstitutedWord( w, a*b, 6, b^7 );
##  fail
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SubstitutedWord",
    [ IsAssocWord, IsPosInt, IsPosInt, IsAssocWord ] );

DeclareOperation( "SubstitutedWord",
    [ IsAssocWord, IsAssocWord, IsPosInt, IsAssocWord ] );


#############################################################################
##
#O  EliminatedWord( <w>, <gen>, <by> )
##
##  <#GAPDoc Label="EliminatedWord">
##  <ManSection>
##  <Oper Name="EliminatedWord" Arg='w, gen, by'/>
##
##  <Description>
##  For an associative word <A>w</A>, a generator <A>gen</A>,
##  and an associative word <A>by</A>, <Ref Func="EliminatedWord"/> returns
##  the associative word obtained by replacing each occurrence of <A>gen</A>
##  in <A>w</A> by <A>by</A>.
##  <Example><![CDATA[
##  gap> w;  EliminatedWord( w, a, a^2 );  EliminatedWord( w, a, b^-1 );
##  a^5*b*a^2*b^-4*a
##  a^10*b*a^4*b^-4*a^2
##  b^-11
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EliminatedWord",
    [ IsAssocWord, IsAssocWord, IsAssocWord ] );


#############################################################################
##
#O  ExponentSumWord( <w>, <gen> )
##
##  <#GAPDoc Label="ExponentSumWord">
##  <ManSection>
##  <Oper Name="ExponentSumWord" Arg='w, gen'/>
##
##  <Description>
##  For an associative word <A>w</A> and a generator <A>gen</A>,
##  <Ref Func="ExponentSumWord"/> returns the number of times <A>gen</A>
##  appears in <A>w</A> minus the number of times its inverse appears in
##  <A>w</A>.
##  If both <A>gen</A> and its inverse do not occur in <A>w</A> then <M>0</M>
##  is returned.
##  <A>gen</A> may also be the inverse of a generator.
##  <Example><![CDATA[
##  gap> w;  ExponentSumWord( w, a );  ExponentSumWord( w, b );
##  a^5*b*a^2*b^-4*a
##  8
##  -3
##  gap> ExponentSumWord( (a*b*a^-1)^3, a );  ExponentSumWord( w, b^-1 );
##  0
##  3
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ExponentSumWord", [ IsAssocWord, IsAssocWord ] );


#############################################################################
##
##  4. Operations for Associative Words by their Syllables
##  <#GAPDoc Label="[5]{wordass}">
##  For an associative word
##  <A>w</A> <M>= x_1^{{n_1}} x_2^{{n_2}} \cdots x_k^{{n_k}}</M>
##  over an alphabet containing <M>x_1, x_2, \ldots, x_k</M>,
##  such that <M>x_i \neq x_{{i+1}}^{{\pm 1}}</M> for
##  <M>1 \leq i \leq k-1</M>,
##  the subwords <M>x_i^{{e_i}}</M> are uniquely determined;
##  these powers of generators are called the <E>syllables</E> of <M>w</M>.
##  <#/GAPDoc>
##


#############################################################################
##
#A  NumberSyllables( <w> )
##
##  <#GAPDoc Label="NumberSyllables">
##  <ManSection>
##  <Attr Name="NumberSyllables" Arg='w'/>
##
##  <Description>
##  <Ref Func="NumberSyllables"/> returns the number of syllables of the
##  associative word <A>w</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NumberSyllables", IsAssocWord );
DeclareSynonymAttr( "NrSyllables", NumberSyllables );


#############################################################################
##
#O  ExponentSyllable( <w>, <i> )
##
##  <#GAPDoc Label="ExponentSyllable">
##  <ManSection>
##  <Oper Name="ExponentSyllable" Arg='w, i'/>
##
##  <Description>
##  <Ref Func="ExponentSyllable"/> returns the exponent of the <A>i</A>-th
##  syllable of the associative word <A>w</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ExponentSyllable", [ IsAssocWord, IsPosInt ] );


#############################################################################
##
#O  GeneratorSyllable( <w>, <i> )
##
##  <#GAPDoc Label="GeneratorSyllable">
##  <ManSection>
##  <Oper Name="GeneratorSyllable" Arg='w, i'/>
##
##  <Description>
##  <Ref Func="GeneratorSyllable"/> returns the number of the generator that
##  is involved in the <A>i</A>-th syllable of the associative word <A>w</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "GeneratorSyllable", [ IsAssocWord, IsInt ] );


#############################################################################
##
#O  SubSyllables( <w>, <from>, <to> )
##
##  <#GAPDoc Label="SubSyllables">
##  <ManSection>
##  <Oper Name="SubSyllables" Arg='w, from, to'/>
##
##  <Description>
##  <Ref Func="SubSyllables"/> returns the subword of the associative word
##  <A>w</A> that consists of the syllables from positions <A>from</A> to
##  <A>to</A>, where <A>from</A> and <A>to</A> must be positive integers,
##  and indexing is done with origin 1.
##  <Example><![CDATA[
##  gap> w;  NumberSyllables( w );
##  a^5*b*a^2*b^-4*a
##  5
##  gap> ExponentSyllable( w, 3 );
##  2
##  gap> GeneratorSyllable( w, 3 );
##  1
##  gap> SubSyllables( w, 2, 3 );
##  b*a^2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SubSyllables", [ IsAssocWord, IsInt, IsInt ] );


#############################################################################
##
##  5. Operations for Associative Words by their Letters


#############################################################################
##
#O  LetterRepAssocWord( <w>[, <gens>] )
##
##  <#GAPDoc Label="LetterRepAssocWord">
##  <ManSection>
##  <Oper Name="LetterRepAssocWord" Arg='w[, gens]'/>
##
##  <Description>
##  The <E>letter representation</E> of an associated word is as a list of
##  integers, each entry corresponding to a group generator. Inverses of the
##  generators are represented by negative numbers. The generator numbers
##  are as associated to the family.
##  <P/>
##  This operation returns the letter representation of the associative word
##  <A>w</A>.
##  <P/>
##  In the call with two arguments, the generator numbers correspond to the
##  generator order given in the list <A>gens</A>.
##  <P/>
##  (For words stored in syllable form the letter representation has to be
##  computed.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "LetterRepAssocWord", [ IsAssocWord ] );


#############################################################################
##
#O  AssocWordByLetterRep( <Fam>, <lrep>[, <gens>] )
##
##  <#GAPDoc Label="AssocWordByLetterRep">
##  <ManSection>
##  <Oper Name="AssocWordByLetterRep" Arg='Fam, lrep[, gens]'/>
##
##  <Description>
##  takes a letter representation <A>lrep</A>
##  (see <Ref Func="LetterRepAssocWord"/>) and returns an associative word in
##  family <A>fam</A> corresponding to this letter representation.
##  <P/>
##  If <A>gens</A> is given, the numbers in the letter
##  representation correspond to <A>gens</A>.
##  <Example><![CDATA[
##  gap> w:=AssocWordByLetterRep( FamilyObj(a), [-1,2,1,-2,-2,-2,1,1,1,1]);
##  a^-1*b*a*b^-3*a^4
##  gap> LetterRepAssocWord( w^2 );
##  [ -1, 2, 1, -2, -2, -2, 1, 1, 1, 2, 1, -2, -2, -2, 1, 1, 1, 1 ]
##  ]]></Example>
##  <P/>
##  The external representation
##  (see section&nbsp;<Ref Sect="The External Representation for Associative Words"/>)
##  can be used if a syllable representation is needed.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AssocWordByLetterRep",[IsFamily,IsList] );


#############################################################################
##
#O  SyllableRepAssocWord( <w> )
##
##  <ManSection>
##  <Oper Name="SyllableRepAssocWord" Arg='w'/>
##
##  <Description>
##  returns a word equal to <A>w</A> in syllable representation.
##  This is needed for the use of words for pc groups.
##  </Description>
##  </ManSection>
##
DeclareOperation( "SyllableRepAssocWord", [ IsAssocWord ] );

#############################################################################
##
##  6. External Representation for Associative Words
##  <#GAPDoc Label="[6]{wordass}">
##  The external representation of the associative word <M>w</M> is defined
##  as follows.
##  If
##  <M>w = g_{{i_1}}^{{e_1}} * g_{{i_2}}^{{e_2}} * \cdots * g_{{i_k}}^{{e_k}}</M>
##  is a word over the alphabet <M>g_1, g_2, \ldots</M>,
##  i.e., <M>g_i</M> denotes the <M>i</M>-th generator of the family of
##  <M>w</M>, then <M>w</M> has external representation
##  <M>[ i_1, e_1, i_2, e_2, \ldots, i_k, e_k ]</M>.
##  The empty list describes the identity element (if exists) of the family.
##  Exponents may be negative if the family allows inverses.
##  The external representation of an associative word is guaranteed to be
##  freely reduced;
##  for example,
##  <M>g_1 * g_2 * g_2^{{-1}} * g_1</M> has the external representation
##  <C>[ 1, 2 ]</C>.
##  <P/>
##  Regardless of the family preference for letter or syllable
##  representations
##  (see&nbsp;<Ref Sect="Representations for Associative Words"/>),
##  <C>ExtRepOfObj</C> and <C>ObjByExtRep</C> can be used and interface to
##  this <Q>syllable</Q>-like representation.
##  <P/>
##  <Example><![CDATA[
##  gap> w:= ObjByExtRep( FamilyObj(a), [1,5,2,-7,1,3,2,4,1,-2] );
##  a^5*b^-7*a^3*b^4*a^-2
##  gap> ExtRepOfObj( w^2 );
##  [ 1, 5, 2, -7, 1, 3, 2, 4, 1, 3, 2, -7, 1, 3, 2, 4, 1, -2 ]
##  ]]></Example>
##  <#/GAPDoc>
##


#############################################################################
##
##  7. Some Undocumented Functions
##


#############################################################################
##
#O  ExponentSums( <w>[, <from>, <to>] )
##
##  <ManSection>
##  <Oper Name="ExponentSums" Arg='w[, from, to]'/>
##
##  <Description>
##  returns the exponent sums in <A>w</A>.
##  The three argument version loops over the
##  syllables <A>from</A> to <A>to</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "ExponentSums", [ IsAssocWord ] );


#############################################################################
##
#O  RenumberedWord( <word>, <renumber> )  . . . renumber generators of a word
##
##  <ManSection>
##  <Oper Name="RenumberedWord" Arg='word, renumber'/>
##
##  <Description>
##  accepts an associative word <A>word</A> and a list <A>renumber</A> of
##  positive integers.
##  The result is a new word obtained from <A>word</A> by replacing each
##  occurrence of generator number <M>g</M> by <A>renumber</A><M>[g]</M>.
##  The list <A>renumber</A> need not be dense, but it must have a positive
##  integer for each generator number occurring in <A>word</A>.
##  That integer must not exceed the number of generators in the elements
##  family of <A>word</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "RenumberedWord", [IsAssocWord, IsList] );


#############################################################################
##
#O  AssocWord( <Fam>, <extrep> )  . . . .  construct word from external repr.
#O  AssocWord( <Type>, <extrep> ) . . . .  construct word from external repr.
##
##  <ManSection>
##  <Oper Name="AssocWord" Arg='Fam, extrep'/>
##  <Oper Name="AssocWord" Arg='Type, extrep'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "AssocWord" );


#############################################################################
##
#O  ObjByVector( <Fam>, <exponents> )
#O  ObjByVector( <Type>, <exponents> )
##
##  <ManSection>
##  <Oper Name="ObjByVector" Arg='Fam, exponents'/>
##  <Oper Name="ObjByVector" Arg='Type, exponents'/>
##
##  <Description>
##  is the associative word in the family <A>Fam</A> that has
##  exponents vector <A>exponents</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ObjByVector" );


# is not used anywhere
# #############################################################################
# ##
# #O  CyclicReducedWordList( <word>, <gens> )
# ##
# DeclareOperation( "CyclicReducedWordList", [ IsAssocWord, IsList ] );


#############################################################################
##
#F  StoreInfoFreeMagma( <F>, <names>, <req> )
##
##  <ManSection>
##  <Func Name="StoreInfoFreeMagma" Arg='F, names, req'/>
##
##  <Description>
##  <Ref Func="StoreInfoFreeMagma"/> does the administrative work
##  in the construction of free semigroups, free monoids, and free groups.
##  <P/>
##  <A>F</A> is the family of objects,
##  <A>names</A> is a list of generators names,
##  and <A>req</A> is the required category for the elements, that is,
##  <Ref Func="IsAssocWord"/>, <Ref Func="IsAssocWordWithOne"/>,
##  or <Ref Func="IsAssocWordWithInverse"/>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "StoreInfoFreeMagma" );


#############################################################################
##
#F  InfiniteListOfNames( <string>[, <initnames>] )
##
##  <ManSection>
##  <Func Name="InfiniteListOfNames" Arg='string[, initnames]'/>
##
##  <Description>
##  If the only argument is a string <A>string</A> then
##  <Ref Func="InfiniteListOfNames"/> returns an infinite list with the
##  string <A>string</A><M>i</M> at position <M>i</M>.
##  If a finite list <A>initnames</A> of length <M>n</M>, say,
##  is given as second argument,
##  the <M>i</M>-th entry of the returned infinite list is equal to
##  <A>initnames</A><C>[</C><M>i</M><C>]</C> if <M>i \leq n</M>,
##  and equal to <A>string</A><M>i</M> if <M>i &gt; n</M>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "InfiniteListOfNames" );


#############################################################################
##
#F  InfiniteListOfGenerators( <F>[, <init>] )
##
##  <ManSection>
##  <Func Name="InfiniteListOfGenerators" Arg='F[, init]'/>
##
##  <Description>
##  If the only argument is a family <A>Fam</A> then
##  <Ref Func="InfiniteListOfGenerators"/> returns an infinite list
##  containing at position <M>i</M> the element in <A>Fam</A>
##  obtained as <C>ObjByExtRep( <A>Fam</A>, [ </C><M>i</M><C>, 1 ] )</C>.
##  If a finite list <A>init</A> of length <M>n</M>, say,
##  is given as second argument, the <M>i</M>-th entry of the returned
##  infinite list is equal to
##  <A>init</A><C>[</C><M>i</M><C>]</C> if <M>i \leq n</M>,
##  and equal to <C>ObjByExtRep( <A>Fam</A>, </C><M>i</M><C> )</C>
##  if <M>i &gt; n</M>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "InfiniteListOfGenerators" );

#############################################################################
##
#F  ERepAssWorProd( <l>,<r> )
##
##  <ManSection>
##  <Func Name="ERepAssWorProd" Arg='l,r'/>
##
##  <Description>
##  multiplies two associative words in the external representation.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("ERepAssWorProd");

#############################################################################
##
#F  ERepAssWorInv( <w> )
##
##  <ManSection>
##  <Func Name="ERepAssWorInv" Arg='w'/>
##
##  <Description>
##  returns the inverse of the associative word <A>w</A> given in external
##  representation.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("ERepAssWorInv");


#############################################################################
##
#E