/usr/share/gap/lib/wordass.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 | #############################################################################
##
#W wordass.gd GAP library Thomas Breuer
#W & Frank Celler
##
##
#Y Copyright 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for associative words.
##
## 1. Categories of Associative Words
## 2. Comparison of Associative Words
## 3. Operations for Associative Words
## 4. Operations for Associative Words by their Syllables
## 5. Free Groups, Monoids, and Semigroups
## 6. External Representation for Associative Words
## 7. Some Undocumented Functions
##
#############################################################################
##
## 1. Categories of Associative Words
##
## <#GAPDoc Label="[1]{wordass}">
## Associative words are used to represent elements in free groups,
## semigroups and monoids in &GAP;
## (see <Ref Sect="Free Groups, Monoids and Semigroups"/>).
## An associative word is just a sequence of letters,
## where each letter is an element of an alphabet (in the following called a
## <E>generator</E>) or its inverse.
## Associative words can be multiplied;
## in free monoids also the computation of an identity is permitted,
## in free groups also the computation of inverses
## (see <Ref Sect="Operations for Associative Words"/>).
## <P/>
## Different alphabets correspond to different families of associative words.
## There is no relation whatsoever between words in different families.
## <P/>
## <Example><![CDATA[
## gap> f:= FreeGroup( "a", "b", "c" );
## <free group on the generators [ a, b, c ]>
## gap> gens:= GeneratorsOfGroup(f);
## [ a, b, c ]
## gap> w:= gens[1]*gens[2]/gens[3]*gens[2]*gens[1]/gens[1]*gens[3]/gens[2];
## a*b*c^-1*b*c*b^-1
## gap> w^-1;
## b*c^-1*b^-1*c*b^-1*a^-1
## ]]></Example>
## <P/>
## Words are displayed as products of letters.
## The letters are usually printed like <C>f1</C>, <C>f2</C>, <M>\ldots</M>,
## but it is possible to give user defined names to them,
## which can be arbitrary strings.
## These names do not necessarily identify a unique letter (generator),
## it is possible to have several letters
## –even in the same family– that are displayed in the same way.
## Note also that
## <E>there is no relation between the names of letters and variable names</E>.
## In the example above, we might have typed
## <P/>
## <Example><![CDATA[
## gap> a:= f.1;; b:= f.2;; c:= f.3;;
## ]]></Example>
## <P/>
## (<E>Interactively</E>, the function
## <Ref Func="AssignGeneratorVariables"/> provides a shorthand for this.)
## This allows us to define <C>w</C> more conveniently:
## <P/>
## <Example><![CDATA[
## gap> w := a*b/c*b*a/a*c/b;
## a*b*c^-1*b*c*b^-1
## ]]></Example>
## <P/>
## Using homomorphisms it is possible to express elements of a group as words
## in terms of generators,
## see <Ref Sect="Expressing Group Elements as Words in Generators"/>.
## <#/GAPDoc>
##
#############################################################################
##
#C IsAssocWord( <obj> )
#C IsAssocWordWithOne( <obj> )
#C IsAssocWordWithInverse( <obj> )
##
## <#GAPDoc Label="IsAssocWord">
## <ManSection>
## <Filt Name="IsAssocWord" Arg='obj' Type='Category'/>
## <Filt Name="IsAssocWordWithOne" Arg='obj' Type='Category'/>
## <Filt Name="IsAssocWordWithInverse" Arg='obj' Type='Category'/>
##
## <Description>
## <Ref Func="IsAssocWord"/> is the category of associative words
## in free semigroups,
## <Ref Func="IsAssocWordWithOne"/> is the category of associative words
## in free monoids
## (which admit the operation <Ref Func="One"/> to compute an identity),
## <Ref Func="IsAssocWordWithInverse"/> is the category of associative words
## in free groups (which have an inverse).
## See <Ref Func="IsWord"/> for more general categories of words.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsAssocWord", IsWord and IsAssociativeElement );
DeclareSynonym( "IsAssocWordWithOne", IsAssocWord and IsWordWithOne );
DeclareSynonym( "IsAssocWordWithInverse",
IsAssocWord and IsWordWithInverse );
#############################################################################
##
#C IsAssocWordCollection( <obj> )
#C IsAssocWordWithOneCollection( <obj> )
#C IsAssocWordWithInverseCollection( <obj> )
##
## <ManSection>
## <Filt Name="IsAssocWordCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsAssocWordWithOneCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsAssocWordWithInverseCollection" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategoryCollections( "IsAssocWord" );
DeclareCategoryCollections( "IsAssocWordWithOne" );
DeclareCategoryCollections( "IsAssocWordWithInverse" );
DeclareCategoryFamily( "IsAssocWord" );
DeclareCategoryFamily( "IsAssocWordWithOne" );
DeclareCategoryFamily( "IsAssocWordWithInverse" );
#############################################################################
##
#C IsSyllableWordsFamily( <obj> )
##
## <#GAPDoc Label="IsSyllableWordsFamily">
## <ManSection>
## <Filt Name="IsSyllableWordsFamily" Arg='obj' Type='Category'/>
##
## <Description>
## A syllable word family stores words by default in syllable form.
## There are also different versions of syllable representations, which
## compress a generator exponent pair in 8, 16 or 32 bits or use a pair of
## integers.
## Internal mechanisms try to make this as memory efficient as possible.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsSyllableWordsFamily", IsAssocWordFamily );
#############################################################################
##
#C Is8BitsFamily( <obj> )
#C Is16BitsFamily( <obj> )
#C Is32BitsFamily( <obj> )
#C IsInfBitsFamily( <obj> )
##
## <#GAPDoc Label="Is8BitsFamily">
## <ManSection>
## <Filt Name="Is16BitsFamily" Arg='obj' Type='Category'/>
## <Filt Name="Is32BitsFamily" Arg='obj' Type='Category'/>
## <Filt Name="IsInfBitsFamily" Arg='obj' Type='Category'/>
##
## <Description>
## Regardless of the internal representation used, it is possible to convert
## a word in a list of numbers in letter or syllable representation and vice
## versa.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "Is8BitsFamily", IsSyllableWordsFamily );
DeclareCategory( "Is16BitsFamily", IsSyllableWordsFamily );
DeclareCategory( "Is32BitsFamily", IsSyllableWordsFamily );
DeclareCategory( "IsInfBitsFamily", IsSyllableWordsFamily );
#############################################################################
##
#R IsSyllableAssocWordRep( <obj> )
##
## <#GAPDoc Label="IsSyllableAssocWordRep">
## <ManSection>
## <Filt Name="IsSyllableAssocWordRep" Arg='obj' Type='Representation'/>
##
## <Description>
## A word in syllable representation stores generator/exponents pairs (as
## given by <Ref Func="ExtRepOfObj"/>.
## Syllable access is fast, letter access is slow for such words.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareRepresentation( "IsSyllableAssocWordRep", IsAssocWord, [] );
#############################################################################
##
#R IsLetterAssocWordRep( <obj> )
##
## <#GAPDoc Label="IsLetterAssocWordRep">
## <ManSection>
## <Filt Name="IsLetterAssocWordRep" Arg='obj' Type='Representation'/>
##
## <Description>
## A word in letter representation stores a list of generator/inverses
## numbers (as given by <Ref Func="LetterRepAssocWord"/>).
## Letter access is fast, syllable access is slow for such words.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareRepresentation( "IsLetterAssocWordRep", IsAssocWord, [] );
#############################################################################
##
#R IsBLetterAssocWordRep( <obj> )
#R IsWLetterAssocWordRep( <obj> )
##
## <#GAPDoc Label="IsBLetterAssocWordRep">
## <ManSection>
## <Filt Name="IsBLetterAssocWordRep" Arg='obj' Type='Representation'/>
## <Filt Name="IsWLetterAssocWordRep" Arg='obj' Type='Representation'/>
##
## <Description>
## these two subrepresentations of <Ref Func="IsLetterAssocWordRep"/>
## indicate whether the word is stored as a list of bytes (in a string)
## or as a list of integers).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareRepresentation( "IsBLetterAssocWordRep", IsLetterAssocWordRep, [] );
DeclareRepresentation( "IsWLetterAssocWordRep", IsLetterAssocWordRep, [] );
#############################################################################
##
#C IsLetterWordsFamily( <obj> )
##
## <#GAPDoc Label="IsLetterWordsFamily">
## <ManSection>
## <Filt Name="IsLetterWordsFamily" Arg='obj' Type='Category'/>
##
## <Description>
## A letter word family stores words by default in letter form.
## <P/>
## Internally, there are letter representations that use integers (4 Byte)
## to represent a generator and letter representations that use single bytes
## to represent a character.
## The latter are more memory efficient, but can only be used if there are
## less than 128 generators (in which case they are used by default).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsLetterWordsFamily", IsAssocWordFamily );
#############################################################################
##
#C IsBLetterWordsFamily( <obj> )
#C IsWLetterWordsFamily( <obj> )
##
## <#GAPDoc Label="IsBLetterWordsFamily">
## <ManSection>
## <Filt Name="IsBLetterWordsFamily" Arg='obj' Type='Category'/>
## <Filt Name="IsWLetterWordsFamily" Arg='obj' Type='Category'/>
##
## <Description>
## These two subcategories of <Ref Func="IsLetterWordsFamily"/> specify the
## type of letter representation to be used.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsBLetterWordsFamily", IsLetterWordsFamily );
DeclareCategory( "IsWLetterWordsFamily", IsLetterWordsFamily );
#############################################################################
##
#T IsFreeSemigroup( <obj> )
#T IsFreeMonoid( <obj> )
#C IsFreeGroup( <obj> )
##
## <#GAPDoc Label="IsFreeGroup">
## <ManSection>
## <Filt Name="IsFreeGroup" Arg='obj' Type='Category'/>
##
## <Description>
## Any group consisting of elements in <Ref Func="IsAssocWordWithInverse"/>
## lies in the filter <Ref Func="IsFreeGroup"/>;
## this holds in particular for any group created with
## <Ref Func="FreeGroup" Label="for given rank"/>,
## or any subgroup of such a group.
## <P/>
## <!-- Note that we cannot define <C>IsFreeMonoid</C> as-->
## <!-- <C>IsAssocWordWithOneCollection and IsMonoid</C> because then-->
## <!-- every free group would be a free monoid, which is not true!-->
## <!-- Instead we just make it a property and set it at creation-->
## Also see Chapter <Ref Chap="Finitely Presented Groups"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty("IsFreeSemigroup", IsAssocWordCollection and IsSemigroup);
DeclareProperty("IsFreeMonoid", IsAssocWordWithOneCollection and IsMonoid);
DeclareSynonym( "IsFreeGroup",
IsAssocWordWithInverseCollection and IsGroup );
#############################################################################
##
#M IsGeneratorsOfMagmaWithInverses( <coll> )
##
InstallTrueMethod( IsGeneratorsOfMagmaWithInverses,
IsAssocWordWithInverseCollection );
#############################################################################
##
#F AssignGeneratorVariables(<G>)
##
## <#GAPDoc Label="AssignGeneratorVariables">
## <ManSection>
## <Func Name="AssignGeneratorVariables" Arg='G'/>
##
## <Description>
## If <A>G</A> is a group, whose generators are represented by symbols (for
## example a free group, a finitely presented group or a pc group) this
## function assigns these generators to global variables with the same
## names.
## <P/>
## The aim of this function is to make it easy in interactive use to work
## with (for example) a free group. It is a shorthand for a sequence of
## assignments of the form
## <P/>
## <Log><![CDATA[
## var1:=GeneratorsOfGroup(G)[1];
## var2:=GeneratorsOfGroup(G)[2];
## ...
## varn:=GeneratorsOfGroup(G)[n];
## ]]></Log>
## <P/>
## However, since overwriting global variables can be very dangerous,
## <E>it is not permitted to use this function within a function</E>.
## (If –despite this warning– this is done,
## the result is undefined.)
## <P/>
## If the assignment overwrites existing variables a warning is given, if
## any of the variables if write protected, or any of the generator names
## would not be a proper variable name, an error is raised.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AssignGeneratorVariables", [IsDomain] );
#############################################################################
##
## 2. Comparison of Associative Words
##
## <#GAPDoc Label="[2]{wordass}">
## <ManSection>
## <Func Name="\=" Arg='w1, w2' Label="for associative words"/>
##
## <Description>
## <Index Subkey="associative words">equality</Index>
## Two associative words are equal if they are words over the same alphabet
## and if they are sequences of the same letters.
## This is equivalent to saying that the external representations of the
## words are equal,
## see <Ref Sect="The External Representation for Associative Words"/>
## and <Ref Sect="Comparison of Words"/>.
## <P/>
## There is no <Q>universal</Q> empty word,
## every alphabet (that is, every family of words) has its own empty word.
## <Example><![CDATA[
## gap> f:= FreeGroup( "a", "b", "b" );;
## gap> gens:= GeneratorsOfGroup(f);
## [ a, b, b ]
## gap> gens[2] = gens[3];
## false
## gap> x:= gens[1]*gens[2];
## a*b
## gap> y:= gens[2]/gens[2]*gens[1]*gens[2];
## a*b
## gap> x = y;
## true
## gap> z:= gens[2]/gens[2]*gens[1]*gens[3];
## a*b
## gap> x = z;
## false
## ]]></Example>
## </Description>
## </ManSection>
##
## <ManSection>
## <Func Name="\<" Arg='w1, w2' Label="for associative words"/>
##
## <Description>
## <Index Subkey="associative words">smaller</Index>
## The ordering of associative words is defined by length and lexicography
## (this ordering is called <E>short-lex</E> ordering),
## that is, shorter words are smaller than longer words,
## and words of the same length are compared w.r.t. the lexicographical
## ordering induced by the ordering of generators.
## Generators are sorted according to the order in which they were created.
## If the generators are invertible then each generator <A>g</A> is larger
## than its inverse <A>g</A><C>^-1</C>,
## and <A>g</A><C>^-1</C> is larger than every generator that is smaller
## than <A>g</A>.
## <Example><![CDATA[
## gap> f:= FreeGroup( 2 );; gens:= GeneratorsOfGroup( f );;
## gap> a:= gens[1];; b:= gens[2];;
## gap> One(f) < a^-1; a^-1 < a; a < b^-1; b^-1 < b; b < a^2; a^2 < a*b;
## true
## true
## true
## true
## true
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
## 3. Operations for Associative Words
##
## <#GAPDoc Label="[3]{wordass}">
## The product of two given associative words is defined as the freely
## reduced concatenation of the words.
## <Index Subkey="of words">product</Index>
## <Index Subkey="of words">quotient</Index>
## <Index Subkey="of words">power</Index>
## <Index Subkey="of a word">conjugate</Index>
## Besides the multiplication <Ref Func="\*"/>, the arithmetical operators
## <Ref Func="One"/> (if the word lies in a family with identity)
## and (if the generators are invertible) <Ref Func="Inverse"/>,
## <Ref Func="\/"/>,<Ref Func="\^"/>,
## <Index Key="Comm" Subkey="for words"><C>Comm</C></Index>
## <Ref Func="Comm"/>, and
## <Index Key="LeftQuotient" Subkey="for words"><C>LeftQuotient</C></Index>
## <Ref Func="LeftQuotient"/> are applicable to associative words,
## see <Ref Sect="Arithmetic Operations for Elements"/>.
## <P/>
## See also <Ref Func="MappedWord"/>, an operation that is applicable to
## arbitrary words.
## <P/>
## See Section <Ref Sect="Representations for Associative Words"/>
## for a discussion of the internal representations of associative words
## that are supported by &GAP;.
## Note that operations to extract or act on parts of words
## (letter or syllables) can carry substantially different
## costs, depending on the representation the words are in.
## <#/GAPDoc>
##
#############################################################################
##
#A Length( <w> )
##
## <#GAPDoc Label="Length:wordass">
## <ManSection>
## <Attr Name="Length" Arg='w' Label="for a associative word"/>
##
## <Description>
## <Index Subkey="of a word">length</Index>
## For an associative word <A>w</A>,
## <Ref Func="Length" Label="for a associative word"/> returns
## the number of letters in <A>w</A>.
## <P/>
## <Example><![CDATA[
## gap> f := FreeGroup("a","b");; gens := GeneratorsOfGroup(f);;
## gap> a := gens[1];; b := gens[2];;w := a^5*b*a^2*b^-4*a;;
## gap> w; Length( w ); Length( a^17 ); Length( w^0 );
## a^5*b*a^2*b^-4*a
## 13
## 17
## 0
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Length", IsAssocWord );
#############################################################################
##
#O Subword( <w>, <from>, <to> )
##
## <#GAPDoc Label="Subword">
## <ManSection>
## <Oper Name="Subword" Arg='w, from, to'/>
##
## <Description>
## For an associative word <A>w</A> and two positive integers <A>from</A>
## and <A>to</A>,
## <Ref Oper="Subword"/> returns the subword of <A>w</A> that begins
## at position <A>from</A> and ends at position <A>to</A>.
## Indexing is done with origin 1.
## <Example><![CDATA[
## gap> w; Subword( w, 3, 7 );
## a^5*b*a^2*b^-4*a
## a^3*b*a
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Subword", [ IsAssocWord, IsPosInt, IsPosInt ] );
#############################################################################
##
#O PositionWord( <w>, <sub>, <from> )
##
## <#GAPDoc Label="PositionWord">
## <ManSection>
## <Oper Name="PositionWord" Arg='w, sub, from'/>
##
## <Description>
## Let <A>w</A> and <A>sub</A> be associative words,
## and <A>from</A> a positive integer.
## <Ref Func="PositionWord"/> returns the position of the first occurrence
## of <A>sub</A> as a subword of <A>w</A>, starting at position <A>from</A>.
## If there is no such occurrence, <K>fail</K> is returned.
## Indexing is done with origin 1.
## <P/>
## In other words, <C>PositionWord( <A>w</A>, <A>sub</A>, <A>from</A> )</C>
## is the smallest integer <M>i</M> larger than or equal to <A>from</A> such
## that <C>Subword( <A>w</A>, </C><M>i</M><C>,</C>
## <M>i</M><C>+Length( <A>sub</A> )-1 ) =</C>
## <A>sub</A>, see <Ref Func="Subword"/>.
## <P/>
## <Example><![CDATA[
## gap> w; PositionWord( w, a/b, 1 );
## a^5*b*a^2*b^-4*a
## 8
## gap> Subword( w, 8, 9 );
## a*b^-1
## gap> PositionWord( w, a^2, 1 );
## 1
## gap> PositionWord( w, a^2, 2 );
## 2
## gap> PositionWord( w, a^2, 6 );
## 7
## gap> PositionWord( w, a^2, 8 );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PositionWord", [ IsAssocWord, IsAssocWord, IsPosInt ] );
#############################################################################
##
#O SubstitutedWord( <w>, <from>, <to>, <by> )
#O SubstitutedWord( <w>, <sub>, <from>, <by> )
##
## <#GAPDoc Label="SubstitutedWord">
## <ManSection>
## <Heading>SubstitutedWord</Heading>
## <Oper Name="SubstitutedWord" Arg='w, from, to, by'
## Label="replace an interval by a given word"/>
## <Oper Name="SubstitutedWord" Arg='w, sub, from, by'
## Label="replace a subword by a given word"/>
##
## <Description>
## Let <A>w</A> be an associative word.
## <P/>
## In the first form,
## <Ref Func="SubstitutedWord" Label="replace an interval by a given word"/>
## returns the associative word obtained by replacing the subword of
## <A>w</A> that begins at position <A>from</A> and ends at position
## <A>to</A> by the associative word <A>by</A>.
## <A>from</A> and <A>to</A> must be positive integers,
## indexing is done with origin 1.
## In other words,
## <C>SubstitutedWord( <A>w</A>, <A>from</A>, <A>to</A>, <A>by</A> )</C>
## is the product of the three words
## <C>Subword( <A>w</A>, 1, <A>from</A>-1 )</C>, <A>by</A>,
## and <C>Subword( <A>w</A>, <A>to</A>+1, Length( <A>w</A> ) )</C>,
## see <Ref Func="Subword"/>.
## <P/>
## In the second form,
## <Ref Func="SubstitutedWord" Label="replace a subword by a given word"/>
## returns the associative word obtained by replacing the first occurrence
## of the associative word <A>sub</A> of <A>w</A>, starting at position
## <A>from</A>, by the associative word <A>by</A>;
## if there is no such occurrence, <K>fail</K> is returned.
## <Example><![CDATA[
## gap> w; SubstitutedWord( w, 3, 7, a^19 );
## a^5*b*a^2*b^-4*a
## a^22*b^-4*a
## gap> SubstitutedWord( w, a, 6, b^7 );
## a^5*b^8*a*b^-4*a
## gap> SubstitutedWord( w, a*b, 6, b^7 );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SubstitutedWord",
[ IsAssocWord, IsPosInt, IsPosInt, IsAssocWord ] );
DeclareOperation( "SubstitutedWord",
[ IsAssocWord, IsAssocWord, IsPosInt, IsAssocWord ] );
#############################################################################
##
#O EliminatedWord( <w>, <gen>, <by> )
##
## <#GAPDoc Label="EliminatedWord">
## <ManSection>
## <Oper Name="EliminatedWord" Arg='w, gen, by'/>
##
## <Description>
## For an associative word <A>w</A>, a generator <A>gen</A>,
## and an associative word <A>by</A>, <Ref Func="EliminatedWord"/> returns
## the associative word obtained by replacing each occurrence of <A>gen</A>
## in <A>w</A> by <A>by</A>.
## <Example><![CDATA[
## gap> w; EliminatedWord( w, a, a^2 ); EliminatedWord( w, a, b^-1 );
## a^5*b*a^2*b^-4*a
## a^10*b*a^4*b^-4*a^2
## b^-11
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "EliminatedWord",
[ IsAssocWord, IsAssocWord, IsAssocWord ] );
#############################################################################
##
#O ExponentSumWord( <w>, <gen> )
##
## <#GAPDoc Label="ExponentSumWord">
## <ManSection>
## <Oper Name="ExponentSumWord" Arg='w, gen'/>
##
## <Description>
## For an associative word <A>w</A> and a generator <A>gen</A>,
## <Ref Func="ExponentSumWord"/> returns the number of times <A>gen</A>
## appears in <A>w</A> minus the number of times its inverse appears in
## <A>w</A>.
## If both <A>gen</A> and its inverse do not occur in <A>w</A> then <M>0</M>
## is returned.
## <A>gen</A> may also be the inverse of a generator.
## <Example><![CDATA[
## gap> w; ExponentSumWord( w, a ); ExponentSumWord( w, b );
## a^5*b*a^2*b^-4*a
## 8
## -3
## gap> ExponentSumWord( (a*b*a^-1)^3, a ); ExponentSumWord( w, b^-1 );
## 0
## 3
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ExponentSumWord", [ IsAssocWord, IsAssocWord ] );
#############################################################################
##
## 4. Operations for Associative Words by their Syllables
## <#GAPDoc Label="[5]{wordass}">
## For an associative word
## <A>w</A> <M>= x_1^{{n_1}} x_2^{{n_2}} \cdots x_k^{{n_k}}</M>
## over an alphabet containing <M>x_1, x_2, \ldots, x_k</M>,
## such that <M>x_i \neq x_{{i+1}}^{{\pm 1}}</M> for
## <M>1 \leq i \leq k-1</M>,
## the subwords <M>x_i^{{e_i}}</M> are uniquely determined;
## these powers of generators are called the <E>syllables</E> of <M>w</M>.
## <#/GAPDoc>
##
#############################################################################
##
#A NumberSyllables( <w> )
##
## <#GAPDoc Label="NumberSyllables">
## <ManSection>
## <Attr Name="NumberSyllables" Arg='w'/>
##
## <Description>
## <Ref Func="NumberSyllables"/> returns the number of syllables of the
## associative word <A>w</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NumberSyllables", IsAssocWord );
DeclareSynonymAttr( "NrSyllables", NumberSyllables );
#############################################################################
##
#O ExponentSyllable( <w>, <i> )
##
## <#GAPDoc Label="ExponentSyllable">
## <ManSection>
## <Oper Name="ExponentSyllable" Arg='w, i'/>
##
## <Description>
## <Ref Func="ExponentSyllable"/> returns the exponent of the <A>i</A>-th
## syllable of the associative word <A>w</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ExponentSyllable", [ IsAssocWord, IsPosInt ] );
#############################################################################
##
#O GeneratorSyllable( <w>, <i> )
##
## <#GAPDoc Label="GeneratorSyllable">
## <ManSection>
## <Oper Name="GeneratorSyllable" Arg='w, i'/>
##
## <Description>
## <Ref Func="GeneratorSyllable"/> returns the number of the generator that
## is involved in the <A>i</A>-th syllable of the associative word <A>w</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "GeneratorSyllable", [ IsAssocWord, IsInt ] );
#############################################################################
##
#O SubSyllables( <w>, <from>, <to> )
##
## <#GAPDoc Label="SubSyllables">
## <ManSection>
## <Oper Name="SubSyllables" Arg='w, from, to'/>
##
## <Description>
## <Ref Func="SubSyllables"/> returns the subword of the associative word
## <A>w</A> that consists of the syllables from positions <A>from</A> to
## <A>to</A>, where <A>from</A> and <A>to</A> must be positive integers,
## and indexing is done with origin 1.
## <Example><![CDATA[
## gap> w; NumberSyllables( w );
## a^5*b*a^2*b^-4*a
## 5
## gap> ExponentSyllable( w, 3 );
## 2
## gap> GeneratorSyllable( w, 3 );
## 1
## gap> SubSyllables( w, 2, 3 );
## b*a^2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SubSyllables", [ IsAssocWord, IsInt, IsInt ] );
#############################################################################
##
## 5. Operations for Associative Words by their Letters
#############################################################################
##
#O LetterRepAssocWord( <w>[, <gens>] )
##
## <#GAPDoc Label="LetterRepAssocWord">
## <ManSection>
## <Oper Name="LetterRepAssocWord" Arg='w[, gens]'/>
##
## <Description>
## The <E>letter representation</E> of an associated word is as a list of
## integers, each entry corresponding to a group generator. Inverses of the
## generators are represented by negative numbers. The generator numbers
## are as associated to the family.
## <P/>
## This operation returns the letter representation of the associative word
## <A>w</A>.
## <P/>
## In the call with two arguments, the generator numbers correspond to the
## generator order given in the list <A>gens</A>.
## <P/>
## (For words stored in syllable form the letter representation has to be
## computed.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LetterRepAssocWord", [ IsAssocWord ] );
#############################################################################
##
#O AssocWordByLetterRep( <Fam>, <lrep>[, <gens>] )
##
## <#GAPDoc Label="AssocWordByLetterRep">
## <ManSection>
## <Oper Name="AssocWordByLetterRep" Arg='Fam, lrep[, gens]'/>
##
## <Description>
## takes a letter representation <A>lrep</A>
## (see <Ref Func="LetterRepAssocWord"/>) and returns an associative word in
## family <A>fam</A> corresponding to this letter representation.
## <P/>
## If <A>gens</A> is given, the numbers in the letter
## representation correspond to <A>gens</A>.
## <Example><![CDATA[
## gap> w:=AssocWordByLetterRep( FamilyObj(a), [-1,2,1,-2,-2,-2,1,1,1,1]);
## a^-1*b*a*b^-3*a^4
## gap> LetterRepAssocWord( w^2 );
## [ -1, 2, 1, -2, -2, -2, 1, 1, 1, 2, 1, -2, -2, -2, 1, 1, 1, 1 ]
## ]]></Example>
## <P/>
## The external representation
## (see section <Ref Sect="The External Representation for Associative Words"/>)
## can be used if a syllable representation is needed.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AssocWordByLetterRep",[IsFamily,IsList] );
#############################################################################
##
#O SyllableRepAssocWord( <w> )
##
## <ManSection>
## <Oper Name="SyllableRepAssocWord" Arg='w'/>
##
## <Description>
## returns a word equal to <A>w</A> in syllable representation.
## This is needed for the use of words for pc groups.
## </Description>
## </ManSection>
##
DeclareOperation( "SyllableRepAssocWord", [ IsAssocWord ] );
#############################################################################
##
## 6. External Representation for Associative Words
## <#GAPDoc Label="[6]{wordass}">
## The external representation of the associative word <M>w</M> is defined
## as follows.
## If
## <M>w = g_{{i_1}}^{{e_1}} * g_{{i_2}}^{{e_2}} * \cdots * g_{{i_k}}^{{e_k}}</M>
## is a word over the alphabet <M>g_1, g_2, \ldots</M>,
## i.e., <M>g_i</M> denotes the <M>i</M>-th generator of the family of
## <M>w</M>, then <M>w</M> has external representation
## <M>[ i_1, e_1, i_2, e_2, \ldots, i_k, e_k ]</M>.
## The empty list describes the identity element (if exists) of the family.
## Exponents may be negative if the family allows inverses.
## The external representation of an associative word is guaranteed to be
## freely reduced;
## for example,
## <M>g_1 * g_2 * g_2^{{-1}} * g_1</M> has the external representation
## <C>[ 1, 2 ]</C>.
## <P/>
## Regardless of the family preference for letter or syllable
## representations
## (see <Ref Sect="Representations for Associative Words"/>),
## <C>ExtRepOfObj</C> and <C>ObjByExtRep</C> can be used and interface to
## this <Q>syllable</Q>-like representation.
## <P/>
## <Example><![CDATA[
## gap> w:= ObjByExtRep( FamilyObj(a), [1,5,2,-7,1,3,2,4,1,-2] );
## a^5*b^-7*a^3*b^4*a^-2
## gap> ExtRepOfObj( w^2 );
## [ 1, 5, 2, -7, 1, 3, 2, 4, 1, 3, 2, -7, 1, 3, 2, 4, 1, -2 ]
## ]]></Example>
## <#/GAPDoc>
##
#############################################################################
##
## 7. Some Undocumented Functions
##
#############################################################################
##
#O ExponentSums( <w>[, <from>, <to>] )
##
## <ManSection>
## <Oper Name="ExponentSums" Arg='w[, from, to]'/>
##
## <Description>
## returns the exponent sums in <A>w</A>.
## The three argument version loops over the
## syllables <A>from</A> to <A>to</A>.
## </Description>
## </ManSection>
##
DeclareOperation( "ExponentSums", [ IsAssocWord ] );
#############################################################################
##
#O RenumberedWord( <word>, <renumber> ) . . . renumber generators of a word
##
## <ManSection>
## <Oper Name="RenumberedWord" Arg='word, renumber'/>
##
## <Description>
## accepts an associative word <A>word</A> and a list <A>renumber</A> of
## positive integers.
## The result is a new word obtained from <A>word</A> by replacing each
## occurrence of generator number <M>g</M> by <A>renumber</A><M>[g]</M>.
## The list <A>renumber</A> need not be dense, but it must have a positive
## integer for each generator number occurring in <A>word</A>.
## That integer must not exceed the number of generators in the elements
## family of <A>word</A>.
## </Description>
## </ManSection>
##
DeclareOperation( "RenumberedWord", [IsAssocWord, IsList] );
#############################################################################
##
#O AssocWord( <Fam>, <extrep> ) . . . . construct word from external repr.
#O AssocWord( <Type>, <extrep> ) . . . . construct word from external repr.
##
## <ManSection>
## <Oper Name="AssocWord" Arg='Fam, extrep'/>
## <Oper Name="AssocWord" Arg='Type, extrep'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "AssocWord" );
#############################################################################
##
#O ObjByVector( <Fam>, <exponents> )
#O ObjByVector( <Type>, <exponents> )
##
## <ManSection>
## <Oper Name="ObjByVector" Arg='Fam, exponents'/>
## <Oper Name="ObjByVector" Arg='Type, exponents'/>
##
## <Description>
## is the associative word in the family <A>Fam</A> that has
## exponents vector <A>exponents</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ObjByVector" );
# is not used anywhere
# #############################################################################
# ##
# #O CyclicReducedWordList( <word>, <gens> )
# ##
# DeclareOperation( "CyclicReducedWordList", [ IsAssocWord, IsList ] );
#############################################################################
##
#F StoreInfoFreeMagma( <F>, <names>, <req> )
##
## <ManSection>
## <Func Name="StoreInfoFreeMagma" Arg='F, names, req'/>
##
## <Description>
## <Ref Func="StoreInfoFreeMagma"/> does the administrative work
## in the construction of free semigroups, free monoids, and free groups.
## <P/>
## <A>F</A> is the family of objects,
## <A>names</A> is a list of generators names,
## and <A>req</A> is the required category for the elements, that is,
## <Ref Func="IsAssocWord"/>, <Ref Func="IsAssocWordWithOne"/>,
## or <Ref Func="IsAssocWordWithInverse"/>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "StoreInfoFreeMagma" );
#############################################################################
##
#F InfiniteListOfNames( <string>[, <initnames>] )
##
## <ManSection>
## <Func Name="InfiniteListOfNames" Arg='string[, initnames]'/>
##
## <Description>
## If the only argument is a string <A>string</A> then
## <Ref Func="InfiniteListOfNames"/> returns an infinite list with the
## string <A>string</A><M>i</M> at position <M>i</M>.
## If a finite list <A>initnames</A> of length <M>n</M>, say,
## is given as second argument,
## the <M>i</M>-th entry of the returned infinite list is equal to
## <A>initnames</A><C>[</C><M>i</M><C>]</C> if <M>i \leq n</M>,
## and equal to <A>string</A><M>i</M> if <M>i > n</M>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "InfiniteListOfNames" );
#############################################################################
##
#F InfiniteListOfGenerators( <F>[, <init>] )
##
## <ManSection>
## <Func Name="InfiniteListOfGenerators" Arg='F[, init]'/>
##
## <Description>
## If the only argument is a family <A>Fam</A> then
## <Ref Func="InfiniteListOfGenerators"/> returns an infinite list
## containing at position <M>i</M> the element in <A>Fam</A>
## obtained as <C>ObjByExtRep( <A>Fam</A>, [ </C><M>i</M><C>, 1 ] )</C>.
## If a finite list <A>init</A> of length <M>n</M>, say,
## is given as second argument, the <M>i</M>-th entry of the returned
## infinite list is equal to
## <A>init</A><C>[</C><M>i</M><C>]</C> if <M>i \leq n</M>,
## and equal to <C>ObjByExtRep( <A>Fam</A>, </C><M>i</M><C> )</C>
## if <M>i > n</M>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "InfiniteListOfGenerators" );
#############################################################################
##
#F ERepAssWorProd( <l>,<r> )
##
## <ManSection>
## <Func Name="ERepAssWorProd" Arg='l,r'/>
##
## <Description>
## multiplies two associative words in the external representation.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("ERepAssWorProd");
#############################################################################
##
#F ERepAssWorInv( <w> )
##
## <ManSection>
## <Func Name="ERepAssWorInv" Arg='w'/>
##
## <Description>
## returns the inverse of the associative word <A>w</A> given in external
## representation.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("ERepAssWorInv");
#############################################################################
##
#E
|